首页 > 最新文献

Genome最新文献

英文 中文
Analysis of the winter oilseed rape recombination landscape suggests maternal-paternal bias. 对冬季油菜基因重组情况的分析表明,母本与父本之间存在偏差。
IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-21 DOI: 10.1139/gen-2023-0110
Nayyer Abdollahi Sisi, Eva Herzog, Amine Abbadi, Rod J Snowdon, Agnieszka A Golicz

Recombination, the reciprocal exchange of DNA between homologous chromosomes, is a mandatory step necessary for meiosis progression. Crossovers between homologous chromosomes generate new combinations of alleles and maintain genetic diversity. Due to genetic, epigenetic, and environmental factors, the recombination landscape is highly heterogeneous along the chromosomes and it also differs between populations and between sexes. Here, we investigated recombination characteristics across the 19 chromosomes of the model allopolyploid crop species oilseed rape (Brassica napus L.), using two unique multiparental populations derived from two genetically divergent founder pools, each of which comprised 50 genetically diverse founder accessions. A fully balanced, pairwise chain-crossing scheme was utilized to create each of the two populations. A total of 3213 individuals, spanning five successive generations, were genotyped using a 15K SNP array. We observed uneven distribution of recombination along chromosomes, with some genomic regions undergoing substantially more frequent recombination in both populations. In both populations, maternal recombination events were more frequent than paternal recombination. This study provides unique insight into the recombination landscape at chromosomal level and reveals a maternal-paternal bias for recombination number with implications for breeding.

重组是同源染色体之间 DNA 的相互交换,是减数分裂过程中必不可少的步骤。同源染色体之间的交叉产生新的等位基因组合,维持遗传多样性。由于遗传、表观遗传和环境因素的影响,染色体上的重组情况具有高度异质性,而且在不同种群和性别之间也存在差异。在这里,我们利用从两个基因不同的创始群体中衍生出来的两个独特的多亲本群体,研究了模式全多倍体作物油菜(Brassica napus L.)19条染色体上的重组特征。两个群体分别采用完全平衡的配对链式杂交方案。使用 15K SNP 阵列对连续五代共 3213 个个体进行了基因分型。我们观察到染色体上的重组分布不均,在两个种群中,某些基因组区域的重组频率要高得多。在这两个群体中,母系重组事件比父系重组更频繁。这项研究对染色体水平的重组情况提供了独特的见解,并揭示了重组数量的母本-父本偏倚,对育种具有重要意义。
{"title":"Analysis of the winter oilseed rape recombination landscape suggests maternal-paternal bias.","authors":"Nayyer Abdollahi Sisi, Eva Herzog, Amine Abbadi, Rod J Snowdon, Agnieszka A Golicz","doi":"10.1139/gen-2023-0110","DOIUrl":"https://doi.org/10.1139/gen-2023-0110","url":null,"abstract":"<p><p>Recombination, the reciprocal exchange of DNA between homologous chromosomes, is a mandatory step necessary for meiosis progression. Crossovers between homologous chromosomes generate new combinations of alleles and maintain genetic diversity. Due to genetic, epigenetic, and environmental factors, the recombination landscape is highly heterogeneous along the chromosomes and it also differs between populations and between sexes. Here, we investigated recombination characteristics across the 19 chromosomes of the model allopolyploid crop species oilseed rape (<i>Brassica napus</i> L.), using two unique multiparental populations derived from two genetically divergent founder pools, each of which comprised 50 genetically diverse founder accessions. A fully balanced, pairwise chain-crossing scheme was utilized to create each of the two populations. A total of 3213 individuals, spanning five successive generations, were genotyped using a 15K SNP array. We observed uneven distribution of recombination along chromosomes, with some genomic regions undergoing substantially more frequent recombination in both populations. In both populations, maternal recombination events were more frequent than paternal recombination. This study provides unique insight into the recombination landscape at chromosomal level and reveals a maternal-paternal bias for recombination number with implications for breeding.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142463225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping of quantitative trait loci (QTL) in Brassica napus L. for tolerance to water stress. 绘制甘蓝型油菜对水分胁迫耐受性的数量性状位点(QTL)图。
IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-17 DOI: 10.1139/gen-2023-0127
Samadhi B Jayarathna, Harmeet S Chawla, Mohammed M Mira, Robert W Duncan, Claudio Stasolla

Brassica napus L. plants are sensitive to water stress conditions throughout their life cycle from seed germination to seed setting. This study aims at identifying quantitative trait loci (QTL) linked to B. napus tolerance to water stress mimicked by applications of 10% polyethylene glycol-6000 (PEG-6000). Two doubled haploid populations, each consisting of 150 genotypes, were used for this research. Plants at the two true leaf stage of development were grown in the absence (control) or presence (stress) of PEG-6000 under controlled environmental conditions for 48 h, and the drought stress index was calculated for each genotype. All genotypes, along with their parents, were genotyped using the Brassica Infinium 90K SNP BeadChip Array. Inclusive composite interval mapping was used to identify QTL. Six QTL and 12 putative QTL associated with water stress tolerance were identified across six chromosomes (A2, A3, A4, A9, C3, and C7). Collectively, 2154 candidate genes for water stress tolerance were identified for all the identified QTL. Among them, 213 genes were identified as being directly associated with water stress (imposed by PEG-6000) tolerance based on nine functional annotations. These results can be incorporated into future breeding initiatives to select plant material with the ability to cope effectively with water stress.

