首页 > 最新文献

Genome最新文献

英文 中文
A quick guide to the calcium-dependent protein kinase family in Brassica napus. 油菜钙依赖性蛋白激酶家族快速指南。
IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-11-05 DOI: 10.1139/gen-2024-0053
Virginia Natali Miguel, Jacqueline Monaghan

Brassica napus, commonly known as rapeseed or canola, is an economically valuable oilseed crop grown throughout Canada that currently faces several challenges due to industrial farming practices as well as a changing climate. Calcium-dependent protein kinases (CDPKs) are key regulators of stress signaling in multiple plant species. CDPKs sense changes in cellular calcium levels via a calmodulin-like domain and are able to respond to these changes via their protein kinase domain. In this mini-review, we provide a quick guide to BnaCDPKs. We present an updated phylogeny of the BnaCDPK family in relation to CDPKs from Arabidopsis thaliana and Oryza sativa and we provide a standardized nomenclature for the large BnaCDPK family that contains many co-orthologs. We analyze expression patterns of BnaCDPKs across tissue types and in response to abiotic and biotic stresses, and we summarize known functions of BnaCDPKs. We hope this guide is useful to anyone interested in exploring the prospect of harnessing the potential of BnaCDPKs in the generation of elite cultivars of B. napus.

芸苔属植物,俗称油菜籽或菜籽,是一种经济价值极高的油料作物,在加拿大各地均有种植,但由于工业化耕作方式以及气候的变化,它目前面临着一些挑战。钙依赖性蛋白激酶(CDPKs)是多种植物物种胁迫信号的关键调节因子。CDPKs 通过钙调蛋白样结构域感知细胞钙水平的变化,并通过其蛋白激酶结构域对这些变化做出反应。在这篇微型综述中,我们提供了有关 BnaCDPKs 的快速指南。我们介绍了 BnaCDPK 家族与拟南芥和黑麦草 CDPK 的最新系统发生关系,并为包含许多同源物的 BnaCDPK 大家族提供了标准化命名法。我们分析了 BnaCDPKs 在不同组织类型中的表达模式以及对非生物和生物胁迫的响应,并总结了 BnaCDPKs 的已知功能。我们希望本指南对有兴趣探索利用 BnaCDPKs 的潜力培育油菜优良品种的人有所帮助。
{"title":"A quick guide to the calcium-dependent protein kinase family in <i>Brassica napus</i>.","authors":"Virginia Natali Miguel, Jacqueline Monaghan","doi":"10.1139/gen-2024-0053","DOIUrl":"10.1139/gen-2024-0053","url":null,"abstract":"<p><p><i>Brassica napus</i>, commonly known as rapeseed or canola, is an economically valuable oilseed crop grown throughout Canada that currently faces several challenges due to industrial farming practices as well as a changing climate. Calcium-dependent protein kinases (CDPKs) are key regulators of stress signaling in multiple plant species. CDPKs sense changes in cellular calcium levels via a calmodulin-like domain and are able to respond to these changes via their protein kinase domain. In this mini-review, we provide a quick guide to BnaCDPKs. We present an updated phylogeny of the BnaCDPK family in relation to CDPKs from <i>Arabidopsis thaliana</i> and <i>Oryza sativa</i> and we provide a standardized nomenclature for the large BnaCDPK family that contains many co-orthologs. We analyze expression patterns of <i>BnaCDPKs</i> across tissue types and in response to abiotic and biotic stresses, and we summarize known functions of BnaCDPKs. We hope this guide is useful to anyone interested in exploring the prospect of harnessing the potential of <i>BnaCDPKs</i> in the generation of elite cultivars of <i>B. napus</i>.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"1-12"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A phylogenetic perspective of chromosome evolution in Formicidae. 从系统进化的角度看姬蜂科的染色体进化。
IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-12-16 DOI: 10.1139/gen-2024-0124
Danon Clemes Cardoso, Maykon Passos Cristiano

Chromosomes, as carriers of genes, are the fundamental units of heredity, with the eukaryotic genome divided into multiple chromosomes. Each species typically has a consistent number of chromosomes within its lineage. Ants, however, display remarkable diversity in chromosome numbers, and previous studies have shown that this variation may correlate with ant diversity. As ants evolved, various karyotypes emerged, primarily through chromosomal fissions, leading to an increase in chromosome number and a decrease in chromosome size. In this study, we investigate chromosome evolution in ants from a phylogenetic perspective using ancestral reconstruction. Our analysis indicates that the most recent common ancestor of ants had an ancestral haploid chromosome number of 11, likely composed of biarmed chromosomes. The bimodal distribution of karyotypes and the trend toward increased chromosome numbers align with previous assumptions. However, both dysploidy and ploidy changes have been indicated as likely mechanisms of chromosome number evolution. Descending dysploidy occurs consistently throughout the phylogeny, while changes in ploidy are believed to occur occasionally within the subfamilies during genus diversification. We propose, based on our results and previous evidence (e.g., genome size in ants), that both fusions and fissions contribute equally to karyotype changes in Formicidae. Additionally, changes in ploidy should not be fully ignored, as they can occur across specific lineages.

