Idiopathic pulmonary fibrosis (IPF) is a disease of progressive lung fibrosis with a high mortality rate. This study aimed to uncover the underlying molecular features for different types of IPF. IPF microarray datasets were retrieved from GEO databases. Weighted gene co-expression analysis (WGCNA) was used and identified subgroup-specific WGCNA modules. Infiltration-level immune cells in different subgroups of microenvironments were analyzed with CIBERSORT algorithms. The result is we classified 173 IPF cases into two subgroups based on gene expression profiles, which were retrieved from the GEO databases. The SGRQ score and age were significantly higher in C2 than in C1. Using WGCNA, five subgroup-specific modules were identified. M4 was mainly enriched by MAPK signaling, which was mainly expressed in C2; M1, M2, and M3 were mainly enriched by metabolic pathways and Chemokine signaling, and the pathway of M5 was phagosome inflammation; M1, M2, M3, and M5 were mainly expressed in C1. Utilizing the CIBERSORT, we showed that the number of M1 macrophage cells, CD8 T cells, regulatory T cells (Tregs), and Plasma cells was significantly different between C1 and C2. We found the molecular subgroups of IPF revealed that cases from different subgroups may have their unique patterns and provide novel information to understand the mechanisms of IPF itself.
{"title":"Transcriptome Classification Reveals Molecular Subgroups in Idiopathic Pulmonary Fibrosis.","authors":"Yuxia Liu, Chang Xu, Wenxin Gao, Huaqiong Liu, Chenglong Li, Mingwei Chen","doi":"10.1155/2022/7448481","DOIUrl":"https://doi.org/10.1155/2022/7448481","url":null,"abstract":"<p><p>Idiopathic pulmonary fibrosis (IPF) is a disease of progressive lung fibrosis with a high mortality rate. This study aimed to uncover the underlying molecular features for different types of IPF. IPF microarray datasets were retrieved from GEO databases. Weighted gene co-expression analysis (WGCNA) was used and identified subgroup-specific WGCNA modules. Infiltration-level immune cells in different subgroups of microenvironments were analyzed with CIBERSORT algorithms. The result is we classified 173 IPF cases into two subgroups based on gene expression profiles, which were retrieved from the GEO databases. The SGRQ score and age were significantly higher in C2 than in C1. Using WGCNA, five subgroup-specific modules were identified. M4 was mainly enriched by MAPK signaling, which was mainly expressed in C2; M1, M2, and M3 were mainly enriched by metabolic pathways and Chemokine signaling, and the pathway of M5 was phagosome inflammation; M1, M2, M3, and M5 were mainly expressed in C1. Utilizing the CIBERSORT, we showed that the number of M1 macrophage cells, CD8 T cells, regulatory T cells (Tregs), and Plasma cells was significantly different between C1 and C2. We found the molecular subgroups of IPF revealed that cases from different subgroups may have their unique patterns and provide novel information to understand the mechanisms of IPF itself.</p>","PeriodicalId":12778,"journal":{"name":"Genetics research","volume":" ","pages":"7448481"},"PeriodicalIF":1.5,"publicationDate":"2022-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9308534/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40595594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-12eCollection Date: 2022-01-01DOI: 10.1155/2022/2319161
Brehima Diakite, Yaya Kassogue, Mamoudou Maiga, Guimogo Dolo, Oumar Kassogue, Jonah Musa, Imran Morhason-Bello, Ban Traore, Cheick Bougadari Traore, Bakarou Kamate, Aissata Coulibaly, Sekou Bah, Sellama Nadifi, Robert Murphy, Jane L Holl, Lifang Hou
A literature review showed some discrepancies regarding the association of -592C/A with the risk of cervical cancer. To allow more precise analysis of the data by increasing the number of cases studied and more acceptable generalization by considering results from different sources, the present meta-analysis was performed on available published studies that explored the relationship between SNP-592C/A of the IL-10 gene and the risk of cervical cancer. Eleven available studies, including 4187 cases and 3311 controls, were included in this study investigating the relationship between the -592C/A polymorphism of IL-10 and cervical cancer risk. Fixed-effects or random-effects models were performed with pooled odds ratios (ORs). Heterogeneity and bias tests were performed by the inconsistency test and funnel plot, respectively. The overall analysis showed an increased susceptibility to cervical cancer with the -592C/A polymorphism of the IL-10 gene for the recessive model (OR = 1.30, 95% CI = 1.14-1.49), dominant model (OR = 1.36, 95% CI = 1.09-1.70), and additive model (OR = 1.25, 95% CI = 1.09-1.44). Regarding ethnicity, a significant association of the -592C/A polymorphism of the IL-10 gene was linked to an elevated risk of cervical cancer for all genetic models (recessive, dominant, and additive) in the Asian populations and for the recessive and additive models in Caucasians with P < 0.05. The -592C/A polymorphism of the IL-10 gene may be considered a risk factor for cervical cancer.
