Dan Yu, Yong Chen, Ming Luo, Yanjin Peng, Shengen Yi
Backgrounds: Solute carrier 39A1 (SLC39A1) is an indirect zinc transporter which showed diverse tumor-related functions in different malignancies. Here, we aimed to investigate its expression and role in gastric adenocarcinoma.
Methods: A retrospective gastric adenocarcinoma cohort (n = 154) was collected from our hospital to test their tissue expression of SLC39A1 through immunohistochemical staining method. After SLC39A1 overexpression or knockdown, proliferation and invasion assays were conducted for proliferation and invasion estimation, respectively. Xenograft in nude mice was used as the in vivo strategy to validate in vitro findings.
Results: Compared with adjacent stomach tissues, gastric adenocarcinoma tissues showed significantly higher SLC39A1 on both mRNA and protein levels. Higher SLC39A1 was observed in patients with larger tumor size (P=0.003) and advanced tumor stages (P < 0.001). Univariate (P=0.001) and multivariate analyses (P=0.035) confirmed the independent prognostic significance of SLC39A1 on gastric adenocarcinoma outcomes. The median survival time was 22.0 months in patients with high-SLC39A1 expression, while up to 57.0 months in those with low-SLC39A1 (P=0.001). In vitro and in vivo assays demonstrated that overexpressing SLC39A1 could promote gastric cancer growth and invasion, while silencing SLC39A1 led to opposite effects.
Conclusions: Aberrant high-SLC39A1 expression can serve as an independent unfavorable prognostic factor for gastric adenocarcinoma. High SLC39A1 is critical for a more aggressive tumor phenotype by promoting cell proliferation and invasion. Therefore, targeting SLC39A1 may provide novel therapeutic insights.
{"title":"Upregulated Solute Carrier SLC39A1 Promotes Gastric Cancer Proliferation and Indicates Unfavorable Prognosis.","authors":"Dan Yu, Yong Chen, Ming Luo, Yanjin Peng, Shengen Yi","doi":"10.1155/2022/1256021","DOIUrl":"https://doi.org/10.1155/2022/1256021","url":null,"abstract":"<p><strong>Backgrounds: </strong>Solute carrier 39A1 (SLC39A1) is an indirect zinc transporter which showed diverse tumor-related functions in different malignancies. Here, we aimed to investigate its expression and role in gastric adenocarcinoma.</p><p><strong>Methods: </strong>A retrospective gastric adenocarcinoma cohort (<i>n</i> = 154) was collected from our hospital to test their tissue expression of SLC39A1 through immunohistochemical staining method. After SLC39A1 overexpression or knockdown, proliferation and invasion assays were conducted for proliferation and invasion estimation, respectively. Xenograft in nude mice was used as the in vivo strategy to validate in vitro findings.</p><p><strong>Results: </strong>Compared with adjacent stomach tissues, gastric adenocarcinoma tissues showed significantly higher SLC39A1 on both mRNA and protein levels. Higher SLC39A1 was observed in patients with larger tumor size (<i>P</i>=0.003) and advanced tumor stages (<i>P</i> < 0.001). Univariate (<i>P</i>=0.001) and multivariate analyses (<i>P</i>=0.035) confirmed the independent prognostic significance of SLC39A1 on gastric adenocarcinoma outcomes. The median survival time was 22.0 months in patients with high-SLC39A1 expression, while up to 57.0 months in those with low-SLC39A1 (<i>P</i>=0.001). <i>In vitro</i> and <i>in vivo</i> assays demonstrated that overexpressing SLC39A1 could promote gastric cancer growth and invasion, while silencing SLC39A1 led to opposite effects.</p><p><strong>Conclusions: </strong>Aberrant high-SLC39A1 expression can serve as an independent unfavorable prognostic factor for gastric adenocarcinoma. High SLC39A1 is critical for a more aggressive tumor phenotype by promoting cell proliferation and invasion. Therefore, targeting SLC39A1 may provide novel therapeutic insights.</p>","PeriodicalId":12778,"journal":{"name":"Genetics research","volume":"2022 ","pages":"1256021"},"PeriodicalIF":1.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9652071/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10502032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Colon cancer is the most common malignant tumor of the gastrointestinal tract, and approximately 80%-90% of colon cancers are colon adenocarcinomas (COADs). This study aimed to screen key microRNAs (miRNAs) associated with COAD. Differentially expressed (DE) miRNAs were screened between COAD and adjacent cancer samples based on the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas obtained from datasets. The miRNAs of interest were validated using quantitative real-time polymerase chain reaction. Moreover, the effects of hsa-miR-135b-5p on the biological behavior of COAD cells were observed. To obtain the target genes of hsa-miR-135b-5p, transcriptome sequencing of the SW480 cells was performed, followed by protein-protein interaction (PPI) network and hsa-miR-135b-5p-target gene regulatory network construction and prognostic analysis. Downregulation of hsa-miR-135b-5p significantly inhibited SW480 cell proliferation, migration, and invasion and significantly facilitated apoptosis (P < 0.05). A total of 3384 DEmRNAs were screened, and enrichment analysis showed that the upregulated mRNAs were enriched in 25 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and 326 Gene Ontology Biological Processes (GO-BPs) while the downregulated mRNAs were enriched in 20 KEGG pathways and 276 GO-BPs. A PPI network was then constructed, and H2BC14, H2BC3, and H4C11 had a higher degree. In addition, a total of 352 hsa-miR-135b-5p-gene regulatory relationships were identified. Prognostic analysis showed that FOXN2, NSA2, MYCBP, DIRAS2, DESI1, and RAB33B had prognostic significance (P < 0.05). In addition, the validation analysis results showed that FOXN2, NSA2, and DESI1 were significantly expressed between the miR-135b-5p-inhibitor and negative control groups (P < 0.05). Therefore, downregulation of hsa-miR-135b-5p inhibits cell proliferation, migration, and invasion in COAD, and carcinogenesis may function by targeting FOXN2, NSA2, MYCBP, DIRAS2, DESI1, and RAB33B.