染色体作为基因的载体,是遗传的基本单位,真核生物基因组分为多条染色体。每个物种在其谱系中通常具有一致数量的染色体。然而,蚂蚁在染色体数量上表现出显著的多样性,以前的研究表明这种差异可能与蚂蚁的多样性有关。随着蚂蚁的进化,各种核型出现,主要是通过染色体分裂,导致染色体数量的增加和染色体大小的减少。在这项研究中,我们利用祖先重建从系统发育的角度研究了蚂蚁的染色体进化。我们的分析表明,蚂蚁最近的共同祖先的祖先单倍体染色体数目为11,可能由双臂染色体组成。核型的双峰分布和染色体数目增加的趋势与先前的假设一致。尽管非倍体和倍体的变化都被认为是染色体数目进化的可能机制。下降的非倍性在整个系统发育中始终发生,而倍性的变化被认为在属多样化的亚科中偶尔发生。我们提出,基于我们的结果和先前的证据(例如,蚂蚁的基因组大小),融合和分裂对蚁科核型变化的贡献是相同的。此外,不应完全忽略倍性的变化,因为它们可能发生在特定的谱系中。
{"title":"A phylogenetic perspective of chromosome evolution in Formicidae.","authors":"Danon Clemes Cardoso, Maykon Passos Cristiano","doi":"10.1139/gen-2024-0124","DOIUrl":"10.1139/gen-2024-0124","url":null,"abstract":"<p><p>Chromosomes, as carriers of genes, are the fundamental units of heredity, with the eukaryotic genome divided into multiple chromosomes. Each species typically has a consistent number of chromosomes within its lineage. Ants, however, display remarkable diversity in chromosome numbers, and previous studies have shown that this variation may correlate with ant diversity. As ants evolved, various karyotypes emerged, primarily through chromosomal fissions, leading to an increase in chromosome number and a decrease in chromosome size. In this study, we investigate chromosome evolution in ants from a phylogenetic perspective using ancestral reconstruction. Our analysis indicates that the most recent common ancestor of ants had an ancestral haploid chromosome number of 11, likely composed of biarmed chromosomes. The bimodal distribution of karyotypes and the trend toward increased chromosome numbers align with previous assumptions. However, both dysploidy and ploidy changes have been indicated as likely mechanisms of chromosome number evolution. Descending dysploidy occurs consistently throughout the phylogeny, while changes in ploidy are believed to occur occasionally within the subfamilies during genus diversification. We propose, based on our results and previous evidence (e.g., genome size in ants), that both fusions and fissions contribute equally to karyotype changes in Formicidae. Additionally, changes in ploidy should not be fully ignored, as they can occur across specific lineages.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"1-10"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142835349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromosomal diversity in Crematogaster Lund, 1831 (Formicidae: Myrmicinae) from the Amazon rainforest. 亚马逊雨林中 Crematogaster Lund, 1831 (Formicidae: Myrmicinae) 的染色体多样性。
IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-09-03 DOI: 10.1139/gen-2023-0130
Linda Inês Silveira, Gisele Amaro Teixeira, Luísa Antônia Campos Barros, Jorge Abdala Dergam, Hilton Jeferson Alves Cardoso de Aguiar

Crematogaster Lund, 1831 is a speciose ant genus globally distributed and easily recognizable. Although biogeographical theories explain some variation among Neotropical Crematogaster, several taxonomical issues remain unresolved. While cytogenetic approaches can help to delimit species, cytogenetic data are only available for 18 taxa. In this study, classical and molecular cytogenetic analyses were performed on five Crematogaster species from the Brazilian Amazon to identify species-specific patterns. Two different cytotypes, both with 2n = 22 chromosomes were observed in Crematogaster erecta Mayr, 1866, suggesting the presence of cryptic species, although with different karyotypic formulas. Crematogaster aff. erecta had 2n = 28, while Crematogaster limata Smith, 1858, Crematogaster tenuicula Forel, 1904, and Crematogaster sp. had 2n = 38. The telomeric motif (TTAGG) n was found in all five species, and the (TCAGG) n motif was detected in the telomeres of C. limata. This peculiar motif was also detected in the centromeric regions of C. erecta cytotype I. The microsatellite (GA) n was dispersed in the chromosomes of all species studied, which also had a single intrachromosomal rDNA site. The cytogenetic results revealed notable interspecific and intraspecific variation, which suggests different chromosomal rearrangements involved in the origin of these variations, also highlighting the taxonomic value of cytogenetic data on Crematogaster.