{"title":"Association of the <i>Interleukin-10-592C/A</i> Polymorphism and Cervical Cancer Risk: A Meta-Analysis.","authors":"Brehima Diakite, Yaya Kassogue, Mamoudou Maiga, Guimogo Dolo, Oumar Kassogue, Jonah Musa, Imran Morhason-Bello, Ban Traore, Cheick Bougadari Traore, Bakarou Kamate, Aissata Coulibaly, Sekou Bah, Sellama Nadifi, Robert Murphy, Jane L Holl, Lifang Hou","doi":"10.1155/2022/2319161","DOIUrl":"10.1155/2022/2319161","url":null,"abstract":"<p><p>A literature review showed some discrepancies regarding the association of <i>-592C/A</i> with the risk of cervical cancer. To allow more precise analysis of the data by increasing the number of cases studied and more acceptable generalization by considering results from different sources, the present meta-analysis was performed on available published studies that explored the relationship between SNP<i>-592C/A</i> of the <i>IL-10</i> gene and the risk of cervical cancer. Eleven available studies, including 4187 cases and 3311 controls, were included in this study investigating the relationship between the <i>-592C/A</i> polymorphism of <i>IL-10</i> and cervical cancer risk. Fixed-effects or random-effects models were performed with pooled odds ratios (ORs). Heterogeneity and bias tests were performed by the inconsistency test and funnel plot, respectively. The overall analysis showed an increased susceptibility to cervical cancer with the <i>-592C/A</i> polymorphism of the <i>IL-10</i> gene for the recessive model (OR = 1.30, 95% CI = 1.14-1.49), dominant model (OR = 1.36, 95% CI = 1.09-1.70), and additive model (OR = 1.25, 95% CI = 1.09-1.44). Regarding ethnicity, a significant association of the <i>-592C/A</i> polymorphism of the <i>IL-10</i> gene was linked to an elevated risk of cervical cancer for all genetic models (recessive, dominant, and additive) in the Asian populations and for the recessive and additive models in Caucasians with <i>P</i> < 0.05. The <i>-592C/A</i> polymorphism of the <i>IL-10</i> gene may be considered a risk factor for cervical cancer.</p>","PeriodicalId":12778,"journal":{"name":"Genetics research","volume":"2022 ","pages":"2319161"},"PeriodicalIF":1.4,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9296312/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9277745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aimed to screen miRNA biomarkers for melanoma progression. Raw melanoma data were downloaded from the Gene Expression Omnibus (GSE34460, GSE35579, GSE18509, and GSE24996) and the Cancer Genome Atlas (TCGA). Then, all differentially expressed miRNAs (DEmiRNAs) between benign vs. primary, metastatic vs. benign, and metastatic vs. primary groups were obtained in the GSE34460 and GSE35579 datasets, and the miRNAs related to disease progression were further screened. Then, the miRNA-gene network was constructed, followed by enrichment, survival, and cluster analyses. Differentially expressed genes (DEGs), tumor-infiltrating immune cells, and tumor mutation burden (TMB) between subtypes were analyzed. miRNAs were verified in the GSE18509 and GSE24996 datasets. A total of 132 and 209 DEmiRNAs were obtained in the GSE34460 and GSE35579 datasets, respectively, and 27 DEmiRNAs related to disease progression were screened. hsa-miR-106b-5p, hsa-miR-27b-3p, and hsa-miR-141-3p had a higher degree and were regulated by numerous genes in the miRNA-gene network. Moreover, four miRNAs were associated with prognosis: hsa-let-7c-5p, hsa-miR-130b-3p, hsa-miR-142-3p, and hsa-miR-509-3p. Furthermore, the bidirectional hierarchical clustering of 27 miRNAs was classified into three subtypes, and TMB and four types of immune cells, including activated dendritic cells, naïve CD4 T cells, M1 macrophages, and plasma cells, showed significant differences among the three subtypes. The expression levels of most miRNAs in the GSE18509 and GSE24996 datasets were consistent with those in the training dataset. These miRNAs, including hsa-let-7c-5p, hsa-miR-130b-3p, and hsa-miR-142-3p, and activated dendritic cells, naïve CD4 T cells, M1 macrophages, and plasma cells may play vital roles in the pathogenesis of melanoma.