{"title":"Downregulation of hsa-miR-135b-5p Inhibits Cell Proliferation, Migration, and Invasion in Colon Adenocarcinoma.","authors":"Yunxin Zhang, Wentao Zhang, Wenlong Xia, Junwei Xia, Haishan Zhang","doi":"10.1155/2022/2907554","DOIUrl":"https://doi.org/10.1155/2022/2907554","url":null,"abstract":"<p><p>Colon cancer is the most common malignant tumor of the gastrointestinal tract, and approximately 80%-90% of colon cancers are colon adenocarcinomas (COADs). This study aimed to screen key microRNAs (miRNAs) associated with COAD. Differentially expressed (DE) miRNAs were screened between COAD and adjacent cancer samples based on the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas obtained from datasets. The miRNAs of interest were validated using quantitative real-time polymerase chain reaction. Moreover, the effects of hsa-miR-135b-5p on the biological behavior of COAD cells were observed. To obtain the target genes of hsa-miR-135b-5p, transcriptome sequencing of the SW480 cells was performed, followed by protein-protein interaction (PPI) network and hsa-miR-135b-5p-target gene regulatory network construction and prognostic analysis. Downregulation of hsa-miR-135b-5p significantly inhibited SW480 cell proliferation, migration, and invasion and significantly facilitated apoptosis (<i>P</i> < 0.05). A total of 3384 DEmRNAs were screened, and enrichment analysis showed that the upregulated mRNAs were enriched in 25 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and 326 Gene Ontology Biological Processes (GO-BPs) while the downregulated mRNAs were enriched in 20 KEGG pathways and 276 GO-BPs. A PPI network was then constructed, and H2BC14, H2BC3, and H4C11 had a higher degree. In addition, a total of 352 hsa-miR-135b-5p-gene regulatory relationships were identified. Prognostic analysis showed that <i>FOXN2</i>, <i>NSA2</i>, <i>MYCBP</i>, <i>DIRAS2</i>, <i>DESI1</i>, and <i>RAB33B</i> had prognostic significance (<i>P</i> < 0.05). In addition, the validation analysis results showed that <i>FOXN2</i>, <i>NSA2</i>, and <i>DESI1</i> were significantly expressed between the miR-135b-5p-inhibitor and negative control groups (<i>P</i> < 0.05). Therefore, downregulation of hsa-miR-135b-5p inhibits cell proliferation, migration, and invasion in COAD, and carcinogenesis may function by targeting <i>FOXN2</i>, <i>NSA2</i>, <i>MYCBP</i>, <i>DIRAS2</i>, <i>DESI1</i>, and <i>RAB33B</i>.</p>","PeriodicalId":12778,"journal":{"name":"Genetics research","volume":"2022 ","pages":"2907554"},"PeriodicalIF":1.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9640266/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10502033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yongshan He, Xuan Dai, Yuanyuan Chen, Shiyong Huang
Colorectal cancer (CRC) is the most prevalent type of malignant tumor of the gastrointestinal tract. In the current study, we characterized the landscape of genomic alterations in CRC patients. Based on the results of whole-exome sequencing (WES), we identified 31 significantly mutated genes. Among them, several genes including TP53, KRAS, APC, PI3KCA, and BRAF were reported as significantly mutated genes in previous studies. In the current study, the most frequently mutated gene was TP53, which encodes tumor suppressor p53, affecting approximately 60% of CRC patients. In addition, we performed the expression profiles of significantly mutated genes between the normal group and tumor groups and identified 20 differentially expressed genes (DEGs); among them, CSMD3, DCHS2, LRP2, RYR2, and ZFHX4 were significantly negatively correlated with PFS. Moreover, consensus clustering analysis for CRC based on the expression of significantly somatic mutated genes was performed. In total, three subtypes of CRC were identified in CRC, including cluster1 (n = 453), cluster2 (n = 158), and cluster 3 (n = 9), based on expression level of significantly somatic mutated genes. Clinicopathological features analysis showed subtype C1 had the longest progression-free survival (PFS) with median time of 8.2 years, while subtypes C2 and C3 had 4.1 and 2.7 years of PFS, respectively. Moreover, we found three subtypes related to tumor infiltration depth, lymph node metastasis, and distant metastasis. Immune infiltration analysis showed the tumor infiltration levels of B cell native, T cell CD8+, T cell CD4+ memory activated, T cell gamma delta, NK cell resting, macrophage M0, macrophage M2, myeloid dendritic cell activated, mast cell activated, and mast cell resting significantly changed among the three groups, demonstrating the three subgroups classified by 22 somatically significantly mutated genes had a high capacity to differentiate patients with different immune statuses, which is helpful for the prediction of immunotherapy response of CRC patients. Our findings could provide novel potential predictive indicators for CRC prognosis and therapy targets for CRC immunotherapy.
