Pub Date : 2024-09-01Epub Date: 2024-05-09DOI: 10.1139/gen-2023-0122
Diogo Milani, Ana Elisa Gasparotto, Vilma Loreto, Dardo A Martí, Diogo C Cabral-de-Mello
Supernumerary chromosomes (B chromosomes) have been an intriguing subject of study. Our understanding of the molecular differentiation of B chromosomes from an interpopulation perspective remains limited, with most analyses involving chromosome banding and mapping of a few sequences. To gain insights into the molecular composition, origin, and evolution of B chromosomes, we conducted cytogenetic and next-generation sequencing analysis of the repeatome in the grasshopper Abracris flavolineata across various populations. Our results unveiled the presence of B chromosomes in two newly investigated populations and described new satellite DNA sequences. While we observed some degree of genetic connection among A. flavolineata populations, our comparative analysis of genomes with and without B chromosomes provided evidence of two new B chromosome variants. These variants exhibited distinct compositions of various repeat classes, including transposable elements and satellite DNAs. Based on shared repeats, their chromosomal location, and the C-positive heterochromatin content on the B chromosome, these variants likely share a common origin but have undergone distinct molecular differentiation processes, resulting in varying degrees of heterochromatinization. Our data serve as a detailed example of the dynamic and differentiated nature of B chromosome molecular content at the interpopulation level, even when they share a common origin.
超常染色体(B 染色体)一直是一个引人入胜的研究课题。从种群间的角度来看,我们对 B 染色体分子分化的了解仍然有限,大多数分析都涉及染色体条带和少数序列的图谱绘制。为了深入了解 B 染色体的分子组成、起源和进化,我们对蚱蜢 Abracris flavolineata 不同种群的重复序列组进行了细胞遗传学和新一代测序分析。我们的研究结果揭示了两个新调查种群中 B 染色体的存在,并描述了新的卫星 DNA 序列。虽然我们观察到黄铃虫种群之间存在一定程度的遗传联系,但我们对含有和不含 B 染色体的基因组进行的比较分析提供了两个新的 B 染色体变体的证据。这些变体表现出不同的重复类组成,包括转座元件和卫星 DNA。根据共享的重复序列、它们的染色体位置以及 B 染色体上 C 阳性异染色质的含量,这些变体很可能具有共同的起源,但经历了不同的分子分化过程,导致了不同程度的异染色质化。我们的数据是 B 染色体分子含量在种群间水平的动态和分化性质的一个详细例子,即使它们有共同的起源。
{"title":"Chromosomal and genomic analysis suggests single origin and high molecular differentiation of the B chromosome of <i>Abracris flavolineata</i>.","authors":"Diogo Milani, Ana Elisa Gasparotto, Vilma Loreto, Dardo A Martí, Diogo C Cabral-de-Mello","doi":"10.1139/gen-2023-0122","DOIUrl":"10.1139/gen-2023-0122","url":null,"abstract":"<p><p>Supernumerary chromosomes (B chromosomes) have been an intriguing subject of study. Our understanding of the molecular differentiation of B chromosomes from an interpopulation perspective remains limited, with most analyses involving chromosome banding and mapping of a few sequences. To gain insights into the molecular composition, origin, and evolution of B chromosomes, we conducted cytogenetic and next-generation sequencing analysis of the repeatome in the grasshopper <i>Abracris flavolineata</i> across various populations. Our results unveiled the presence of B chromosomes in two newly investigated populations and described new satellite DNA sequences. While we observed some degree of genetic connection among <i>A. flavolineata</i> populations, our comparative analysis of genomes with and without B chromosomes provided evidence of two new B chromosome variants. These variants exhibited distinct compositions of various repeat classes, including transposable elements and satellite DNAs. Based on shared repeats, their chromosomal location, and the C-positive heterochromatin content on the B chromosome, these variants likely share a common origin but have undergone distinct molecular differentiation processes, resulting in varying degrees of heterochromatinization. Our data serve as a detailed example of the dynamic and differentiated nature of B chromosome molecular content at the interpopulation level, even when they share a common origin.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"327-338"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140897855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-05-09DOI: 10.1139/gen-2024-0016
Danial Asgari, Tanya Purvis, Victoria Pickens, Christopher Saski, Richard P Meisel, Dana Nayduch
Animals encounter diverse microbial communities throughout their lifetime, which exert varying selection pressures. Antimicrobial peptides (AMPs), which lyse or inhibit microbial growth, are a first line of defense against some of these microbes. Here we examine how developmental variation in microbial exposure has affected the evolution of expression and amino acid sequences of Defensins (an ancient class of AMPs) in the house fly (Musca domestica). The house fly is a well-suited model for this work because it trophically associates with varying microbial communities throughout its life history and its genome contains expanded families of AMPs, including Defensins. We identified two subsets of house fly Defensins: one expressed in larvae or pupae, and the other expressed in adults. The amino acid sequences of these two Defensin subsets form distinct monophyletic clades, and they are located in separate gene clusters in the genome. The adult-expressed Defensins evolve faster than larval/pupal Defensins, consistent with different selection pressures across developmental stages. Our results therefore suggest that varied microbial communities encountered across life history can shape the evolutionary trajectories of immune genes.