{"title":"Hsa-let-7c-5p, hsa-miR-130b-3p, and hsa-miR-142-3p as Novel miRNA Biomarkers for Melanoma Progression.","authors":"Xuerui Wu, Yu Wang, Chen Chen, Yadong Xue, Shuyun Zheng, Limin Cai","doi":"10.1155/2022/5671562","DOIUrl":"10.1155/2022/5671562","url":null,"abstract":"<p><p>This study aimed to screen miRNA biomarkers for melanoma progression. Raw melanoma data were downloaded from the Gene Expression Omnibus (GSE34460, GSE35579, GSE18509, and GSE24996) and the Cancer Genome Atlas (TCGA). Then, all differentially expressed miRNAs (DEmiRNAs) between benign vs. primary, metastatic vs. benign, and metastatic vs. primary groups were obtained in the GSE34460 and GSE35579 datasets, and the miRNAs related to disease progression were further screened. Then, the miRNA-gene network was constructed, followed by enrichment, survival, and cluster analyses. Differentially expressed genes (DEGs), tumor-infiltrating immune cells, and tumor mutation burden (TMB) between subtypes were analyzed. miRNAs were verified in the GSE18509 and GSE24996 datasets. A total of 132 and 209 DEmiRNAs were obtained in the GSE34460 and GSE35579 datasets, respectively, and 27 DEmiRNAs related to disease progression were screened. hsa-miR-106b-5p, hsa-miR-27b-3p, and hsa-miR-141-3p had a higher degree and were regulated by numerous genes in the miRNA-gene network. Moreover, four miRNAs were associated with prognosis: hsa-let-7c-5p, hsa-miR-130b-3p, hsa-miR-142-3p, and hsa-miR-509-3p. Furthermore, the bidirectional hierarchical clustering of 27 miRNAs was classified into three subtypes, and TMB and four types of immune cells, including activated dendritic cells, naïve CD4 T cells, M1 macrophages, and plasma cells, showed significant differences among the three subtypes. The expression levels of most miRNAs in the GSE18509 and GSE24996 datasets were consistent with those in the training dataset. These miRNAs, including hsa-let-7c-5p, hsa-miR-130b-3p, and hsa-miR-142-3p, and activated dendritic cells, naïve CD4 T cells, M1 macrophages, and plasma cells may play vital roles in the pathogenesis of melanoma.</p>","PeriodicalId":12778,"journal":{"name":"Genetics research","volume":" ","pages":"5671562"},"PeriodicalIF":2.1,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9282999/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40666568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-29eCollection Date: 2022-01-01DOI: 10.1155/2022/1273153
Xiaoju Bao, Jingyue Qiu, Qin Xuan, Xinming Ye
Background: Exercise is a regular behavioral activity that not only helps to lose weight but also reduces the risk of cardiovascular and cerebrovascular diseases. Diabetes is a common disease that plagues human health. It is shown that regular exercise can improve the insulin sensitivity of diabetic patients and have an important function in adjuvant therapy.
Methods: We downloaded the GSE101931 dataset from the Gene Expression Omnibus (GEO) database, 10 samples were obtained from the GSE101931 dataset, including 5 before exercise and 5 postexercise samples, and GEO2R was used to screen the differentially expressed genes (DEGs) exhibited by a heat map. Then, the enrichment analysis of DEGs in Gene Ontology (GO) function was analyzed by Metascape, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of DEGs was also analyzed by gene set enrichment analysis (GSEA). Next, the protein-protein interaction (PPI) network maps were drawn, and the hub genes were identified through Metascape. Finally, the expressions of the hub genes in the dataset were analyzed.
Results: Totally, 116 upregulated DEGs and 1017 downregulated DEGs were identified from these data. These DEGs were mainly enriched in the platelet-derived growth factor receptor signaling pathway and mRNA processing. Then, the GSEA analysis showed that 6 KEGG pathways were associated with postexercise prediabetic samples, namely, ABC transporters, focal adhesion, MAPK signaling pathway, prion diseases, melanogenesis, and gap junction. Afterward, three hub genes (HSPA8, STIP1, and HSPH1) were highly expressed after exercise through the box plot analysis.
Conclusion: A myriad of research results confirms that there is a certain connection between exercise and diabetes, which provides a favorable basis for emerging exercise into the treatment of diabetic patients.