{"title":"Comprehensive Analysis of Genomic and Expression Data Identified Potential Markers for Predicting Prognosis and Immune Response in CRC.","authors":"Yongshan He, Xuan Dai, Yuanyuan Chen, Shiyong Huang","doi":"10.1155/2022/1831211","DOIUrl":"https://doi.org/10.1155/2022/1831211","url":null,"abstract":"<p><p>Colorectal cancer (CRC) is the most prevalent type of malignant tumor of the gastrointestinal tract. In the current study, we characterized the landscape of genomic alterations in CRC patients. Based on the results of whole-exome sequencing (WES), we identified 31 significantly mutated genes. Among them, several genes including TP53, KRAS, APC, PI3KCA, and BRAF were reported as significantly mutated genes in previous studies. In the current study, the most frequently mutated gene was TP53, which encodes tumor suppressor p53, affecting approximately 60% of CRC patients. In addition, we performed the expression profiles of significantly mutated genes between the normal group and tumor groups and identified 20 differentially expressed genes (DEGs); among them, CSMD3, DCHS2, LRP2, RYR2, and ZFHX4 were significantly negatively correlated with PFS. Moreover, consensus clustering analysis for CRC based on the expression of significantly somatic mutated genes was performed. In total, three subtypes of CRC were identified in CRC, including cluster1 (<i>n</i> = 453), cluster2 (<i>n</i> = 158), and cluster 3 (<i>n</i> = 9), based on expression level of significantly somatic mutated genes. Clinicopathological features analysis showed subtype C1 had the longest progression-free survival (PFS) with median time of 8.2 years, while subtypes C2 and C3 had 4.1 and 2.7 years of PFS, respectively. Moreover, we found three subtypes related to tumor infiltration depth, lymph node metastasis, and distant metastasis. Immune infiltration analysis showed the tumor infiltration levels of B cell native, T cell CD8+, T cell CD4+ memory activated, T cell gamma delta, NK cell resting, macrophage M0, macrophage M2, myeloid dendritic cell activated, mast cell activated, and mast cell resting significantly changed among the three groups, demonstrating the three subgroups classified by 22 somatically significantly mutated genes had a high capacity to differentiate patients with different immune statuses, which is helpful for the prediction of immunotherapy response of CRC patients. Our findings could provide novel potential predictive indicators for CRC prognosis and therapy targets for CRC immunotherapy.</p>","PeriodicalId":12778,"journal":{"name":"Genetics research","volume":"2022 ","pages":"1831211"},"PeriodicalIF":1.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9356844/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10401626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yunpeng Xuan, Xiangfeng Jin, Mingzhao Wang, Zizong Wang
Background: Necroptosis is a type of programmed cell death mode and it serves an important role in the tumorigenesis and tumor metastasis. The purpose of this study is to develop a prognostic model based on necroptosis-related genes and nomogram for predicting the overall survival of patients with lung cancer.
Method: Differentially expressed necroptosis-related genes (NRDs) between lung cancer and normal samples were identified. Univariate and LASSO regression analyses were performed to establish a risk score (RS) model, followed by validation within TCGA and GSE37745. The correlation between RS model and tumor microenvironment, mutation status, or drug susceptibility was analyzed. By combining clinical factors, nomogram was developed to predict 1-, 3-, and 5-year survival probability of an individual. The biological function involved by different risk groups was conducted by GSEA.
Results: A RS model containing six NRDs (FLNC, PLK1, ID1, MYO1C, SERTAD1, and LEF1) was constructed, and patients were divieded into low-risk (LR) and high-risk (HR) groups. Patients in HR group were associated with shorter survival time than those in the LR group; this model had better prognostic performance. Nomogram based on necroptosis score, T stage, and stage had been confirmed to predict survival of patients. The number of resting NK cells and M0 macrophages was higher in HR group. In addition, higher tumor mutational burden and drug sensitivity were observed in the HR group. Patients in HR group were involved in p53 signaling pathway and cell cycle.