{"title":"Expression of defensin genes across house fly (<i>Musca domestica</i>) life history gives insight into immune system subfunctionalization.","authors":"Danial Asgari, Tanya Purvis, Victoria Pickens, Christopher Saski, Richard P Meisel, Dana Nayduch","doi":"10.1139/gen-2024-0016","DOIUrl":"10.1139/gen-2024-0016","url":null,"abstract":"<p><p>Animals encounter diverse microbial communities throughout their lifetime, which exert varying selection pressures. Antimicrobial peptides (AMPs), which lyse or inhibit microbial growth, are a first line of defense against some of these microbes. Here we examine how developmental variation in microbial exposure has affected the evolution of expression and amino acid sequences of Defensins (an ancient class of AMPs) in the house fly (<i>Musca domestica</i>). The house fly is a well-suited model for this work because it trophically associates with varying microbial communities throughout its life history and its genome contains expanded families of AMPs, including Defensins. We identified two subsets of house fly Defensins: one expressed in larvae or pupae, and the other expressed in adults. The amino acid sequences of these two Defensin subsets form distinct monophyletic clades, and they are located in separate gene clusters in the genome. The adult-expressed Defensins evolve faster than larval/pupal Defensins, consistent with different selection pressures across developmental stages. Our results therefore suggest that varied microbial communities encountered across life history can shape the evolutionary trajectories of immune genes.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"316-326"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140897921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-04-29DOI: 10.1139/gen-2023-0136
Miguel Ángel Velázquez-Flores, Ruth Ruiz Esparza-Garrido
The human genome is highly dynamic and only a small fraction of it codes for proteins, but most of the genome is transcribed, highlighting the importance of non-coding RNAs on cellular functions. In addition, it is now known the generation of non-coding RNA fragments under particular cellular conditions and their functions have revealed unexpected mechanisms of action, converging, in some cases, with the biogenic pathways and action machineries of microRNAs or Piwi-interacting RNAs. This led us to the question why the cell produces so many apparently redundant molecules to exert similar functions and regulate apparently convergent processes? However, non-coding RNAs fragments can also function similarly to aptamers, with secondary and tertiary conformations determining their functions. In the present work, it was reviewed and analyzed the current information about the non-coding RNAs fragments, describing their structure and biogenic pathways, with special emphasis on their cellular functions.
{"title":"Fragments derived from non-coding RNAs: how complex is genome regulation?","authors":"Miguel Ángel Velázquez-Flores, Ruth Ruiz Esparza-Garrido","doi":"10.1139/gen-2023-0136","DOIUrl":"10.1139/gen-2023-0136","url":null,"abstract":"<p><p>The human genome is highly dynamic and only a small fraction of it codes for proteins, but most of the genome is transcribed, highlighting the importance of non-coding RNAs on cellular functions. In addition, it is now known the generation of non-coding RNA fragments under particular cellular conditions and their functions have revealed unexpected mechanisms of action, converging, in some cases, with the biogenic pathways and action machineries of microRNAs or Piwi-interacting RNAs. This led us to the question why the cell produces so many apparently redundant molecules to exert similar functions and regulate apparently convergent processes? However, non-coding RNAs fragments can also function similarly to aptamers, with secondary and tertiary conformations determining their functions. In the present work, it was reviewed and analyzed the current information about the non-coding RNAs fragments, describing their structure and biogenic pathways, with special emphasis on their cellular functions.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"292-306"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140864971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-05-14DOI: 10.1139/gen-2023-0096
Suziane Alves Barcellos, Rafael Kretschmer, Marcelo Santos de Souza, Victoria Tura, Luciano Cesar Pozzobon, Thales Renato Ochotorena de Freitas, Darren K Griffin, Rebecca O'Connor, Ricardo José Gunski, Analía Del Valle Garnero
The genome organization of woodpeckers has several distinctive features e.g., an uncommon accumulation of repetitive sequences, enlarged Z chromosomes, and atypical diploid numbers. Despite the large diversity of species, there is a paucity of detailed cytogenomic studies for this group and we thus aimed to rectify this. Genome organization patterns and hence evolutionary change in the microchromosome formation of four species (Colaptes campestris, Veniliornis spilogaster, Melanerpes candidus, and Picumnus nebulosus) was established through fluorescence in situ hybridization using bacterial artificial chromosomes originally derived from Gallus gallus and Taeniopygia guttata. Findings suggest that P. nebulosus (2n = 110), which was described for the first time, had the most basal karyotype among species of Picidae studied here, and probably arose as a result of fissions of avian ancestral macrochromosomes. We defined a new chromosomal number for V. spilogaster (2n = 88) and demonstrated microchromosomal rearrangements involving C. campestris plus a single, unique hitherto undescribed rearrangement in V. spilogaster. This comprised an inversion after a fusion involving the ancestral microchromosome 12 (homologous to chicken microchromosome 12). We also determined that the low diploid number of M. candidus is related to microchromosome fusions. Woodpeckers thus exhibit significantly rearranged karyotypes compared to the putative ancestral karyotype.