Crematogaster Lund, 1831 是一种分布在全球各地的蚂蚁属,很容易辨认。尽管生物地理学理论可以解释新热带 Crematogaster 之间的一些差异,但仍有几个分类学问题尚未解决。虽然细胞遗传学方法有助于划分物种,但目前只有 18 个类群的细胞遗传学数据。本研究对巴西亚马逊地区的 5 个 Crematogaster 种类进行了经典和分子细胞遗传学分析,以确定物种特异性模式。在 Crematogaster erecta Mayr, 1866 中观察到了两种不同的细胞型,染色体均为 2n=22,这表明存在隐性物种,尽管其核型公式不同。Crematogasteraff.erepra的染色体为2n=28,而C. limata Smith, 1858, C. tenuicula Forel, 1904和Crematogaster sp.的染色体为2n=38。在所有五个物种中都发现了端粒图案(TTAGG)n,在C. limata的端粒中检测到了(TCAGG)n图案。微卫星 (GA)n 分散在所研究的所有物种的染色体中,这些物种也有一个染色体内 rDNA 位点。细胞遗传学结果显示了显著的种间和种内变异,这表明这些变异的起源涉及不同的染色体重排,同时也突出了Crematogaster细胞遗传学数据的分类价值。
{"title":"Chromosomal diversity in <i>Crematogaster</i> Lund, 1831 (Formicidae: Myrmicinae) from the Amazon rainforest.","authors":"Linda Inês Silveira, Gisele Amaro Teixeira, Luísa Antônia Campos Barros, Jorge Abdala Dergam, Hilton Jeferson Alves Cardoso de Aguiar","doi":"10.1139/gen-2023-0130","DOIUrl":"10.1139/gen-2023-0130","url":null,"abstract":"<p><p><i>Crematogaster</i> Lund, 1831 is a speciose ant genus globally distributed and easily recognizable. Although biogeographical theories explain some variation among Neotropical <i>Crematogaster</i>, several taxonomical issues remain unresolved. While cytogenetic approaches can help to delimit species, cytogenetic data are only available for 18 taxa. In this study, classical and molecular cytogenetic analyses were performed on five <i>Crematogaste</i>r species from the Brazilian Amazon to identify species-specific patterns. Two different cytotypes, both with 2<i>n</i> = 22 chromosomes were observed in <i>Crematogaster erecta</i> Mayr, 1866, suggesting the presence of cryptic species, although with different karyotypic formulas. <i>Crematogaster</i> aff. <i>erecta</i> had 2<i>n</i> = 28, while <i>Crematogaster limata</i> Smith, 1858, <i>Crematogaster tenuicula</i> Forel, 1904, and <i>Crematogaster</i> sp. had 2<i>n</i> = 38. The telomeric motif (TTAGG) <i><sub>n</sub></i> was found in all five species, and the (TCAGG) <i><sub>n</sub></i> motif was detected in the telomeres of <i>C. limata</i>. This peculiar motif was also detected in the centromeric regions of <i>C. erecta</i> cytotype I. The microsatellite (GA) <i><sub>n</sub></i> was dispersed in the chromosomes of all species studied, which also had a single intrachromosomal rDNA site. The cytogenetic results revealed notable interspecific and intraspecific variation, which suggests different chromosomal rearrangements involved in the origin of these variations, also highlighting the taxonomic value of cytogenetic data on <i>Crematogaster</i>.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"1-12"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142125506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asp/ASPM phospho-regulation throughout the cell cycle. Asp/ASPM在整个细胞周期中的磷酸化调控。
IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-10-29 DOI: 10.1139/gen-2024-0111
Maria C Burns, Lori Borgal

In mammals and Drosophila melanogaster, Asp/ASPM proteins contribute to cell proliferation and spindle formation. Recent evidence also suggests interphase roles for Asp/ASPM proteins, but little is known about the regulation allowing distinct roles in different cell cycle phases. In this review, we consider a cross-species comparison of Asp/ASPM protein sequences in light of cyclin-CDK literature, and suggest Asp/ASPM proteins to be prime candidates for cyclin-CDK regulation. Conserved regulatory features include an N-terminal proline directed serine/threonine (S/T-P) "supershift" phosphorylation domain common to proteins with bistable interphase and mitotic roles, as well as putative cyclin-binding sites positioned to allow multisite phosphorylation by cyclin-CDK complexes. Human, mouse, and Drosophila Asp/ASPM protein structural predictions show that multisite phosphorylation of the N-term supershift domain could alter the availability of CH-domains and HEAT-motifs, which can contribute to microtubule binding and protein aggregation likely required for spindle formation. Structural predictions of the smallest reported microcephaly patient truncation also emphasize the importance of the arrangement of these motifs. We position this in silico analysis within recent literature to build new hypotheses for Asp/ASPM regulation in interphase and mitosis, as well as de-regulation in microcephaly and cancer. We also highlight the utility of comparing structural/functional differences between human ASPM and Drosophila Asp to gain further insight.