Conclusion: This study constructed a robust six-NRDs signature and established a prognostic nomogram for survival prediction of lung cancer.
{"title":"Necroptosis-Related Prognostic Signature and Nomogram Model for Predicting the Overall Survival of Patients with Lung Cancer.","authors":"Yunpeng Xuan, Xiangfeng Jin, Mingzhao Wang, Zizong Wang","doi":"10.1155/2022/4908608","DOIUrl":"https://doi.org/10.1155/2022/4908608","url":null,"abstract":"<p><strong>Background: </strong>Necroptosis is a type of programmed cell death mode and it serves an important role in the tumorigenesis and tumor metastasis. The purpose of this study is to develop a prognostic model based on necroptosis-related genes and nomogram for predicting the overall survival of patients with lung cancer.</p><p><strong>Method: </strong>Differentially expressed necroptosis-related genes (NRDs) between lung cancer and normal samples were identified. Univariate and LASSO regression analyses were performed to establish a risk score (RS) model, followed by validation within TCGA and GSE37745. The correlation between RS model and tumor microenvironment, mutation status, or drug susceptibility was analyzed. By combining clinical factors, nomogram was developed to predict 1-, 3-, and 5-year survival probability of an individual. The biological function involved by different risk groups was conducted by GSEA.</p><p><strong>Results: </strong>A RS model containing six NRDs (<i>FLNC</i>, <i>PLK1</i>, <i>ID1</i>, <i>MYO1C</i>, <i>SERTAD1</i>, and <i>LEF1</i>) was constructed, and patients were divieded into low-risk (LR) and high-risk (HR) groups. Patients in HR group were associated with shorter survival time than those in the LR group; this model had better prognostic performance. Nomogram based on necroptosis score, T stage, and stage had been confirmed to predict survival of patients. The number of resting NK cells and M0 macrophages was higher in HR group. In addition, higher tumor mutational burden and drug sensitivity were observed in the HR group. Patients in HR group were involved in p53 signaling pathway and cell cycle.</p><p><strong>Conclusion: </strong>This study constructed a robust six-NRDs signature and established a prognostic nomogram for survival prediction of lung cancer.</p>","PeriodicalId":12778,"journal":{"name":"Genetics research","volume":"2022 ","pages":"4908608"},"PeriodicalIF":1.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9452994/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10411078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Psoriasis is an immune and inflammation-related skin disease. Triptolide with immunosuppressive and anti-inflammatory properties has been utilized for psoriasis treatment. However, the potential immunological mechanisms of triptolide have not been fully elucidated.
Methods: Using an imiquimod (IMQ)-induced psoriatic mouse model, we detected the effects of triptolide on psoriasis-like lesions including scales, thickening, and erythema. Methyl thiazol tetrazolium (MTT) cytotoxicity assay was performed for evaluating the influence of triptolide on cell viability. Gene expression at mRNA and protein levels were examined by reverse transcription-quantitative polymerase chain reaction and Western blot analysis, respectively. The combination between microRNA-204-5p (miR-204-5p) and signal transduction and transcription activator-3 (STAT3) was confirmed by luciferase reporter assay. Enzyme-linked immunosorbent assay was conducted to examine interleukin (IL)-17 and interferon-γ (IFN-γ) levels using corresponding kits. Hematoxylin and eosin staining was used for the visualization of epidermal thickness. Flow cytometry analysis was employed for examining T helper (Th) 17 cells.
Results: Triptolide ameliorated IMQ-induced psoriatic skin lesions manifested by the decreased psoriasis area and severity indexes (PASI) scores. Triptolide inhibited Th17 cell differentiation from splenocytes. Additionally, triptolide elevated miR-204-5p expression, whereas it downregulated STAT3 expression levels both in vitro and in vivo. Moreover, miR-204-5p directly targeted STAT3 in HaCaT cells. Furthermore, triptolide repressed the expression of proinflammatory cytokines in IMQ-evoked psoriasis-like mice.
Conclusion: Triptolide inhibits STAT3 phosphorylation via upregulating miR-204-5p and thus suppressing Th17 response in psoriasis.