甘蓝型油菜(Brassica napus L.)植物从种子萌发到结籽的整个生命周期对水分胁迫条件都很敏感。本研究旨在鉴定与油菜耐受 10%聚乙二醇-6000(PEG-6000)模拟水胁迫有关的数量性状基因座(QTL)。这项研究使用了两个加倍单倍体群体,每个群体由 150 个基因型组成。在没有 PEG-6000 的环境条件下(对照)或有 PEG-6000 的环境条件下(胁迫),将处于两片真叶发育阶段的植株生长 48 小时,并计算每个基因型的干旱胁迫指数。使用 Brassica Infinium 90K SNP BeadChip 阵列对所有基因型及其亲本进行基因分型。利用包容性复合间隔图谱鉴定 QTL。在 6 条染色体(A2、A3、A4、A9、C3 和 C7)上确定了 6 个与水胁迫耐受性相关的 QTL 和 12 个推定 QTL。在所有已鉴定的 QTL 中,共鉴定出 2154 个耐水胁迫候选基因。其中,根据九个功能注释,确定了 213 个与水胁迫(由 PEG-6000 施加)耐受性直接相关的基因。这些结果可纳入未来的育种计划中,以选育出有能力有效应对水胁迫的植物材料。
{"title":"Mapping of quantitative trait loci (QTL) in <i>Brassica napus</i> L. for tolerance to water stress.","authors":"Samadhi B Jayarathna, Harmeet S Chawla, Mohammed M Mira, Robert W Duncan, Claudio Stasolla","doi":"10.1139/gen-2023-0127","DOIUrl":"https://doi.org/10.1139/gen-2023-0127","url":null,"abstract":"<p><p><i>Brassica napus</i> L. plants are sensitive to water stress conditions throughout their life cycle from seed germination to seed setting. This study aims at identifying quantitative trait loci (QTL) linked to <i>B. napus</i> tolerance to water stress mimicked by applications of 10% polyethylene glycol-6000 (PEG-6000). Two doubled haploid populations, each consisting of 150 genotypes, were used for this research. Plants at the two true leaf stage of development were grown in the absence (control) or presence (stress) of PEG-6000 under controlled environmental conditions for 48 h, and the drought stress index was calculated for each genotype. All genotypes, along with their parents, were genotyped using the Brassica Infinium 90K SNP BeadChip Array. Inclusive composite interval mapping was used to identify QTL. Six QTL and 12 putative QTL associated with water stress tolerance were identified across six chromosomes (A2, A3, A4, A9, C3, and C7). Collectively, 2154 candidate genes for water stress tolerance were identified for all the identified QTL. Among them, 213 genes were identified as being directly associated with water stress (imposed by PEG-6000) tolerance based on nine functional annotations. These results can be incorporated into future breeding initiatives to select plant material with the ability to cope effectively with water stress.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142463228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heat shock responsive genes in Brassicaceae: genome-wide identification, phylogeny, and evolutionary associations within and between genera. 十字花科植物的热休克反应基因:全基因组鉴定、系统发育以及属内和属间的进化关联。
IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-16 DOI: 10.1139/gen-2024-0061
Aldrin Y Cantila, Sheng Chen, Kadambot H M Siddique, Wallace A Cowling

Heat stress affects the growth and development of Brassicaceae crops. Plant breeders aim to mitigate the effects of heat stress by selecting for heat stress tolerance, but the genes responsible for heat stress in Brassicaceae remain largely unknown. During heat stress, heat shock proteins (HSPs) function as molecular chaperones to aid in protein folding, and heat shock transcription factors (HSFs) serve as transcriptional regulators of HSP expression. We identified 5002 heat shock related genes, including HSPs and HSFs, across 32 genomes in Brassicaceae. Among these, 3347 genes were duplicated, with segmented duplication primarily contributing to their expansion. We identified 466 physical gene clusters, including 240 homogenous clusters and 226 heterogeneous clusters, shedding light on the organization of heat shock related genes. Notably, 37 genes were co-located with published thermotolerance quantitative trait loci, which supports their functional role in conferring heat stress tolerance. This study provides a comprehensive resource for the identification of functional Brassicaceae heat shock related genes, elucidates their clustering and duplication patterns and establishes the genomic foundation for future heat tolerance research. We hypothesise that genetic variants in HSP and HSF genes in certain species have potential for improving heat stress tolerance in Brassicaceae crops.