在哺乳动物和黑腹果蝇中,Asp/ASPM 蛋白有助于细胞增殖和纺锤体的形成。最近的证据还表明,Asp/ASPM 蛋白在细胞间期发挥作用,但人们对其在不同细胞周期阶段发挥不同作用的调控机制知之甚少。在这篇综述中,我们根据细胞周期蛋白-CDK 文献对 Asp/ASPM 蛋白序列进行了跨物种比较,并认为 Asp/ASPM 蛋白是细胞周期蛋白-CDK 调控的主要候选蛋白。保守的调控特征包括具有双稳态间期和有丝分裂作用的蛋白质所共有的 N 端 S/T P "超移 "磷酸化结构域,以及假定的细胞周期蛋白结合位点,这些位点的定位允许细胞周期蛋白-CDK 复合物进行多位点磷酸化。人类、小鼠和果蝇的 Asp/ASPM 蛋白结构预测表明,N 端超移域的多位点磷酸化可能会改变 CH-位点和 HEAT-位点的可用性,而这些位点可能有助于微管结合和蛋白质聚集,这可能是纺锤体形成所必需的。对已报道的小头畸形患者最小截体的结构预测也强调了这些基序排列的重要性。我们将这一硅学分析与最近的文献结合起来,为Asp/ASPM在间期和有丝分裂中的调控以及在小头畸形和癌症中的去调控提出了新的假设。我们还强调了比较人类 ASPM 和果蝇 Asp 结构/功能差异的作用,以获得更深入的了解。
{"title":"Asp/ASPM phospho-regulation throughout the cell cycle.","authors":"Maria C Burns, Lori Borgal","doi":"10.1139/gen-2024-0111","DOIUrl":"10.1139/gen-2024-0111","url":null,"abstract":"<p><p>In mammals and <i>Drosophila melanogaster</i>, Asp/ASPM proteins contribute to cell proliferation and spindle formation. Recent evidence also suggests interphase roles for Asp/ASPM proteins, but little is known about the regulation allowing distinct roles in different cell cycle phases. In this review, we consider a cross-species comparison of Asp/ASPM protein sequences in light of cyclin-CDK literature, and suggest Asp/ASPM proteins to be prime candidates for cyclin-CDK regulation. Conserved regulatory features include an N-terminal proline directed serine/threonine (S/T-P) \"supershift\" phosphorylation domain common to proteins with bistable interphase and mitotic roles, as well as putative cyclin-binding sites positioned to allow multisite phosphorylation by cyclin-CDK complexes. Human, mouse, and <i>Drosophila</i> Asp/ASPM protein structural predictions show that multisite phosphorylation of the N-term supershift domain could alter the availability of CH-domains and HEAT-motifs, which can contribute to microtubule binding and protein aggregation likely required for spindle formation. Structural predictions of the smallest reported microcephaly patient truncation also emphasize the importance of the arrangement of these motifs. We position this <i>in silico</i> analysis within recent literature to build new hypotheses for Asp/ASPM regulation in interphase and mitosis, as well as de-regulation in microcephaly and cancer. We also highlight the utility of comparing structural/functional differences between human ASPM and <i>Drosophila</i> Asp to gain further insight.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"1-10"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Runs of homozygosity assessment using reduced representation sequencing highlight the evidence of random mating in emu (Dromaius novaehollandiae). 使用减少代表性测序的纯合子评估突出了鸸鹋(新荷兰Dromaius novaehollandiae)随机交配的证据。
IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-12-12 DOI: 10.1139/gen-2024-0084
Rangasai Chandra Goli, Karan Mahar, Kiyevi G Chishi, Sonu Choudhary, Pallavi Rathi, Chandana Chinnareddyvari Sree, Pala Haritha, Nidhi Sukhija, K K Kanaka

The domestication of emu (Dromaius novaehollandiae) began in the 1970s, but their productive characteristics have not undergone significant genetic enhancement. This study investigated the inbreeding and genetic diversity of 50 emus from various farms in Japan using Double digest restriction-site associated DNA sequencing (ddRAD-seq) markers. Single nucleotide polymorphism (SNP) calling revealed 171 975 high-quality SNPs while runs of homozygosity (ROH) analysis identified 1843 homozygous segments, with an average of 36.86 ROH per individual and a mean genome length of 27 Mb under ROH. The majority (86%) of ROH were short (0.5-1 Mb), indicating ancient or remote inbreeding. The average genomic inbreeding coefficient (FROH) was 0.0228, suggesting nearly no inbreeding. Overlapping ROH regions were identified, with top consensus regions found on chromosomes 8 and Z. Seven candidate genes related to egg production, feather development, and energy metabolism were annotated in these regions. The findings highlight the prevalence of genetic diversity and low inbreeding levels in the studied emu population. This research highlights the potentiality of random mating in genetic management and conservation of emus. Further studies should focus on enhancing productive traits through selective breeding while preserving genetic diversity to ensure the sustainable growth of the emu farming.