{"title":"Triptolide Inhibits Th17 Response by Upregulating microRNA-204-5p and Suppressing STAT3 Phosphorylation in Psoriasis.","authors":"Qi He, Xingyue Wu, Quan Shi","doi":"10.1155/2022/7468396","DOIUrl":"https://doi.org/10.1155/2022/7468396","url":null,"abstract":"<p><strong>Background: </strong>Psoriasis is an immune and inflammation-related skin disease. Triptolide with immunosuppressive and anti-inflammatory properties has been utilized for psoriasis treatment. However, the potential immunological mechanisms of triptolide have not been fully elucidated.</p><p><strong>Methods: </strong>Using an imiquimod (IMQ)-induced psoriatic mouse model, we detected the effects of triptolide on psoriasis-like lesions including scales, thickening, and erythema. Methyl thiazol tetrazolium (MTT) cytotoxicity assay was performed for evaluating the influence of triptolide on cell viability. Gene expression at mRNA and protein levels were examined by reverse transcription-quantitative polymerase chain reaction and Western blot analysis, respectively. The combination between microRNA-204-5p (miR-204-5p) and signal transduction and transcription activator-3 (STAT3) was confirmed by luciferase reporter assay. Enzyme-linked immunosorbent assay was conducted to examine interleukin (IL)-17 and interferon-<i>γ</i> (IFN-<i>γ</i>) levels using corresponding kits. Hematoxylin and eosin staining was used for the visualization of epidermal thickness. Flow cytometry analysis was employed for examining <i>T</i> helper (Th) 17 cells.</p><p><strong>Results: </strong>Triptolide ameliorated IMQ-induced psoriatic skin lesions manifested by the decreased psoriasis area and severity indexes (PASI) scores. Triptolide inhibited Th17 cell differentiation from splenocytes. Additionally, triptolide elevated miR-204-5p expression, whereas it downregulated STAT3 expression levels both <i>in vitro</i> and <i>in vivo</i>. Moreover, miR-204-5p directly targeted STAT3 in HaCaT cells. Furthermore, triptolide repressed the expression of proinflammatory cytokines in IMQ-evoked psoriasis-like mice.</p><p><strong>Conclusion: </strong>Triptolide inhibits STAT3 phosphorylation via upregulating miR-204-5p and thus suppressing Th17 response in psoriasis.</p>","PeriodicalId":12778,"journal":{"name":"Genetics research","volume":"2022 ","pages":"7468396"},"PeriodicalIF":1.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9691328/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10641880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: Insulin resistance (IR) plays a key role in gestational diabetes mellitus (GDM) pathogenesis. The antiaging protein klotho has been proven to be closely related to IR. The purpose of this study was to investigate the effect of klotho on IR in GDM trophoblast cells.
Methods: The GDM cell model of HTR-8/SVneo cells was induced by high glucose (HG). Plasmid transfection was used to mediate the overexpression or silencing of klotho. The effects of klotho on cell viability, IR, and the IGF-1/PI3K pathways were observed by RT-qPCR, western blot, Cell Counting Kit-8 detection, glucose uptake assay, and immunofluorescence detection.
Results: Klotho expression was up-regulated in HG-induced cells. Overexpression of klotho could reduce the cell viability, insulin signaling molecules (INSR-α, INSR-β, IRS1, IRS2, and GLUT4), and glucose uptake in HTR-8/SVneo cells of the HG group. In addition, the overexpression of klotho inhibited the levels of IGF-1, IGF-1R/p-IGF-1R, and the phosphorylation and activation of the signal transduction molecules PI3K/Akt/mTOR. On the contrary, klotho deletions could reverse these changes of HTR-8/SVneo cells induced by HG. Conclusion. In a word, the results of this study showed that the regulation of klotho played an important role in the IR of trophoblast cells induced by HG, which was mediated at least in part by the IGF-1/PI3K/Akt/mTOR pathway.
{"title":"Upregulation of Klotho Aggravates Insulin Resistance in Gestational Diabetes Mellitus Trophoblast Cells.","authors":"Li Lin, Xinyu Wang, Weihua Zhao, Yaxuan Chen","doi":"10.1155/2022/1500768","DOIUrl":"https://doi.org/10.1155/2022/1500768","url":null,"abstract":"<p><strong>Objective: </strong>Insulin resistance (IR) plays a key role in gestational diabetes mellitus (GDM) pathogenesis. The antiaging protein klotho has been proven to be closely related to IR. The purpose of this study was to investigate the effect of klotho on IR in GDM trophoblast cells.</p><p><strong>Methods: </strong>The GDM cell model of HTR-8/SVneo cells was induced by high glucose (HG). Plasmid transfection was used to mediate the overexpression or silencing of klotho. The effects of klotho on cell viability, IR, and the IGF-1/PI3K pathways were observed by RT-qPCR, western blot, Cell Counting Kit-8 detection, glucose uptake assay, and immunofluorescence detection.</p><p><strong>Results: </strong>Klotho expression was up-regulated in HG-induced cells. Overexpression of klotho could reduce the cell viability, insulin signaling molecules (INSR-<i>α</i>, INSR-<i>β</i>, IRS1, IRS2, and GLUT4), and glucose uptake in HTR-8/SVneo cells of the HG group. In addition, the overexpression of klotho inhibited the levels of IGF-1, IGF-1R/p-IGF-1R, and the phosphorylation and activation of the signal transduction molecules PI3K/Akt/mTOR. On the contrary, klotho deletions could reverse these changes of HTR-8/SVneo cells induced by HG<i>. Conclusion</i>. In a word, the results of this study showed that the regulation of klotho played an important role in the IR of trophoblast cells induced by HG, which was mediated at least in part by the IGF-1/PI3K/Akt/mTOR pathway.</p>","PeriodicalId":12778,"journal":{"name":"Genetics research","volume":"2022 ","pages":"1500768"},"PeriodicalIF":1.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9616659/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10411697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aim: We purposed to evaluate the KCTD10 effects of angiogenesis in diabetic retinopathy (DR).