热胁迫影响十字花科作物的生长和发育。植物育种者旨在通过选择热胁迫耐受性来减轻热胁迫的影响,但造成十字花科植物热胁迫的基因在很大程度上仍然未知。在热胁迫期间,热休克蛋白(HSPs)作为分子伴侣帮助蛋白质折叠,而热休克转录因子(HSFs)则是 HSP 表达的转录调节因子。我们在十字花科植物的 32 个基因组中发现了 5002 个热休克相关基因,包括 HSPs 和 HSFs。在这些基因中,有 3347 个基因是重复的,节段性重复是其扩展的主要原因。我们发现了 466 个物理基因簇,包括 240 个同质基因簇和 226 个异质基因簇,揭示了热休克相关基因的组织结构。值得注意的是,37 个基因与已发表的耐热性数量性状位点共定位,这支持了它们在赋予热胁迫耐受性方面的功能作用。这项研究为鉴定十字花科热休克相关功能基因提供了一个全面的资源,阐明了它们的聚类和重复模式,并为未来的耐热研究奠定了基因组基础。我们假设,某些物种中 HSP 和 HSF 基因的遗传变异有可能提高十字花科作物的热胁迫耐受性。
{"title":"Heat shock responsive genes in Brassicaceae: genome-wide identification, phylogeny, and evolutionary associations within and between genera.","authors":"Aldrin Y Cantila, Sheng Chen, Kadambot H M Siddique, Wallace A Cowling","doi":"10.1139/gen-2024-0061","DOIUrl":"https://doi.org/10.1139/gen-2024-0061","url":null,"abstract":"<p><p>Heat stress affects the growth and development of Brassicaceae crops. Plant breeders aim to mitigate the effects of heat stress by selecting for heat stress tolerance, but the genes responsible for heat stress in Brassicaceae remain largely unknown. During heat stress, heat shock proteins (HSPs) function as molecular chaperones to aid in protein folding, and heat shock transcription factors (HSFs) serve as transcriptional regulators of HSP expression. We identified 5002 heat shock related genes, including HSPs and HSFs, across 32 genomes in Brassicaceae. Among these, 3347 genes were duplicated, with segmented duplication primarily contributing to their expansion. We identified 466 physical gene clusters, including 240 homogenous clusters and 226 heterogeneous clusters, shedding light on the organization of heat shock related genes. Notably, 37 genes were co-located with published thermotolerance quantitative trait loci, which supports their functional role in conferring heat stress tolerance. This study provides a comprehensive resource for the identification of functional Brassicaceae heat shock related genes, elucidates their clustering and duplication patterns and establishes the genomic foundation for future heat tolerance research. We hypothesise that genetic variants in HSP and HSF genes in certain species have potential for improving heat stress tolerance in Brassicaceae crops.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142463227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Association mapping identifies stable loci containing novel genes for developmental and reproductive traits in sorghum. 关联图谱确定了含有高粱发育和生殖性状新基因的稳定位点。
IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-16 DOI: 10.1139/gen-2024-0030
Hari D Upadhyaya, Lihua Wang, Andrew H Paterson, C L L Gowda, Rajendra Kumar, Jieqin Li, Yi-Hong Wang

Key message We mapped 11 sorghum traits, identified 33 candidate genes, and found a grain yield gene (GID1) that regulates seed development and a grass-specific tillering gene (DUF1618) transferred to Striga hermonthica.

关键信息 我们绘制了 11 个高粱性状图,确定了 33 个候选基因,并发现了一个调控种子发育的谷物产量基因(GID1)和一个转移到 Striga hermonthica 的草地特异性分蘖基因(DUF1618)。
{"title":"Association mapping identifies stable loci containing novel genes for developmental and reproductive traits in sorghum.","authors":"Hari D Upadhyaya, Lihua Wang, Andrew H Paterson, C L L Gowda, Rajendra Kumar, Jieqin Li, Yi-Hong Wang","doi":"10.1139/gen-2024-0030","DOIUrl":"https://doi.org/10.1139/gen-2024-0030","url":null,"abstract":"<p><p><b>Key message</b> We mapped 11 sorghum traits, identified 33 candidate genes, and found a grain yield gene (<i>GID1</i>) that regulates seed development and a grass-specific tillering gene (DUF1618) transferred to <i>Striga hermonthica</i>.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142463226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reduced representation bisulfite sequencing (RRBS) analysis reveals variation in distribution and levels of DNA methylation in white birch (Betula papyrifera) exposed to nickel. 还原表征亚硫酸氢盐测序(RRBS)分析揭示了暴露于镍的白桦树(Betula papyrifera)DNA甲基化分布和水平的变化。
IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-09-03 DOI: 10.1139/gen-2024-0019
Kabwe Nkongolo, Paul Michael

Research in understanding the role of genetics and epigenetics in plant adaptations to environmental stressors such as metals is still in its infancy. The objective of the present study is to assess the effect of nickel on DNA methylation level and distribution in white birch (Betula papyrifera Marshall) using reduced representation bisulfite sequencing (RRBS). The distribution of methylated C sites of each sample revealed that the level of methylation was much higher in CG context varying between 54% and 65%, followed by CHG (24%-31.5%), and then CHH with the methylation rate between 3.3% and 5.2%. The analysis of differentially methylated regions (DMR) revealed that nickel induced both hypermethylation and hypomethylation when compared to water. Detailed analysis showed for the first time that nickel induced a higher level of hypermethylation compared to controls, while potassium triggers a higher level of hypomethylation compared to nickel. Surprisingly, the analysis of the distribution of DMRs revealed that 38%-42% were located in gene bodies, 20%-24% in exon, 19%-20% in intron, 16%-17% in promoters, and 0.03%-0.04% in transcription start site. RRBS was successful in detecting and mapping DMR in plants exposed to nickel.