背景:运动是一种有规律的行为活动,不仅有助于减肥,而且可以降低患心脑血管疾病的风险。糖尿病是一种危害人类健康的常见病。研究表明,经常运动可以提高糖尿病患者的胰岛素敏感性,在辅助治疗中具有重要作用。方法:从Gene Expression Omnibus (GEO)数据库下载GSE101931数据集,从GSE101931数据集中获得10个样本,其中5个为运动前样本,5个为运动后样本,使用GEO2R筛选热图显示的差异表达基因(deg)。然后,利用metscape对基因本体(GO)功能中的DEGs进行富集分析,并利用基因集富集分析(GSEA)对DEGs的京都基因与基因组百科全书(KEGG)途径进行分析。下一步,绘制蛋白-蛋白相互作用(PPI)网络图谱,并通过metscape对枢纽基因进行鉴定。最后,对数据集中中心基因的表达进行了分析。结果:从这些数据中共鉴定出116个上调的deg和1017个下调的deg。这些deg主要富集在血小板源性生长因子受体信号通路和mRNA加工中。然后,GSEA分析显示,运动后糖尿病前期样本中有6条KEGG通路相关,即ABC转运蛋白、局灶粘连、MAPK信号通路、朊病毒疾病、黑色素生成和间隙连接。之后,通过箱形图分析,运动后三个枢纽基因(HSPA8、STIP1和HSPH1)高表达。结论:大量的研究结果证实了运动与糖尿病之间存在一定的联系,这为将运动引入糖尿病患者的治疗中提供了有利的依据。
{"title":"Bioinformatics Analysis of Exercise-Related Biomarkers in Diabetes.","authors":"Xiaoju Bao, Jingyue Qiu, Qin Xuan, Xinming Ye","doi":"10.1155/2022/1273153","DOIUrl":"https://doi.org/10.1155/2022/1273153","url":null,"abstract":"<p><strong>Background: </strong>Exercise is a regular behavioral activity that not only helps to lose weight but also reduces the risk of cardiovascular and cerebrovascular diseases. Diabetes is a common disease that plagues human health. It is shown that regular exercise can improve the insulin sensitivity of diabetic patients and have an important function in adjuvant therapy.</p><p><strong>Methods: </strong>We downloaded the GSE101931 dataset from the Gene Expression Omnibus (GEO) database, 10 samples were obtained from the GSE101931 dataset, including 5 before exercise and 5 postexercise samples, and GEO2R was used to screen the differentially expressed genes (DEGs) exhibited by a heat map. Then, the enrichment analysis of DEGs in Gene Ontology (GO) function was analyzed by Metascape, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of DEGs was also analyzed by gene set enrichment analysis (GSEA). Next, the protein-protein interaction (PPI) network maps were drawn, and the hub genes were identified through Metascape. Finally, the expressions of the hub genes in the dataset were analyzed.</p><p><strong>Results: </strong>Totally, 116 upregulated DEGs and 1017 downregulated DEGs were identified from these data. These DEGs were mainly enriched in the platelet-derived growth factor receptor signaling pathway and mRNA processing. Then, the GSEA analysis showed that 6 KEGG pathways were associated with postexercise prediabetic samples, namely, ABC transporters, focal adhesion, MAPK signaling pathway, prion diseases, melanogenesis, and gap junction. Afterward, three hub genes (HSPA8, STIP1, and HSPH1) were highly expressed after exercise through the box plot analysis.</p><p><strong>Conclusion: </strong>A myriad of research results confirms that there is a certain connection between exercise and diabetes, which provides a favorable basis for emerging exercise into the treatment of diabetic patients.</p>","PeriodicalId":12778,"journal":{"name":"Genetics research","volume":" ","pages":"1273153"},"PeriodicalIF":1.5,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9259242/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40605955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weixu Luo, Yuanshan Han, Xin Li, Zhuo Liu, P. Meng, Yuhong Wang
Background Mitochondria play an important role in breast cancer (BRCA). We aimed to build a prognostic model based on mitochondria-related genes. Method Univariate Cox regression analysis, random forest, and the LASSO method were performed in sequence on pretreated TCGA BRCA datasets to screen out genes from a Gene Set Enrichment Analysis, Gene Ontology: biological process gene set to build a prognosis risk score model. Survival analyses and ROC curves were performed to verify the model by using the GSE103091 dataset. The BRCA datasets were equally divided into high- and low-risk score groups. Comparisons between clinical features and immune infiltration related to different risk scores and gene mutation analysis and drug sensitivity prediction were performed for different groups. Result Four genes, MRPL36, FEZ1, BMF, and AFG1L, were screened to construct our risk score model in which the higher the risk score, the poorer the prognosis. Univariate and multivariate analyses showed that the risk score was significantly associated with age, M stage, and N stage. The gene mutation probability in the high-risk score group was significantly higher than that in the low-risk score group. Patients with higher risk scores were more likely to die. Drug sensitivity prediction in different groups indicated that PF-562271 and AS601245 might be new inhibitors of BRCA. Conclusion We developed a new workable risk score model based on mitochondria-related genes for BRCA prognosis and identified new targets and drugs for BRCA research.