Methods: We induced a DR cell model using high glucose (HG) treatment of HRECs and ARPE-19 cells. A DR rat was established by injecting streptozotocin. Small interference RNA targeted KCTD10 (si-KCTD10) was used to mediate KCTD10 inhibition in cell and animal models. The roles of KCTD10 on cell viability, apoptosis, angiogenesis, and related proteins (VEGF and HIF-1α) were observed by RT-qPCR, Western blot, CCK-8 assay, TUNEL staining, tube formation assay, ELISA, and immunohistochemistry assay.
Results: KCTD10 expression was upregulated in DR cells and retinal tissue of DR rats. Treatment of the cells with si-KCTD10 increased cell viability and decreased apoptosis and angiogenesis in DR cells. Inhibition of KCTD10 could reduce the expression of VEGF and HIF-1α in DR cells. Furthermore, KCTD10 inhibition reduced VEGF levels in the retinal tissue of DR rats.
Conclusion: This work showed that inhibition of KCTD10 relieved angiogenesis in DR.
{"title":"Inhibition of KCTD10 Affects Diabetic Retinopathy Progression by Reducing VEGF and Affecting Angiogenesis.","authors":"Yun Feng, Cong Wang, Guangwei Wang","doi":"10.1155/2022/4112307","DOIUrl":"https://doi.org/10.1155/2022/4112307","url":null,"abstract":"<p><strong>Aim: </strong>We purposed to evaluate the KCTD10 effects of angiogenesis in diabetic retinopathy (DR).</p><p><strong>Methods: </strong>We induced a DR cell model using high glucose (HG) treatment of HRECs and ARPE-19 cells. A DR rat was established by injecting streptozotocin. Small interference RNA targeted KCTD10 (si-KCTD10) was used to mediate KCTD10 inhibition in cell and animal models. The roles of KCTD10 on cell viability, apoptosis, angiogenesis, and related proteins (VEGF and HIF-1<i>α</i>) were observed by RT-qPCR, Western blot, CCK-8 assay, TUNEL staining, tube formation assay, ELISA, and immunohistochemistry assay.</p><p><strong>Results: </strong>KCTD10 expression was upregulated in DR cells and retinal tissue of DR rats. Treatment of the cells with si-KCTD10 increased cell viability and decreased apoptosis and angiogenesis in DR cells. Inhibition of KCTD10 could reduce the expression of VEGF and HIF-1<i>α</i> in DR cells. Furthermore, KCTD10 inhibition reduced VEGF levels in the retinal tissue of DR rats.</p><p><strong>Conclusion: </strong>This work showed that inhibition of KCTD10 relieved angiogenesis in DR.</p>","PeriodicalId":12778,"journal":{"name":"Genetics research","volume":"2022 ","pages":"4112307"},"PeriodicalIF":1.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9629933/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10412193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Siyuan Wang, Yiling Li, Ning Liu, Wei Shen, Wenhao Xu, Peng Yao
Nonalcoholic fatty liver disease (NAFLD) is a manifestation of hepatic metabolic syndrome that varies in severity. Hepatocellular carcinoma progresses from NAFLD when there is heterogeneity in the infiltration of immune cells and molecules. A precise molecular classification of NAFLD remains lacking, allowing further exploration of the link between NAFLD and hepatocellular carcinoma. In this work, a weighted gene coexpression network analysis was used to identify two coexpression modules based on multiple omics data used to differentiate NAFLD subtypes. Additionally, key genes in the process of glucose metabolism and NAFLD were used to construct a prognostic model in a cohort of patients with hepatocellular carcinoma. Furthermore, the specific expression of signature genes in hepatocellular carcinoma cells was analyzed using a single-cell RNA sequencing approach. A total of 19 liver tissues of NAFLD patients were obtained from the GEO database, and 81 glucose metabolism-related genes were downloaded from the CTD database. In addition, based on nine signature genes, we constructed a prognostic model to divide the HCC cohort into high and low-risk groups. We also demonstrated a significant correlation between prognostic models and clinical phenotypes. Furthermore, we integrated single-cell RNA-sequencing data and immunology data to assess potential relationships between different molecular subtypes and hepatocellular carcinoma. Finally, our study discovered that the glucose metabolism pathway may play an important role in the process of NAFLD-hepatocellular carcinoma. In addition, three glucose metabolism-related genes (SERPINE1, VCAN, and TFPI2) may be the potential targets for the immunotherapy of patients with NAFLD-hepatocellular carcinoma.