了解遗传学和表观遗传学在植物适应环境胁迫(如金属)中的作用的研究仍处于起步阶段。本研究的目的是利用还原表征亚硫酸氢盐测序(RRBS)评估镍对白桦树(Betula papyrifera Marshall)DNA甲基化水平和分布的影响。每个样本的甲基化 C 位点分布显示,CG 背景的甲基化水平更高,介于 54% 和 65% 之间,其次是 CHG(24%-31.5%),然后是 CHH,甲基化率介于 3.3% 和 5.2% 之间。对差异甲基化区域(DMR)的分析表明,与水相比,镍同时诱导了高甲基化和低甲基化。详细分析首次表明,与对照组相比,镍诱导的高甲基化水平更高,而与镍相比,钾诱导的低甲基化水平更高。令人惊讶的是,对DMRs分布的分析表明,38%-42%位于基因体,20%-24%位于外显子,19%-20%位于内含子,16%-17%位于启动子,0.03%-0.04%位于转录起始位点。RRBS 成功地检测并绘制了暴露于镍的植物的 DMR 图谱。
{"title":"Reduced representation bisulfite sequencing (RRBS) analysis reveals variation in distribution and levels of DNA methylation in white birch (<i>Betula papyrifera</i>) exposed to nickel.","authors":"Kabwe Nkongolo, Paul Michael","doi":"10.1139/gen-2024-0019","DOIUrl":"10.1139/gen-2024-0019","url":null,"abstract":"<p><p>Research in understanding the role of genetics and epigenetics in plant adaptations to environmental stressors such as metals is still in its infancy. The objective of the present study is to assess the effect of nickel on DNA methylation level and distribution in white birch (<i>Betula papyrifera</i> Marshall) using reduced representation bisulfite sequencing (RRBS). The distribution of methylated C sites of each sample revealed that the level of methylation was much higher in CG context varying between 54% and 65%, followed by CHG (24%-31.5%), and then CHH with the methylation rate between 3.3% and 5.2%. The analysis of differentially methylated regions (DMR) revealed that nickel induced both hypermethylation and hypomethylation when compared to water. Detailed analysis showed for the first time that nickel induced a higher level of hypermethylation compared to controls, while potassium triggers a higher level of hypomethylation compared to nickel. Surprisingly, the analysis of the distribution of DMRs revealed that 38%-42% were located in gene bodies, 20%-24% in exon, 19%-20% in intron, 16%-17% in promoters, and 0.03%-0.04% in transcription start site. RRBS was successful in detecting and mapping DMR in plants exposed to nickel.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"351-367"},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142125507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of transposable elements dynamics in fish with different sex chromosome systems. 不同性染色体系统鱼类可转座元件动态对比分析
IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-05-13 DOI: 10.1139/gen-2023-0134
Carolina Crepaldi, Diogo Cavalcanti Cabral-de-Mello, Patricia Pasquali Parise-Maltempi

Transposable elements (TEs) are widespread genomic components with substantial roles in genome evolution and sex chromosome differentiation. In this study, we compared the TE composition of three closely related fish with different sex chromosome systems: Megaleporinus elongatus (Z1Z1Z2Z2/Z1W1Z2W2), Megaleporinus macrocephalus (ZZ/ZW) (both with highly differentiated W sex chromosomes), and Leporinus friderici (without heteromorphic sex chromosomes). We created custom TE libraries for each species using clustering methods and manual annotation and prediction, and we predicted TE temporal dynamics through divergence-based analysis. The TE abundance ranged from 16% to 21% in the three mobilomes, with L. friderici having the lowest overall. Despite the recent amplification of TEs in all three species, we observed differing expansion activities, particularly between the two genera. Both Megaleporinus recently experienced high retrotransposon activity, with a reduction in DNA TEs, which could have implications in sex chromosome composition. In contrast, L. friderici showed the opposite pattern. Therefore, despite having similar TE compositions, Megaleporinus and Leporinus exhibit distinct TE histories that likely evolved after their separation, highlighting a rapid TE expansion over short evolutionary periods.