{"title":"Breast Cancer Prognosis Prediction and Immune Pathway Molecular Analysis Based on Mitochondria-Related Genes","authors":"Weixu Luo, Yuanshan Han, Xin Li, Zhuo Liu, P. Meng, Yuhong Wang","doi":"10.1155/2022/2249909","DOIUrl":"https://doi.org/10.1155/2022/2249909","url":null,"abstract":"Background Mitochondria play an important role in breast cancer (BRCA). We aimed to build a prognostic model based on mitochondria-related genes. Method Univariate Cox regression analysis, random forest, and the LASSO method were performed in sequence on pretreated TCGA BRCA datasets to screen out genes from a Gene Set Enrichment Analysis, Gene Ontology: biological process gene set to build a prognosis risk score model. Survival analyses and ROC curves were performed to verify the model by using the GSE103091 dataset. The BRCA datasets were equally divided into high- and low-risk score groups. Comparisons between clinical features and immune infiltration related to different risk scores and gene mutation analysis and drug sensitivity prediction were performed for different groups. Result Four genes, MRPL36, FEZ1, BMF, and AFG1L, were screened to construct our risk score model in which the higher the risk score, the poorer the prognosis. Univariate and multivariate analyses showed that the risk score was significantly associated with age, M stage, and N stage. The gene mutation probability in the high-risk score group was significantly higher than that in the low-risk score group. Patients with higher risk scores were more likely to die. Drug sensitivity prediction in different groups indicated that PF-562271 and AS601245 might be new inhibitors of BRCA. Conclusion We developed a new workable risk score model based on mitochondria-related genes for BRCA prognosis and identified new targets and drugs for BRCA research.","PeriodicalId":12778,"journal":{"name":"Genetics research","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47525843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elnaz Salim, V. Ramachandran, Neda Ansari, P. Ismail, M. H. Mohamed, N. Mohamad, Liyana Najwa Inche Mat
Objectives Endothelin-1 (ET-1), the most potent endogenous vasoconstrictor, generated by enzymatic cleavage catalyzed by an endothelin-converting enzyme (ECE), plays a significant role in the regulation of hypertension. Methods This study investigates the effect of endothelin-1 (Lys198Asn/rs5370) and ECE (rs212526 C/T) gene polymorphisms with essential hypertension (EH) among Malay ethnics. To determine the association of gene polymorphism, 177 hypertensives and controls (196) were genotyped using Taqman method. Results A significant difference was observed in ET-1 rs5370 and ECE rs212526 gene polymorphisms between EH and control subjects (P < 0.001). A significantly high body mass index (BMI), waist-to-hip ratio, fasting plasma glucose, hemoglobin A1c, systolic and diastolic blood pressure, and lipid profiles were observed among the EH patients when compared to controls (P < 0.05). Moreover, T allele (rs5370) carriers in males have a high risk for EH. There was no significant association between gender in ECE C/T polymorphisms (P > 0.05). Conclusion Based on our result, it is evident that the T allele of ET-1 rs5370 polymorphism and C allele of ECE rs212526 have a significant genetic risk factor in EH among Malay subjects, and BMI and age are associated with hypertension.
{"title":"Association of Endothelin-Converting Enzyme and Endothelin-1 Gene Polymorphisms with Essential Hypertension in Malay Ethnics","authors":"Elnaz Salim, V. Ramachandran, Neda Ansari, P. Ismail, M. H. Mohamed, N. Mohamad, Liyana Najwa Inche Mat","doi":"10.1155/2022/9129960","DOIUrl":"https://doi.org/10.1155/2022/9129960","url":null,"abstract":"Objectives Endothelin-1 (ET-1), the most potent endogenous vasoconstrictor, generated by enzymatic cleavage catalyzed by an endothelin-converting enzyme (ECE), plays a significant role in the regulation of hypertension. Methods This study investigates the effect of endothelin-1 (Lys198Asn/rs5370) and ECE (rs212526 C/T) gene polymorphisms with essential hypertension (EH) among Malay ethnics. To determine the association of gene polymorphism, 177 hypertensives and controls (196) were genotyped using Taqman method. Results A significant difference was observed in ET-1 rs5370 and ECE rs212526 gene polymorphisms between EH and control subjects (P < 0.001). A significantly high body mass index (BMI), waist-to-hip ratio, fasting plasma glucose, hemoglobin A1c, systolic and diastolic blood pressure, and lipid profiles were observed among the EH patients when compared to controls (P < 0.05). Moreover, T allele (rs5370) carriers in males have a high risk for EH. There was no significant association between gender in ECE C/T polymorphisms (P > 0.05). Conclusion Based on our result, it is evident that the T allele of ET-1 rs5370 polymorphism and C allele of ECE rs212526 have a significant genetic risk factor in EH among Malay subjects, and BMI and age are associated with hypertension.","PeriodicalId":12778,"journal":{"name":"Genetics research","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45182150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaodong Sheng, Xiaoqi Jin, Yanqi Liu, Tao Fan, Zongcheng Zhu, Jing Jin, Guanqun Zheng, Zhixian Chen, Min Lu, Zhiqiang Wang
Background Heart failure (HF) is defined as the inability of the heart's systolic and diastolic function to properly discharge blood flow from the veins to the heart. The goal of our research is to look into the possible mechanism that causes HF. Methods The GSE5406 database was used for screening the differentially expressed genes (DEGs). Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interaction (PPI) network were applied to analyze DEGs. Besides, cell counting Kit-8 (CCK-8) was conducted to observe the knockdown effect of hub genes on cell proliferation. Results Finally, 377 upregulated and 461 downregulated DEGs came out, enriched in the extracellular matrix organization and gap junction. According to GSEA results, Hoft cd4 positive alpha beta memory t cell bcg vaccine age 18–45 yo id 7 dy top 100 deg ex vivo up, Sobolev t cell pandemrix age 18–64 yo 7 dy dn, and so on were significantly related to gene set GSE5406. 7 hub genes, such as COL1A1, UBB, COL3A1, HSP90AA1, MYC, STAT3 and MAPK1, were selected from PPI networks. CCK-8 indicated silencing of STAT3 promoted the proliferation of H9C2 cells and silencing of UBB inhibited the proliferation of H9C2 cells. Conclusion Our analysis reveals that COL1A1, UBB, COL3A1, HSP90AA1, MYC, STAT3, and MAPK1 might promote the progression of HF and become the biomarkers for diagnosis and treatment of HF.