鸸鹋(Dromaius novaehollandiae)的驯化始于 20 世纪 70 年代,但其生产特性并未得到显著的遗传改良。本研究使用双消化限制性位点相关 DNA 测序(ddRAD-seq)标记对来自日本不同农场的 50 只鸸鹋的近亲繁殖和遗传多样性进行了调查。单核苷酸多态性(SNP)调用发现了1,71,975个高质量SNP,而同源性(ROH)分析则发现了1,843个同源性片段,平均每个个体有36.86个ROH,ROH下的平均基因组长度为27 Mb。大多数(86%)的 ROH 较短(0.5-1 Mb),表明存在远古或远缘近交。平均基因组近交系数(FROH)为 0.0228,表明几乎没有近交。这些区域注释了与产蛋、羽毛发育和能量代谢有关的七个候选基因。研究结果表明,所研究的鸸鹋种群普遍存在遗传多样性和低近亲繁殖水平。这项研究强调了随机交配在鸸鹋遗传管理和保护方面的潜力。进一步的研究应侧重于通过选择性育种提高鸸鹋的生产性状,同时保护遗传多样性,以确保鸸鹋养殖业的可持续发展。
{"title":"Runs of homozygosity assessment using reduced representation sequencing highlight the evidence of random mating in emu (<i>Dromaius novaehollandiae</i>).","authors":"Rangasai Chandra Goli, Karan Mahar, Kiyevi G Chishi, Sonu Choudhary, Pallavi Rathi, Chandana Chinnareddyvari Sree, Pala Haritha, Nidhi Sukhija, K K Kanaka","doi":"10.1139/gen-2024-0084","DOIUrl":"10.1139/gen-2024-0084","url":null,"abstract":"<p><p>The domestication of emu (<i>Dromaius novaehollandiae)</i> began in the 1970s, but their productive characteristics have not undergone significant genetic enhancement. This study investigated the inbreeding and genetic diversity of 50 emus from various farms in Japan using Double digest restriction-site associated DNA sequencing (ddRAD-seq) markers. Single nucleotide polymorphism (SNP) calling revealed 171 975 high-quality SNPs while runs of homozygosity (ROH) analysis identified 1843 homozygous segments, with an average of 36.86 ROH per individual and a mean genome length of 27 Mb under ROH. The majority (86%) of ROH were short (0.5-1 Mb), indicating ancient or remote inbreeding. The average genomic inbreeding coefficient (<i>F</i><sub>ROH</sub>) was 0.0228, suggesting nearly no inbreeding. Overlapping ROH regions were identified, with top consensus regions found on chromosomes 8 and Z. Seven candidate genes related to egg production, feather development, and energy metabolism were annotated in these regions. The findings highlight the prevalence of genetic diversity and low inbreeding levels in the studied emu population. This research highlights the potentiality of random mating in genetic management and conservation of emus. Further studies should focus on enhancing productive traits through selective breeding while preserving genetic diversity to ensure the sustainable growth of the emu farming.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"1-8"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative satellite DNA mapping in species of the genus Prochilodus (Teleostei, Characiformes) and its evolutionary implications. Prochilodus属(Teleostei,Characiformes)物种的卫星DNA比较图谱及其进化意义。
IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-10-29 DOI: 10.1139/gen-2024-0085
Rodrigo Zeni Dos Santos, Caio Augusto Gomes Goes, José Henrique Forte Stornioli, Francisco de Menezes Cavalcante Sassi, Renata Luiza Rosa de Moraes, Jorge Abdala Dergam, Fábio Porto-Foresti, Marcelo de Bello Cioffi, Ricardo Utsunomia

Satellite DNA (satDNA) sequences are dynamic components of the eukaryotic genome that can play significant roles in species diversification. The Prochilodontidae family, which includes 21 Neotropical fish species, is characterized by a conserved karyotype of 2n = 54 biarmed chromosomes, with variation in some species and populations regarding the presence or absence of B chromosomes. This study aimed to investigate whether the chromosomal distribution of specific satDNA sequences is conserved among three Prochilodus species (Prochilodus lineatus, Prochilodus costatus, and Prochilodus argenteus) regarding organization and number of loci, and to compare their genomes using comparative genomic hybridization (CGH). Our results demonstrated that most satDNA sequences share a similar distribution pattern across the three species, and CGH analysis corroborated that their karyotypes are very similar in terms of repetitive DNA distribution. We also identified a potential CENP-B box sequence within PliSat01, a satDNA located in the pericentromeric region of all analyzed species. In contrast, PliSat04 and PliSat14 displayed differential locations and variations in the number of loci per genome, underscoring the dynamic nature of repetitive sequences even in species with otherwise highly conserved genomes. These findings represent the first evidence of karyotype diversification in Prochilodus, highlighting the evolutionary dynamism of satDNA sequences.