可转座元件(TE)是一种广泛存在的基因组成分,在基因组进化和性染色体分化中发挥着重要作用。在这项研究中,我们比较了三种性染色体系统不同的近缘鱼类的可转座元件组成:Megaleporinus elongatus(Z1Z1Z2Z2/Z1W1Z2W2)、Megaleporinus macrocephalus(ZZ/ZW)(均具有高度分化的 W 性染色体)和 Leporinus friderici(无异形性染色体)。我们利用聚类方法和人工注释与预测为每个物种创建了定制的 TE 库,并通过基于分化的分析预测了 TE 的时间动态。在三个动员组中,TE丰度从16%到21%不等,其中L. friderici的总体丰度最低。尽管这三个物种中的 TEs 最近都在扩大,但我们观察到了不同的扩展活动,尤其是在两个属之间。Megaleporinus和L. friderici最近都经历了较高的反转座子活动,DNA TEs减少,这可能对性染色体的组成有影响。相比之下,L. friderici则表现出相反的模式。因此,尽管Megaleporinus和Leporinus具有相似的TE组成,但它们的TE历史却截然不同,很可能是在它们分离后进化而来的,这凸显了TE在短进化期内的快速扩张。
{"title":"Comparative analysis of transposable elements dynamics in fish with different sex chromosome systems.","authors":"Carolina Crepaldi, Diogo Cavalcanti Cabral-de-Mello, Patricia Pasquali Parise-Maltempi","doi":"10.1139/gen-2023-0134","DOIUrl":"10.1139/gen-2023-0134","url":null,"abstract":"<p><p>Transposable elements (TEs) are widespread genomic components with substantial roles in genome evolution and sex chromosome differentiation. In this study, we compared the TE composition of three closely related fish with different sex chromosome systems: <i>Megaleporinus elongatus</i> (Z1Z1Z2Z2/Z1W1Z2W2), <i>Megaleporinus macrocephalus</i> (ZZ/ZW) (both with highly differentiated W sex chromosomes), and <i>Leporinus friderici</i> (without heteromorphic sex chromosomes). We created custom TE libraries for each species using clustering methods and manual annotation and prediction, and we predicted TE temporal dynamics through divergence-based analysis. The TE abundance ranged from 16% to 21% in the three mobilomes, with <i>L. friderici</i> having the lowest overall. Despite the recent amplification of TEs in all three species, we observed differing expansion activities, particularly between the two genera. Both <i>Megaleporinus</i> recently experienced high retrotransposon activity, with a reduction in DNA TEs, which could have implications in sex chromosome composition. In contrast, <i>L. friderici</i> showed the opposite pattern. Therefore, despite having similar TE compositions, <i>Megaleporinus</i> and <i>Leporinus</i> exhibit distinct TE histories that likely evolved after their separation, highlighting a rapid TE expansion over short evolutionary periods.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"339-350"},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140915974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA barcoding of southern African mammal species and construction of a reference library for forensic application. 南部非洲哺乳动物物种的 DNA 条形码和法医应用参考文献库的构建。
IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-07-12 DOI: 10.1139/gen-2023-0050
J R Baxter, A Kotze, M de Bruyn, K Matlou, K Labuschagne, M Mwale

Combating wildlife crimes in South Africa requires accurate identification of traded species and their products. Diagnostic morphological characteristics needed to identify species are often lost when specimens are processed and customs officials lack the expertise to identify species. As a potential solution, DNA barcoding can be used to identify morphologically indistinguishable specimens in forensic cases. However, barcoding is hindered by the reliance on comprehensive, validated DNA barcode reference databases, which are currently limited. To overcome this limitation, we constructed a barcode library of cytochrome c oxidase subunit 1 and cytochrome b sequences for threatened and protected mammals exploited in southern Africa. Additionally, we included closely related or morphologically similar species and assessed the database's ability to identify species accurately. Published southern African sequences were incorporated to estimate intraspecific and interspecific variation. Neighbor-joining trees successfully discriminated 94%-95% of the taxa. However, some widespread species exhibited high intraspecific distances (>2%), suggesting geographic sub-structuring or cryptic speciation. Lack of reliable published data prevented the unambiguous discrimination of certain species. This study highlights the efficacy of DNA barcoding in species identification, particularly for forensic applications. It also highlights the need for a taxonomic re-evaluation of certain widespread species and challenging genera.

在南非打击野生动物犯罪需要准确识别贸易物种及其产品。在处理标本时,识别物种所需的诊断形态特征往往会丢失,而海关官员又缺乏识别物种的专业知识。作为一种潜在的解决方案,DNA 条形码可用于在法医案件中识别形态上无法区分的标本。然而,条形码识别需要依赖全面、有效的 DNA 条形码参考数据库,而目前这种数据库非常有限。为了克服这一限制,我们构建了一个包含细胞色素 c 氧化酶亚单位 1(COI)和细胞色素 b(Cyt b)序列的条形码库,用于分析南部非洲受威胁和受保护的哺乳动物。此外,我们还纳入了密切相关或形态相似的物种,并评估了数据库准确识别物种的能力。已发表的南部非洲序列被纳入其中,以估计种内和种间变异。邻接树成功区分了 94-95% 的类群。然而,一些分布广泛的物种表现出较高的种内距离(>2%),这表明存在地理亚结构或隐性物种。由于缺乏可靠的已发表数据,无法明确区分某些物种。这项研究强调了 DNA 条形码在物种鉴定方面的功效,尤其是在法医应用方面。它还强调了对某些广泛分布的物种和具有挑战性的属进行重新分类评估的必要性。
{"title":"DNA barcoding of southern African mammal species and construction of a reference library for forensic application.","authors":"J R Baxter, A Kotze, M de Bruyn, K Matlou, K Labuschagne, M Mwale","doi":"10.1139/gen-2023-0050","DOIUrl":"10.1139/gen-2023-0050","url":null,"abstract":"<p><p>Combating wildlife crimes in South Africa requires accurate identification of traded species and their products. Diagnostic morphological characteristics needed to identify species are often lost when specimens are processed and customs officials lack the expertise to identify species. As a potential solution, DNA barcoding can be used to identify morphologically indistinguishable specimens in forensic cases. However, barcoding is hindered by the reliance on comprehensive, validated DNA barcode reference databases, which are currently limited. To overcome this limitation, we constructed a barcode library of <i>cytochrome c oxidase subunit 1</i> and <i>cytochrome b</i> sequences for threatened and protected mammals exploited in southern Africa. Additionally, we included closely related or morphologically similar species and assessed the database's ability to identify species accurately. Published southern African sequences were incorporated to estimate intraspecific and interspecific variation. Neighbor-joining trees successfully discriminated 94%-95% of the taxa. However, some widespread species exhibited high intraspecific distances (>2%), suggesting geographic sub-structuring or cryptic speciation. Lack of reliable published data prevented the unambiguous discrimination of certain species. This study highlights the efficacy of DNA barcoding in species identification, particularly for forensic applications. It also highlights the need for a taxonomic re-evaluation of certain widespread species and challenging genera.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"378-391"},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141599107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Specific amino acid changes correlate with pathogenic flavobacteria. 特定氨基酸的变化与致病性黄杆菌有关。
IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-01 Epub Date: 2022-09-05 DOI: 10.1139/gen-2024-0018
Vincent Gélinas, Valérie E Paquet, Maude F Paquet, Steve J Charette, Antony T Vincent