背景心力衰竭(HF)是指心脏的收缩和舒张功能无法将血液从静脉正确排出到心脏。本研究的目的是探讨HF的可能机制。方法利用GSE5406数据库筛选差异表达基因。应用基因本体论(GO)、京都基因与基因组百科全书(KEGG)和蛋白质-蛋白质相互作用(PPI)网络对DEG进行分析。此外,通过细胞计数Kit-8(CCK-8)观察hub基因对细胞增殖的敲除作用。结果共产生377个上调和461个下调的DEG,富集于细胞外基质组织和间隙连接。根据GSEA结果,Hoft cd4阳性α-β记忆t细胞bcg疫苗年龄为18-45岁 yo-id 7 dy top 100 deg离体向上,Sobolev t细胞pandemrix年龄18-64岁 yo 7 dy-dn等与基因集GSE5406显著相关。从PPI网络中筛选出COL1A1、UBB、COL3A1、HSP90AA1、MYC、STAT3和MAPK1等7个枢纽基因。CCK-8表明STAT3的沉默促进H9C2细胞的增殖,而UBB的沉默抑制H9C2的增殖。结论COL1A1、UBB、COL3A1、HSP90AA1、MYC、STAT3和MAPK1可能促进HF的进展,成为诊断和治疗HF的生物标志物。
{"title":"The Bioinformatical Identification of Potential Biomarkers in Heart Failure Diagnosis and Treatment","authors":"Xiaodong Sheng, Xiaoqi Jin, Yanqi Liu, Tao Fan, Zongcheng Zhu, Jing Jin, Guanqun Zheng, Zhixian Chen, Min Lu, Zhiqiang Wang","doi":"10.1155/2022/8727566","DOIUrl":"https://doi.org/10.1155/2022/8727566","url":null,"abstract":"Background Heart failure (HF) is defined as the inability of the heart's systolic and diastolic function to properly discharge blood flow from the veins to the heart. The goal of our research is to look into the possible mechanism that causes HF. Methods The GSE5406 database was used for screening the differentially expressed genes (DEGs). Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interaction (PPI) network were applied to analyze DEGs. Besides, cell counting Kit-8 (CCK-8) was conducted to observe the knockdown effect of hub genes on cell proliferation. Results Finally, 377 upregulated and 461 downregulated DEGs came out, enriched in the extracellular matrix organization and gap junction. According to GSEA results, Hoft cd4 positive alpha beta memory t cell bcg vaccine age 18–45 yo id 7 dy top 100 deg ex vivo up, Sobolev t cell pandemrix age 18–64 yo 7 dy dn, and so on were significantly related to gene set GSE5406. 7 hub genes, such as COL1A1, UBB, COL3A1, HSP90AA1, MYC, STAT3 and MAPK1, were selected from PPI networks. CCK-8 indicated silencing of STAT3 promoted the proliferation of H9C2 cells and silencing of UBB inhibited the proliferation of H9C2 cells. Conclusion Our analysis reveals that COL1A1, UBB, COL3A1, HSP90AA1, MYC, STAT3, and MAPK1 might promote the progression of HF and become the biomarkers for diagnosis and treatment of HF.","PeriodicalId":12778,"journal":{"name":"Genetics research","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45351459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bing-Zhe Huang, Yang Jing-Jing, Xiao-Ming Dong, Zhuan Zhong, Xiao-Ning Liu
Background We aimed to construct the lncRNA-associated competing endogenous RNA (ceRNA) network and distinguish feature lncRNAs associated with tendinopathy. Methods We downloaded the gene profile of GSE26051 from the Gene Expression Omnibus (GEO), including 23 normal samples and 23 diseased tendons. Differentially expressed mRNAs (DEmRNAs) and differentially expressed lncRNAs (DElncRNAs) were identified, and functional and pathway enrichment analyses were performed. Protein-protein interaction (PPI) network was constructed and further analyzed by module mining. Moreover, a ceRNA regulatory network was constructed based on the identified lncRNA–mRNA coexpression relationship pairs and miRNA–mRNA regulation pairs. Results We identified 1117 DEmRNAs and 57 DElncRNAs from the GEO data. The downregulated DEmRNAs were particularly associated with muscle contraction and muscle filament, while the upregulated ones were linked to extracellular matrix organization and cell adhesion. From the PPI network, 11 modules were extracted. Genes in MCODE 2 (such as TPM4) were significantly involved in cardiomyopathy, and genes in MCODE 4 (such as COL4A3 and COL4A4) were involved in focal adhesion, ECM-receptor interaction, and PI3K-Akt signaling pathway. The ceRNA network contained 7 lncRNAs (MIR133A1HG, LINC01405, PRKCQ-AS1, C10orf71-AS1, MBNL1-AS1, HOTAIRM1, and DNM3OS), 63 mRNAs, and 41 miRNAs. Downregulated lncRNA MIR133A1HG could competitively bind with hsa-miR-659-3p and hsa-miR-218-1-3p to regulate the TPM3. Meanwhile, MIR133A1HG could competitively bind with hsa-miR-1179 to regulate the COL4A3. Downregulated C10orf71-AS1 could competitively bind with hsa-miR-130a-5p to regulate the COL4A4. Conclusions Seven important lncRNAs, particularly MIR133A1HG and C10orf71-AS1, were found associated with tendinopathy according to the lncRNA-associated ceRNA network.