卫星 DNA(satDNA)序列是真核生物基因组的动态组成部分,可在物种多样化中发挥重要作用。包括 21 个新热带鱼类物种的前口鱼科的特征是保守的 2n = 54 双臂染色体核型,在一些物种和种群中存在或不存在 B 染色体的差异。本研究旨在探讨特定 satDNA 序列的染色体分布在三个 Prochilodus 鱼种(P. lineatus、P. costatus 和 P. argenteus)中是否在位点的组织和数量上保持一致,并利用比较基因组杂交(CGH)技术对它们的基因组进行比较。我们的研究结果表明,这三个物种的大多数 satDNA 序列具有相似的分布模式,而 CGH 分析也证实了它们的核型在重复 DNA 分布方面非常相似。我们还在 PliSat01 中发现了一个潜在的 CENP-B 框序列,该 satDNA 位于所有分析物种的近中心区域。与此相反,PliSat04 和 PliSat14 显示出不同的位置和每个基因组中位点数量的变化,突显了重复序列的动态性质,即使在基因组高度保守的物种中也是如此。这些发现首次证明了原蜥核型的多样化,凸显了 satDNA 序列的进化动态性。
{"title":"Comparative satellite DNA mapping in species of the genus <i>Prochilodus</i> (Teleostei, Characiformes) and its evolutionary implications.","authors":"Rodrigo Zeni Dos Santos, Caio Augusto Gomes Goes, José Henrique Forte Stornioli, Francisco de Menezes Cavalcante Sassi, Renata Luiza Rosa de Moraes, Jorge Abdala Dergam, Fábio Porto-Foresti, Marcelo de Bello Cioffi, Ricardo Utsunomia","doi":"10.1139/gen-2024-0085","DOIUrl":"10.1139/gen-2024-0085","url":null,"abstract":"<p><p>Satellite DNA (satDNA) sequences are dynamic components of the eukaryotic genome that can play significant roles in species diversification. The Prochilodontidae family, which includes 21 Neotropical fish species, is characterized by a conserved karyotype of 2<i>n</i> = 54 biarmed chromosomes, with variation in some species and populations regarding the presence or absence of B chromosomes. This study aimed to investigate whether the chromosomal distribution of specific satDNA sequences is conserved among three <i>Prochilodus</i> species (<i>Prochilodus lineatus, Prochilodus costatus</i>, and <i>Prochilodus argenteus</i>) regarding organization and number of <i>loci</i>, and to compare their genomes using comparative genomic hybridization (CGH). Our results demonstrated that most satDNA sequences share a similar distribution pattern across the three species, and CGH analysis corroborated that their karyotypes are very similar in terms of repetitive DNA distribution. We also identified a potential CENP-B box sequence within PliSat01, a satDNA located in the pericentromeric region of all analyzed species. In contrast, PliSat04 and PliSat14 displayed differential locations and variations in the number of <i>loci</i> per genome, underscoring the dynamic nature of repetitive sequences even in species with otherwise highly conserved genomes. These findings represent the first evidence of karyotype diversification in <i>Prochilodus</i>, highlighting the evolutionary dynamism of satDNA sequences.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"1-8"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncovering the complexity of structural variants in four individuals with autism spectrum disorder. 揭示四名自闭症谱系障碍患者结构变异的复杂性。
IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-12-12 DOI: 10.1139/gen-2024-0121
Sarah Dada, Katherine Dixon, Vahid Akbari, Cameron J Grisdale, Kristina Calli, Sally Martell, Caralyn Reisle, Amanda Lillico-Ouachour, M E Suzanne Lewis, Steven J M Jones

Autism spectrum disorder (ASD) is an increasingly recognized childhood developmental disorder. Despite extensive study, causal variants and molecular diagnosis remain elusive. There is both heterogeneity of the phenotype, as well as the genetic landscape associated with phenotype, which includes both inherited and de novo mutations. Currently, diagnosis is complex and behaviourally based, oftentimes occurring years after the ideal 1-2 years of age. Structural variants (SVs) are large and sometimes complex genomic variants that are likely underrepresented contributors to ASD due to the limitations of short-read DNA sequencing, such as alignment in repetitive regions and regions with GC bias. Here, we performed long-read sequencing (LRS) on four individuals with autism spectrum disorder to delineate SV complexity and determine precise breakpoints for SVs, which was not possible with short-read whole-genome sequencing (SRS). We use LRS to interrogate the methylation pattern associated with the SVs and phase the SV haplotypes to further clarify their contribution to disorder. LRS allows insight into the genome and methylome that allow us to uncover variant complexity and contribution that was previously unseen with SRS. Ultimately, this furthers precision diagnosis and contributes to individualized treatment for affected individuals and their families within the clinic.