Flavobacterium is a genus of microorganisms living in a variety of hosts and habitats across the globe. Some species are found in fish organs, and only a few, such as Flavobacterium psychrophilum and Flavobacterium columnare, cause severe disease and losses in fish farms. The evolution of flavobacteria that are pathogenic to fish is unknown, and the protein changes accountable for the selection of their colonization to fish have yet to be determined. A phylogenetic tree was constructed with the complete genomic sequences of 208 species of the Flavobacterium genus using 861 softcore genes. This phylogenetic analysis revealed clade CII comprising nine species, including five pathogenic species, and containing the most species that colonize fish. Thirteen specific amino acid changes were found to be conserved across 11 proteins within the CII clade compared with other clades, and these proteins were enriched in functions related to replication, recombination, and repair. Several of these proteins are known to be involved in pathogenicity and fitness adaptation in other bacteria. Some of the observed amino acid changes can be explained by preferential selection for certain codons and tRNA frequency. These results could help explain how species belonging to the CII clade adapt to fish environments.

黄杆菌是生活在全球各种宿主和栖息地的微生物属。有些种类存在于鱼类器官中,只有少数种类,如精神黄杆菌(Flavobacterium psychrophilum)和柱状黄杆菌(Flavobacterium columnare)会导致鱼类养殖场发生严重疾病并造成损失。对鱼类具有致病性的黄杆菌的进化过程尚不清楚,它们选择在鱼类中定植的蛋白质变化也尚未确定。利用黄杆菌属 208 个物种的完整基因组序列和 861 个软核基因构建了一棵系统发生树。该系统进化分析表明,CII 支系由 9 个物种组成,其中包括 5 个致病物种,包含最多的鱼类定殖物种。与其他支系相比,在 CII 支系的 11 个蛋白质中发现有 13 个特定氨基酸变化是保守的,这些蛋白质富含与复制、重组和修复有关的功能。已知这些蛋白质中有几个参与了其他细菌的致病性和适应性。一些观察到的氨基酸变化可以用某些密码子和 tRNA 频率的优先选择来解释。这些结果有助于解释属于 CII 支系的物种如何适应鱼类环境。
{"title":"Specific amino acid changes correlate with pathogenic flavobacteria.","authors":"Vincent Gélinas, Valérie E Paquet, Maude F Paquet, Steve J Charette, Antony T Vincent","doi":"10.1139/gen-2024-0018","DOIUrl":"10.1139/gen-2024-0018","url":null,"abstract":"<p><p><i>Flavobacterium</i> is a genus of microorganisms living in a variety of hosts and habitats across the globe. Some species are found in fish organs, and only a few, such as <i>Flavobacterium psychrophilum</i> and <i>Flavobacterium columnare</i>, cause severe disease and losses in fish farms. The evolution of flavobacteria that are pathogenic to fish is unknown, and the protein changes accountable for the selection of their colonization to fish have yet to be determined. A phylogenetic tree was constructed with the complete genomic sequences of 208 species of the <i>Flavobacterium</i> genus using 861 softcore genes. This phylogenetic analysis revealed clade CII comprising nine species, including five pathogenic species, and containing the most species that colonize fish. Thirteen specific amino acid changes were found to be conserved across 11 proteins within the CII clade compared with other clades, and these proteins were enriched in functions related to replication, recombination, and repair. Several of these proteins are known to be involved in pathogenicity and fitness adaptation in other bacteria. Some of the observed amino acid changes can be explained by preferential selection for certain codons and tRNA frequency. These results could help explain how species belonging to the CII clade adapt to fish environments.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":"67 10","pages":"368-377"},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142345157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distinct patterns of satDNA distribution in holocentric chromosomes of spike-sedges (Eleocharis, Cyperaceae). 穗花杉(Eleocharis,茜草科)全中心染色体中 satDNA 分布的不同模式。
IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-16 DOI: 10.1139/gen-2024-0089
Thaíssa Boldieri de Souza, Letícia Maria Parteka, Yi-Tzu Kuo, Thiago Nascimento, Veit Schubert, Andrea Pedrosa-Harand, André Marques, Andreas Houben, André Luís Laforga Vanzela