{"title":"Analysis of the lncRNA-Associated Competing Endogenous RNA (ceRNA) Network for Tendinopathy","authors":"Bing-Zhe Huang, Yang Jing-Jing, Xiao-Ming Dong, Zhuan Zhong, Xiao-Ning Liu","doi":"10.1155/2022/9792913","DOIUrl":"https://doi.org/10.1155/2022/9792913","url":null,"abstract":"Background We aimed to construct the lncRNA-associated competing endogenous RNA (ceRNA) network and distinguish feature lncRNAs associated with tendinopathy. Methods We downloaded the gene profile of GSE26051 from the Gene Expression Omnibus (GEO), including 23 normal samples and 23 diseased tendons. Differentially expressed mRNAs (DEmRNAs) and differentially expressed lncRNAs (DElncRNAs) were identified, and functional and pathway enrichment analyses were performed. Protein-protein interaction (PPI) network was constructed and further analyzed by module mining. Moreover, a ceRNA regulatory network was constructed based on the identified lncRNA–mRNA coexpression relationship pairs and miRNA–mRNA regulation pairs. Results We identified 1117 DEmRNAs and 57 DElncRNAs from the GEO data. The downregulated DEmRNAs were particularly associated with muscle contraction and muscle filament, while the upregulated ones were linked to extracellular matrix organization and cell adhesion. From the PPI network, 11 modules were extracted. Genes in MCODE 2 (such as TPM4) were significantly involved in cardiomyopathy, and genes in MCODE 4 (such as COL4A3 and COL4A4) were involved in focal adhesion, ECM-receptor interaction, and PI3K-Akt signaling pathway. The ceRNA network contained 7 lncRNAs (MIR133A1HG, LINC01405, PRKCQ-AS1, C10orf71-AS1, MBNL1-AS1, HOTAIRM1, and DNM3OS), 63 mRNAs, and 41 miRNAs. Downregulated lncRNA MIR133A1HG could competitively bind with hsa-miR-659-3p and hsa-miR-218-1-3p to regulate the TPM3. Meanwhile, MIR133A1HG could competitively bind with hsa-miR-1179 to regulate the COL4A3. Downregulated C10orf71-AS1 could competitively bind with hsa-miR-130a-5p to regulate the COL4A4. Conclusions Seven important lncRNAs, particularly MIR133A1HG and C10orf71-AS1, were found associated with tendinopathy according to the lncRNA-associated ceRNA network.","PeriodicalId":12778,"journal":{"name":"Genetics research","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42529271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Md. Nazmul Islam Bappy, Anindita Roy, Md Gulam Rabbany Rabbi, Nusrat Jahan, Fahmida Akther Chowdhury, Syeda Farjana Hoque, E. Sajib, Parvez Khan, F. Hossain, K. Zinnah
POLD1 (DNA polymerase delta 1, catalytic subunit) is a protein-coding gene that encodes the large catalytic subunit (POLD1/p125) of the DNA polymerase delta (Polδ) complex. The consequence of missense or nonsynonymous SNPs (nsSNPs), which occur in the coding region of a specific gene, is the replacement of single amino acid. It may also change the structure, stability, and/or functions of the protein. Mutation in the POLD1 gene is associated with autosomal dominant predisposition to colonic adenomatous polyps, colon cancer, endometrial cancer (EDMC), breast cancer, and brain tumors. These de novo mutations in the POLD1 gene also result in autosomal dominant MDPL syndrome (mandibular hypoplasia, deafness, progeroid features, and lipodystrophy). In this study, genetic variations of POLD1 which may affect the structure and/or function were analyzed using different types of bioinformatics tools. A total of 17038 nsSNPs for POLD1 were collected from the NCBI database, among which 1317 were missense variants. Out of all missense nsSNPs, 28 were found to be deleterious functionally and structurally. Among these deleterious nsSNPs, 23 showed a conservation scale of >5, 2 were predicted to be associated with binding site formation, and one acted as a posttranslational modification site. All of them were involved in coil, extracellular structures, or helix formation, and some cause the change in size, charge, and hydrophobicity.