{"title":"Identification of Glucose Metabolism-Related Genes in the Progression from Nonalcoholic Fatty Liver Disease to Hepatocellular Carcinoma.","authors":"Siyuan Wang, Yiling Li, Ning Liu, Wei Shen, Wenhao Xu, Peng Yao","doi":"10.1155/2022/8566342","DOIUrl":"https://doi.org/10.1155/2022/8566342","url":null,"abstract":"<p><p>Nonalcoholic fatty liver disease (NAFLD) is a manifestation of hepatic metabolic syndrome that varies in severity. Hepatocellular carcinoma progresses from NAFLD when there is heterogeneity in the infiltration of immune cells and molecules. A precise molecular classification of NAFLD remains lacking, allowing further exploration of the link between NAFLD and hepatocellular carcinoma. In this work, a weighted gene coexpression network analysis was used to identify two coexpression modules based on multiple omics data used to differentiate NAFLD subtypes. Additionally, key genes in the process of glucose metabolism and NAFLD were used to construct a prognostic model in a cohort of patients with hepatocellular carcinoma. Furthermore, the specific expression of signature genes in hepatocellular carcinoma cells was analyzed using a single-cell RNA sequencing approach. A total of 19 liver tissues of NAFLD patients were obtained from the GEO database, and 81 glucose metabolism-related genes were downloaded from the CTD database. In addition, based on nine signature genes, we constructed a prognostic model to divide the HCC cohort into high and low-risk groups. We also demonstrated a significant correlation between prognostic models and clinical phenotypes. Furthermore, we integrated single-cell RNA-sequencing data and immunology data to assess potential relationships between different molecular subtypes and hepatocellular carcinoma. Finally, our study discovered that the glucose metabolism pathway may play an important role in the process of NAFLD-hepatocellular carcinoma. In addition, three glucose metabolism-related genes (SERPINE1, VCAN, and TFPI2) may be the potential targets for the immunotherapy of patients with NAFLD-hepatocellular carcinoma.</p>","PeriodicalId":12778,"journal":{"name":"Genetics research","volume":"2022 ","pages":"8566342"},"PeriodicalIF":1.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9649330/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10502031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Our study aimed to investigate the relationship between extracellular matrix 1 (ECM1) gene polymorphism and progression of liver fibrosis in the Chinese population.
Methods: A total 656 patients with hepatitis B virus (HBV) infection and 298 healthy individuals of the Chinese Han population were recruited for a retrospective case-control study. Of the disease group, 104 cases had chronic hepatitis B (CHB), 266 had LC, and 286 had hepatocellular carcinoma (HCC). Subjects were frequency-matched according to age and gender. Polymorphisms of the ECM1 gene were examined using the MassARRAY SNP genotyping method.
Results: There were no associations between genotype and allele frequencies of ECM1 rs3737240 and rs13294 loci with the risk of CHB and CHB-related HCC. After adjustment for age, sex, smoking status, and drinking habits, the GT genotype was dramatically related to a reduced risk of chronic HBV infection in both non-HCC (OR = 0.68, 95% CI: 0.49-0.94) and total chronic HBV infection patients (OR = 0.75, 95% CI: 0.56-1.00). Haplotype analyses revealed twelve protective haplotypes against total chronic HBV infection and four against non-HCC chronic HBV infection.
Conclusion: ECM1 gene polymorphism in rs3834087 and rs3754217 loci is associated with a reduced risk of chronic HBV infection but not with liver fibrosis development and the occurrence of HCC.
{"title":"Associations between Extracellular Matrix Protein 1 Gene Polymorphism and Progression of Liver Disease.","authors":"Xiuting He, Ting Liu, Rui Zhang, Xu Li","doi":"10.1155/2022/9304264","DOIUrl":"https://doi.org/10.1155/2022/9304264","url":null,"abstract":"<p><strong>Background: </strong>Our study aimed to investigate the relationship between extracellular matrix 1 (<i>ECM1)</i> gene polymorphism and progression of liver fibrosis in the Chinese population.</p><p><strong>Methods: </strong>A total 656 patients with hepatitis B virus (HBV) infection and 298 healthy individuals of the Chinese Han population were recruited for a retrospective case-control study. Of the disease group, 104 cases had chronic hepatitis B (CHB), 266 had LC, and 286 had hepatocellular carcinoma (HCC). Subjects were frequency-matched according to age and gender. Polymorphisms of the <i>ECM1</i> gene were examined using the MassARRAY SNP genotyping method.</p><p><strong>Results: </strong>There were no associations between genotype and allele frequencies of <i>ECM1</i> rs3737240 and rs13294 loci with the risk of CHB and CHB-related HCC. After adjustment for age, sex, smoking status, and drinking habits, the GT genotype was dramatically related to a reduced risk of chronic HBV infection in both non-HCC (OR = 0.68, 95% CI: 0.49-0.94) and total chronic HBV infection patients (OR = 0.75, 95% CI: 0.56-1.00). Haplotype analyses revealed twelve protective haplotypes against total chronic HBV infection and four against non-HCC chronic HBV infection.