自闭症谱系障碍(ASD)是一种日益被认可的儿童发育障碍。尽管进行了广泛的研究,但因果变异和分子诊断仍然难以捉摸。自闭症的表型以及与表型相关的遗传情况都存在异质性,其中包括遗传突变和新发突变。目前,诊断很复杂,而且以行为为基础,往往在理想的 1-2 岁年龄之后数年才能确诊。结构变异(SVs)是大的、有时是复杂的基因组变异,由于短读DNA测序的局限性,如重复区域和具有GC偏倚的区域的配准,这些变异很可能是导致ASD的代表性不足的因素。在这里,我们对四名自闭症谱系障碍患者进行了长读数测序(LRS),以划分 SV 的复杂性并确定 SV 的精确断点,而这是短读数测序(SRS)无法实现的。我们利用 LRS 分析与 SV 相关的甲基化模式,并对 SV 单倍型进行分期,以进一步明确它们对自闭症的影响。通过 LRS,我们可以深入了解基因组和甲基组,从而发现 SRS 以前无法发现的变异复杂性和贡献。最终,这将促进精准诊断,并有助于在临床上为受影响的个体及其家庭提供个体化治疗。
{"title":"Uncovering the complexity of structural variants in four individuals with autism spectrum disorder.","authors":"Sarah Dada, Katherine Dixon, Vahid Akbari, Cameron J Grisdale, Kristina Calli, Sally Martell, Caralyn Reisle, Amanda Lillico-Ouachour, M E Suzanne Lewis, Steven J M Jones","doi":"10.1139/gen-2024-0121","DOIUrl":"10.1139/gen-2024-0121","url":null,"abstract":"<p><p>Autism spectrum disorder (ASD) is an increasingly recognized childhood developmental disorder. Despite extensive study, causal variants and molecular diagnosis remain elusive. There is both heterogeneity of the phenotype, as well as the genetic landscape associated with phenotype, which includes both inherited and de novo mutations. Currently, diagnosis is complex and behaviourally based, oftentimes occurring years after the ideal 1-2 years of age. Structural variants (SVs) are large and sometimes complex genomic variants that are likely underrepresented contributors to ASD due to the limitations of short-read DNA sequencing, such as alignment in repetitive regions and regions with GC bias. Here, we performed long-read sequencing (LRS) on four individuals with autism spectrum disorder to delineate SV complexity and determine precise breakpoints for SVs, which was not possible with short-read whole-genome sequencing (SRS). We use LRS to interrogate the methylation pattern associated with the SVs and phase the SV haplotypes to further clarify their contribution to disorder. LRS allows insight into the genome and methylome that allow us to uncover variant complexity and contribution that was previously unseen with SRS. Ultimately, this furthers precision diagnosis and contributes to individualized treatment for affected individuals and their families within the clinic.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"1-8"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Note of appreciation. 表示感谢。
IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-01-01 DOI: 10.1139/gen-2024-0172
{"title":"Note of appreciation.","authors":"","doi":"10.1139/gen-2024-0172","DOIUrl":"https://doi.org/10.1139/gen-2024-0172","url":null,"abstract":"","PeriodicalId":12809,"journal":{"name":"Genome","volume":"68 ","pages":"1"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143004406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetic factors related to recalcitrance in plant biotechnology. 植物生物技术中与顽抗有关的表观遗传因素。
IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-10-29 DOI: 10.1139/gen-2024-0098
Mohsen Hesami, Marco Pepe, Ben Spitzer-Rimon, Milad Eskandari, Andrew Maxwell Phineas Jones

This review explores the challenges and potential solutions in plant micropropagation and biotechnology. While these techniques have proven successful for many species, certain plants or tissues are recalcitrant and do not respond as desired, limiting the application of these technologies due to unattainable or minimal in vitro regeneration rates. Indeed, traditional in vitro culture techniques may fail to induce organogenesis or somatic embryogenesis in some plants, leading to classification as in vitro recalcitrance. This paper focuses on recalcitrance to somatic embryogenesis due to its promise for regenerating juvenile propagules and applications in biotechnology. Specifically, this paper will focus on epigenetic factors that regulate recalcitrance as understanding them may help overcome these barriers. Transformation recalcitrance is also addressed, with strategies proposed to improve transformation frequency. The paper concludes with a review of CRISPR-mediated genome editing's potential in modifying somatic embryogenesis-related epigenetic status and strategies for addressing transformation recalcitrance.