Eleocharis R. Br. (Cyperaceae) species are known for having holocentric chromosomes, which enable rapid karyotype differentiation. High intra- and interspecific variations in chromosome numbers and genome sizes are documented for different Eleocharis species, frequently accompanied by fluctuations in the repetitive DNA fraction. However, a lack of detailed analysis has hampered a better understanding of the interplay between holocentricity and repetitive DNA evolution in this genus. In our study, we confirmed the holocentricity of Eleocharis chromosomes by immunostaining against the kinetochore protein KNL1 and the cell-cycle dependent posttranslational modifications histone H2AThr121ph and H3S10ph. We further studied the composition and chromosomal distribution of the main satellite DNA repeats found in the newly sequenced species Eleocharis maculosa, Eleocharis geniculata, Eleocharis parodii, Eleocharis elegans, and Eleocharis montana. Five of the six satellites discovered were arranged in clusters, while EmaSAT14 was distributed irregularly along the chromatid length in a line-like manner. EmaSAT14 monomers were present in a few copies in few species across the Eleocharis phylogenetic tree. Nonetheless, they were accumulated within a restricted group of Maculosae series, subgenus Eleocharis. The data indicates that the amplification and line-like distribution of EmaSAT14 along chromatids may have occurred recently within a section of the genus.

Eleocharis R.Br.(香蒲科)物种以全中心染色体著称,这使得核型的快速分化成为可能。有资料表明,不同 Eleocharis 物种的染色体数目和基因组大小在种内和种间存在很大差异,经常伴随着重复 DNA 部分的波动。然而,由于缺乏详细的分析,人们无法更好地了解该属的全中心性和重复 DNA 演化之间的相互作用。在我们的研究中,我们通过免疫染色法检测动点蛋白KNL1和依赖于细胞周期的翻译后修饰组蛋白H2AThr121ph和H3S10ph,证实了象鼻虫染色体的全中心性。我们进一步研究了在新测序物种E. maculosa、E. geniculata、E. parodii、E. elegans和E. montana中发现的主要卫星DNA重复序列的组成和染色体分布。在发现的六个卫星DNA重复序列中,有五个呈簇状排列,而EmaSAT14则沿染色体长度呈线状不规则分布。EmaSAT14单体在整个榄香属系统发育树中的少数物种中以少量拷贝存在。尽管如此,这些单体还是积聚在荸荠科(Maculosae)的一个局限性群体--荸荠亚属(Eleocharis)中。这些数据表明,EmaSAT14沿染色体的扩增和线状分布可能是最近在该属的一个部分中发生的。
{"title":"Distinct patterns of satDNA distribution in holocentric chromosomes of spike-sedges (<i>Eleocharis</i>, Cyperaceae).","authors":"Thaíssa Boldieri de Souza, Letícia Maria Parteka, Yi-Tzu Kuo, Thiago Nascimento, Veit Schubert, Andrea Pedrosa-Harand, André Marques, Andreas Houben, André Luís Laforga Vanzela","doi":"10.1139/gen-2024-0089","DOIUrl":"10.1139/gen-2024-0089","url":null,"abstract":"<p><p><i>Eleocharis</i> R. Br. (Cyperaceae) species are known for having holocentric chromosomes, which enable rapid karyotype differentiation. High intra- and interspecific variations in chromosome numbers and genome sizes are documented for different <i>Eleocharis</i> species, frequently accompanied by fluctuations in the repetitive DNA fraction. However, a lack of detailed analysis has hampered a better understanding of the interplay between holocentricity and repetitive DNA evolution in this genus. In our study, we confirmed the holocentricity of <i>Eleocharis</i> chromosomes by immunostaining against the kinetochore protein KNL1 and the cell-cycle dependent posttranslational modifications histone H2AThr121ph and H3S10ph. We further studied the composition and chromosomal distribution of the main satellite DNA repeats found in the newly sequenced species <i>Eleocharis maculosa, Eleocharis</i> <i>geniculata, Eleocharis parodii, Eleocharis elegans</i>, and <i>Eleocharis</i> <i>montana</i>. Five of the six satellites discovered were arranged in clusters, while EmaSAT14 was distributed irregularly along the chromatid length in a line-like manner. EmaSAT14 monomers were present in a few copies in few species across the <i>Eleocharis</i> phylogenetic tree. Nonetheless, they were accumulated within a restricted group of Maculosae series, subgenus <i>Eleocharis</i>. The data indicates that the amplification and line-like distribution of EmaSAT14 along chromatids may have occurred recently within a section of the genus.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142284426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromosomal diversity in Crematogaster Lund, 1831 (Formicidae: Myrmicinae) from the Amazon rainforest. 亚马逊雨林中 Crematogaster Lund, 1831 (Formicidae: Myrmicinae) 的染色体多样性。
IF 4.6 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-03 DOI: 10.1139/gen-2023-0130
Linda Inês Silveira, Gisele Amaro Teixeira, Luísa Antônia Campos Barros, Jorge Abdala Dergam, Hilton Jeferson Alves Cardoso de Aguiar