</p><p><strong>Conclusion: </strong><i>ECM1</i> gene polymorphism in rs3834087 and rs3754217 loci is associated with a reduced risk of chronic HBV infection but not with liver fibrosis development and the occurrence of HCC.</p>","PeriodicalId":12778,"journal":{"name":"Genetics research","volume":"2022 ","pages":"9304264"},"PeriodicalIF":1.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586790/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10778540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
It is generally believed that the majority of head and neck cancers develop in the mucosal epithelial cells of the mouth, pharynx, and larynx, which is collectively known as head and neck squamous cell carcinoma (HNSC). As a complex pathological process, HNSC develops through a variety of cellular and molecular events. Cancerous cells and immune cells infiltrating tumors are the main components of the tumor microenvironment. However, infiltration of HNSCs by the immune system has not been determined to date. In this work, we proposed computational algorithms to identify different immune subtypes. An analysis of the Cancer Genome Atlas (TCGA) database revealed gene expression profiles and corresponding clinical information. In HNSC patients, two immune-related genes (ZAP70 and IGKV2D-40) may be targets for immunotherapy, and these genes appear to be closely related to the prognosis. Several immunological subtypes were associated with immune function, immune checkpoints, and prognostic factors in HNSCs. Furthermore, ZAP70 is closely related to the overall survival (OS), progress-free interval (PFI), and disease-specific survival (DSS) of HNSC patients. The potential pathways that are associated with ZAP70 were found to have included adaptive immune response, response to oxidative stress, DNA replication, and lipid binding. This study provides a theoretical foundation for developing immunotherapy drugs for HNSC patients. By evaluating larger cohorts, we can gain a deeper understanding of immunotherapy and provide direction for current research on immunotherapy strategies in HNSCs.
一般认为,大多数头颈部癌症发生于口腔、咽、喉的粘膜上皮细胞,统称为头颈部鳞状细胞癌(head and neck squamous cell carcinoma, HNSC)。HNSC是一个复杂的病理过程,通过多种细胞和分子事件发生。癌细胞和浸润肿瘤的免疫细胞是肿瘤微环境的主要组成部分。然而,迄今为止尚未确定免疫系统对HNSCs的浸润。在这项工作中,我们提出了计算算法来识别不同的免疫亚型。对癌症基因组图谱(TCGA)数据库的分析揭示了基因表达谱和相应的临床信息。在HNSC患者中,两个免疫相关基因(ZAP70和IGKV2D-40)可能是免疫治疗的靶点,这些基因似乎与预后密切相关。几种免疫学亚型与HNSCs的免疫功能、免疫检查点和预后因素相关。此外,ZAP70与HNSC患者的总生存期(OS)、无进展间期(PFI)和疾病特异性生存期(DSS)密切相关。与ZAP70相关的潜在途径包括适应性免疫反应、氧化应激反应、DNA复制和脂质结合。本研究为HNSC患者免疫治疗药物的开发提供了理论基础。通过评估更大的队列,我们可以更深入地了解免疫治疗,并为当前HNSCs免疫治疗策略的研究提供方向。
{"title":"Identification of the Immune Cell Infiltration Landscape in Head and Neck Squamous Cell Carcinoma (HNSC) for the Exploration of Immunotherapy and Prognosis.","authors":"Chunli Huang, Jifeng Liu","doi":"10.1155/2022/6880760","DOIUrl":"https://doi.org/10.1155/2022/6880760","url":null,"abstract":"<p><p>It is generally believed that the majority of head and neck cancers develop in the mucosal epithelial cells of the mouth, pharynx, and larynx, which is collectively known as head and neck squamous cell carcinoma (HNSC). As a complex pathological process, HNSC develops through a variety of cellular and molecular events. Cancerous cells and immune cells infiltrating tumors are the main components of the tumor microenvironment. However, infiltration of HNSCs by the immune system has not been determined to date. In this work, we proposed computational algorithms to identify different immune subtypes. An analysis of the Cancer Genome Atlas (TCGA) database revealed gene expression profiles and corresponding clinical information. In HNSC patients, two immune-related genes (ZAP70 and IGKV2D-40) may be targets for immunotherapy, and these genes appear to be closely related to the prognosis. Several immunological subtypes were associated with immune function, immune checkpoints, and prognostic factors in HNSCs. Furthermore, ZAP70 is closely related to the overall survival (OS), progress-free interval (PFI), and disease-specific survival (DSS) of HNSC patients. The potential pathways that are associated with ZAP70 were found to have included adaptive immune response, response to oxidative stress, DNA replication, and lipid binding. This study provides a theoretical foundation for developing immunotherapy drugs for HNSC patients. By evaluating larger cohorts, we can gain a deeper understanding of immunotherapy and provide direction for current research on immunotherapy strategies in HNSCs.</p>","PeriodicalId":12778,"journal":{"name":"Genetics research","volume":"2022 ","pages":"6880760"},"PeriodicalIF":1.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9812599/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10667447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}