本综述探讨了植物微繁殖和生物技术面临的挑战和潜在的解决方案。虽然这些技术已被证明对许多物种是成功的,但某些植物或组织是顽固的,不能按照预期反应,由于无法实现或体外再生率极低,限制了这些技术的应用。事实上,传统体外培养技术可能无法诱导某些植物的器官发生或体细胞胚胎发生,从而被归类为体外抗逆性。由于体细胞胚胎发生具有再生幼体和应用于生物技术的前景,本文将重点讨论体细胞胚胎发生的顽抗性。本文将特别关注调控再抗性的表观遗传因素,因为了解这些因素可能有助于克服这些障碍。本文还讨论了转化再抗性,并提出了提高转化频率的策略。最后,本文回顾了 CRISPR 介导的基因组编辑在改变体细胞胚胎发生相关表观遗传学状态方面的潜力,以及解决转化再抗性的策略。
{"title":"Epigenetic factors related to recalcitrance in plant biotechnology.","authors":"Mohsen Hesami, Marco Pepe, Ben Spitzer-Rimon, Milad Eskandari, Andrew Maxwell Phineas Jones","doi":"10.1139/gen-2024-0098","DOIUrl":"10.1139/gen-2024-0098","url":null,"abstract":"<p><p>This review explores the challenges and potential solutions in plant micropropagation and biotechnology. While these techniques have proven successful for many species, certain plants or tissues are recalcitrant and do not respond as desired, limiting the application of these technologies due to unattainable or minimal in vitro regeneration rates. Indeed, traditional in vitro culture techniques may fail to induce organogenesis or somatic embryogenesis in some plants, leading to classification as in vitro recalcitrance. This paper focuses on recalcitrance to somatic embryogenesis due to its promise for regenerating juvenile propagules and applications in biotechnology. Specifically, this paper will focus on epigenetic factors that regulate recalcitrance as understanding them may help overcome these barriers. Transformation recalcitrance is also addressed, with strategies proposed to improve transformation frequency. The paper concludes with a review of CRISPR-mediated genome editing's potential in modifying somatic embryogenesis-related epigenetic status and strategies for addressing transformation recalcitrance.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"1-11"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant immune resilience to a changing climate: molecular insights and biotechnological roadmaps. 植物对气候变化的免疫复原力:分子见解和生物技术路线图。
IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-11-05 DOI: 10.1139/gen-2024-0088
Christian Danve M Castroverde, Chi Kuan, Jong Hum Kim

Successful resistance to disease-causing pathogens is underpinned by properly regulated immune signalling and defence responses in plants. The plant immune system is controlled at multiple levels of gene and protein regulation-from chromatin-associated epigenetic processes to protein post-translational modifications. Optimal fine-tuning of plant immune signalling and responses is important to prevent plant disease development, which is being exacerbated by a globally changing climate. In this review, we focus on how changing climatic factors mechanistically intercept plant immunity at different levels of regulation (chromatin, transcriptional, post-transcriptional, translational, and post-translational). We specifically highlight recent studies that have provided molecular insights into critically important climate-sensitive nodes and mechanisms of the plant immune system. We then propose several potential future directions to build climate-resilient plant disease resistance using cutting-edge biotechnology. Overall, this conceptual understanding and promising biotechnological advances provide a foundational platform towards novel approaches to engineer plant immune resilience.

植物成功抵抗致病病原体的基础是适当调节免疫信号和防御反应。植物免疫系统受控于基因和蛋白质调控的多个层面--从染色质相关的表观遗传过程到蛋白质翻译后修饰。植物免疫信号和反应的最佳微调对于预防植物疾病的发生非常重要,而全球不断变化的气候又加剧了植物疾病的发展。在这篇综述中,我们将重点关注不断变化的气候因素如何在不同的调控水平(染色质、转录、转录后、翻译和翻译后)上从机制上拦截植物免疫。我们特别强调了最近的一些研究,这些研究从分子角度揭示了植物免疫系统对气候敏感的重要节点和机制。然后,我们提出了利用尖端生物技术增强植物抗病性的几个潜在未来方向。总之,这种概念上的理解和前景广阔的生物技术进步提供了一个基础平台,有助于采用新方法设计植物免疫复原力。
{"title":"Plant immune resilience to a changing climate: molecular insights and biotechnological roadmaps.","authors":"Christian Danve M Castroverde, Chi Kuan, Jong Hum Kim","doi":"10.1139/gen-2024-0088","DOIUrl":"10.1139/gen-2024-0088","url":null,"abstract":"<p><p>Successful resistance to disease-causing pathogens is underpinned by properly regulated immune signalling and defence responses in plants. The plant immune system is controlled at multiple levels of gene and protein regulation-from chromatin-associated epigenetic processes to protein post-translational modifications. Optimal fine-tuning of plant immune signalling and responses is important to prevent plant disease development, which is being exacerbated by a globally changing climate. In this review, we focus on how changing climatic factors mechanistically intercept plant immunity at different levels of regulation (chromatin, transcriptional, post-transcriptional, translational, and post-translational). We specifically highlight recent studies that have provided molecular insights into critically important climate-sensitive nodes and mechanisms of the plant immune system. We then propose several potential future directions to build climate-resilient plant disease resistance using cutting-edge biotechnology. Overall, this conceptual understanding and promising biotechnological advances provide a foundational platform towards novel approaches to engineer plant immune resilience.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"1-13"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Genome
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1