Crematogaster Lund, 1831 is a speciose ant genus globally distributed and easily recognizable. Although biogeographical theories explain some variation among Neotropical Crematogaster, several taxonomical issues remain unresolved. While cytogenetic approaches can help to delimit species, cytogenetic data are only available for 18 taxa. In this study, classical and molecular cytogenetic analyses were performed on five Crematogaster species from the Brazilian Amazon to identify species-specific patterns. Two different cytotypes, both with 2n = 22 chromosomes were observed in Crematogaster erecta Mayr, 1866, suggesting the presence of cryptic species, although with different karyotypic formulas. Crematogaster aff. erecta had 2n = 28, while Crematogaster limata Smith, 1858, Crematogaster tenuicula Forel, 1904, and Crematogaster sp. had 2n = 38. The telomeric motif (TTAGG) n was found in all five species, and the (TCAGG) n motif was detected in the telomeres of C. limata. This peculiar motif was also detected in the centromeric regions of C. erecta cytotype I. The microsatellite (GA) n was dispersed in the chromosomes of all species studied, which also had a single intrachromosomal rDNA site. The cytogenetic results revealed notable interspecific and intraspecific variation, which suggests different chromosomal rearrangements involved in the origin of these variations, also highlighting the taxonomic value of cytogenetic data on Crematogaster.

Crematogaster Lund, 1831 是一种分布在全球各地的蚂蚁属,很容易辨认。尽管生物地理学理论可以解释新热带 Crematogaster 之间的一些差异,但仍有几个分类学问题尚未解决。虽然细胞遗传学方法有助于划分物种,但目前只有 18 个类群的细胞遗传学数据。本研究对巴西亚马逊地区的 5 个 Crematogaster 种类进行了经典和分子细胞遗传学分析,以确定物种特异性模式。在 Crematogaster erecta Mayr, 1866 中观察到了两种不同的细胞型,染色体均为 2n=22,这表明存在隐性物种,尽管其核型公式不同。Crematogasteraff.erepra的染色体为2n=28,而C. limata Smith, 1858, C. tenuicula Forel, 1904和Crematogaster sp.的染色体为2n=38。在所有五个物种中都发现了端粒图案(TTAGG)n,在C. limata的端粒中检测到了(TCAGG)n图案。微卫星 (GA)n 分散在所研究的所有物种的染色体中,这些物种也有一个染色体内 rDNA 位点。细胞遗传学结果显示了显著的种间和种内变异,这表明这些变异的起源涉及不同的染色体重排,同时也突出了Crematogaster细胞遗传学数据的分类价值。
{"title":"Chromosomal diversity in <i>Crematogaster</i> Lund, 1831 (Formicidae: Myrmicinae) from the Amazon rainforest.","authors":"Linda Inês Silveira, Gisele Amaro Teixeira, Luísa Antônia Campos Barros, Jorge Abdala Dergam, Hilton Jeferson Alves Cardoso de Aguiar","doi":"10.1139/gen-2023-0130","DOIUrl":"10.1139/gen-2023-0130","url":null,"abstract":"<p><p><i>Crematogaster</i> Lund, 1831 is a speciose ant genus globally distributed and easily recognizable. Although biogeographical theories explain some variation among Neotropical <i>Crematogaster</i>, several taxonomical issues remain unresolved. While cytogenetic approaches can help to delimit species, cytogenetic data are only available for 18 taxa. In this study, classical and molecular cytogenetic analyses were performed on five <i>Crematogaste</i>r species from the Brazilian Amazon to identify species-specific patterns. Two different cytotypes, both with 2<i>n</i> = 22 chromosomes were observed in <i>Crematogaster erecta</i> Mayr, 1866, suggesting the presence of cryptic species, although with different karyotypic formulas. <i>Crematogaster</i> aff. <i>erecta</i> had 2<i>n</i> = 28, while <i>Crematogaster limata</i> Smith, 1858, <i>Crematogaster tenuicula</i> Forel, 1904, and <i>Crematogaster</i> sp. had 2<i>n</i> = 38. The telomeric motif (TTAGG) <i><sub>n</sub></i> was found in all five species, and the (TCAGG) <i><sub>n</sub></i> motif was detected in the telomeres of <i>C. limata</i>. This peculiar motif was also detected in the centromeric regions of <i>C. erecta</i> cytotype I. The microsatellite (GA) <i><sub>n</sub></i> was dispersed in the chromosomes of all species studied, which also had a single intrachromosomal rDNA site. The cytogenetic results revealed notable interspecific and intraspecific variation, which suggests different chromosomal rearrangements involved in the origin of these variations, also highlighting the taxonomic value of cytogenetic data on <i>Crematogaster</i>.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142125506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Genome
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1