{"title":"Scrutinizing Deleterious Nonsynonymous SNPs and Their Effect on Human POLD1 Gene","authors":"Md. Nazmul Islam Bappy, Anindita Roy, Md Gulam Rabbany Rabbi, Nusrat Jahan, Fahmida Akther Chowdhury, Syeda Farjana Hoque, E. Sajib, Parvez Khan, F. Hossain, K. Zinnah","doi":"10.1155/2022/1740768","DOIUrl":"https://doi.org/10.1155/2022/1740768","url":null,"abstract":"POLD1 (DNA polymerase delta 1, catalytic subunit) is a protein-coding gene that encodes the large catalytic subunit (POLD1/p125) of the DNA polymerase delta (Polδ) complex. The consequence of missense or nonsynonymous SNPs (nsSNPs), which occur in the coding region of a specific gene, is the replacement of single amino acid. It may also change the structure, stability, and/or functions of the protein. Mutation in the POLD1 gene is associated with autosomal dominant predisposition to colonic adenomatous polyps, colon cancer, endometrial cancer (EDMC), breast cancer, and brain tumors. These de novo mutations in the POLD1 gene also result in autosomal dominant MDPL syndrome (mandibular hypoplasia, deafness, progeroid features, and lipodystrophy). In this study, genetic variations of POLD1 which may affect the structure and/or function were analyzed using different types of bioinformatics tools. A total of 17038 nsSNPs for POLD1 were collected from the NCBI database, among which 1317 were missense variants. Out of all missense nsSNPs, 28 were found to be deleterious functionally and structurally. Among these deleterious nsSNPs, 23 showed a conservation scale of >5, 2 were predicted to be associated with binding site formation, and one acted as a posttranslational modification site. All of them were involved in coil, extracellular structures, or helix formation, and some cause the change in size, charge, and hydrophobicity.","PeriodicalId":12778,"journal":{"name":"Genetics research","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45815321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Md Golam Rabby, M. Hossen, M. Kamal, Md Numan Islam
Amino acid transporters (AATs) are essential membrane proteins that transfer amino acids across cells. They are necessary for plant growth and development. The lysine histidine transporter (LHT) gene family in maize (Zea mays) has not yet been characterized. According to sequence composition and phylogenetic placement, this study found 15 LHT genes in the maize genome. The ZmLHT genes are scattered across the plasma membrane. The study also analyzed the evolutionary relationships, gene structures, conserved motifs, 3D protein structure, a transmembrane domain, and gene expression of the 15 LHT genes in maize. Comprehensive analyses of ZmLHT gene expression profiles revealed distinct expression patterns in maize LHT genes in various tissues. This study's extensive data will serve as a foundation for future ZmLHT gene family research. This study might make easier to understand how LHT genes work in maize and other crops.
{"title":"Genome-Wide Identification and Functional Analysis of Lysine Histidine Transporter (LHT) Gene Families in Maize","authors":"Md Golam Rabby, M. Hossen, M. Kamal, Md Numan Islam","doi":"10.1155/2022/2673748","DOIUrl":"https://doi.org/10.1155/2022/2673748","url":null,"abstract":"Amino acid transporters (AATs) are essential membrane proteins that transfer amino acids across cells. They are necessary for plant growth and development. The lysine histidine transporter (LHT) gene family in maize (Zea mays) has not yet been characterized. According to sequence composition and phylogenetic placement, this study found 15 LHT genes in the maize genome. The ZmLHT genes are scattered across the plasma membrane. The study also analyzed the evolutionary relationships, gene structures, conserved motifs, 3D protein structure, a transmembrane domain, and gene expression of the 15 LHT genes in maize. Comprehensive analyses of ZmLHT gene expression profiles revealed distinct expression patterns in maize LHT genes in various tissues. This study's extensive data will serve as a foundation for future ZmLHT gene family research. This study might make easier to understand how LHT genes work in maize and other crops.","PeriodicalId":12778,"journal":{"name":"Genetics research","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48963195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}