啄木鸟的基因组组织有几个显著特点,如不常见的重复序列积累、增大的 Z 染色体和非典型的二倍体数目。尽管啄木鸟的种类繁多,但详细的细胞基因组研究却很少。通过荧光原位杂交技术,利用最初来源于 Gallus gallus 和 Taeniopygia guttata 的细菌人工染色体,确定了四个物种(Colaptes campestris、Veniliornis spilogaster、Melanerpes candidus 和 Picumnus nebulosus)的基因组组织模式以及微染色体形成过程中的进化变化。研究结果表明,首次描述的 P. nebulosus(2n = 110)在本文研究的鹟科物种中具有最基本的核型,可能是鸟类祖先宏染色体裂解的结果。我们为 V. spilogaster 定义了一个新的染色体数目(2n = 88),并展示了涉及 C. campestris 的微染色体重排,以及 V. spilogaster 中一个迄今未被描述的独特重排。这包括祖先微染色体 12(与鸡微染色体 12 同源)融合后的倒位。我们还确定,M. candidus 的低二倍体数与微染色体融合有关。因此,与推测的祖先核型相比,啄木鸟的核型出现了明显的重新排列。
{"title":"Understanding microchromosomal organization and evolution in four representative woodpeckers (Picidae, Piciformes) through BAC-FISH analysis.","authors":"Suziane Alves Barcellos, Rafael Kretschmer, Marcelo Santos de Souza, Victoria Tura, Luciano Cesar Pozzobon, Thales Renato Ochotorena de Freitas, Darren K Griffin, Rebecca O'Connor, Ricardo José Gunski, Analía Del Valle Garnero","doi":"10.1139/gen-2023-0096","DOIUrl":"10.1139/gen-2023-0096","url":null,"abstract":"<p><p>The genome organization of woodpeckers has several distinctive features e.g., an uncommon accumulation of repetitive sequences, enlarged Z chromosomes, and atypical diploid numbers. Despite the large diversity of species, there is a paucity of detailed cytogenomic studies for this group and we thus aimed to rectify this. Genome organization patterns and hence evolutionary change in the microchromosome formation of four species (<i>Colaptes campestris, Veniliornis spilogaster, Melanerpes candidus</i>, and <i>Picumnus nebulosus)</i> was established through fluorescence in situ hybridization using bacterial artificial chromosomes originally derived from <i>Gallus gallus</i> and <i>Taeniopygia guttata</i>. Findings suggest that <i>P. nebulosus</i> (2<i>n</i> = 110), which was described for the first time, had the most basal karyotype among species of Picidae studied here, and probably arose as a result of fissions of avian ancestral macrochromosomes. We defined a new chromosomal number for <i>V. spilogaster</i> (2<i>n</i> = 88) and demonstrated microchromosomal rearrangements involving <i>C. campestris</i> plus a single, unique hitherto undescribed rearrangement in <i>V. spilogaster</i>. This comprised an inversion after a fusion involving the ancestral microchromosome 12 (homologous to chicken microchromosome 12). We also determined that the low diploid number of <i>M. candidus</i> is related to microchromosome fusions. Woodpeckers thus exhibit significantly rearranged karyotypes compared to the putative ancestral karyotype.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"223-232"},"PeriodicalIF":2.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140922037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-05-06DOI: 10.1139/gen-2023-0126
Sven E Weber, Lennard Roscher-Ehrig, Tobias Kox, Amine Abbadi, Andreas Stahl, Rod J Snowdon
Advances in sequencing technology allow whole plant genomes to be sequenced with high quality. Combining genotypic and phenotypic data in genomic prediction helps breeders to select crossing partners in partially phenotyped populations. In plant breeding programs, the cost of sequencing entire breeding populations still exceeds available genotyping budgets. Hence, the method for genotyping is still mainly single nucleotide polymorphism (SNP) arrays; however, arrays are unable to assess the entire genome- and population-wide diversity. A compromise involves genotyping the entire population using an SNP array and a subset of the population with whole-genome sequencing. Both datasets can then be used to impute markers from whole-genome sequencing onto the entire population. Here, we evaluate whether imputation of whole-genome sequencing data enhances genomic predictions, using data from a nested association mapping population of rapeseed (Brassica napus). Employing two cross-validation schemes that mimic scenarios for the prediction of close and distant relatives, we show that imputed marker data do not significantly improve prediction accuracy, likely due to redundancy in relationship estimates and imputation errors. In simulation studies, only small improvements were observed, further corroborating the findings. We conclude that SNP arrays are already equipped with the information that is added by imputation through relationship and linkage disequilibrium.
测序技术的进步使得高质量的全植物基因组测序成为可能。在基因组预测中结合基因型和表型数据,有助于育种者在部分表型群体中选择杂交伙伴。在植物育种项目中,对整个育种群体进行测序的成本仍然超出了可用的基因分型预算。因此,基因分型的方法仍然主要是单核苷酸多态性(SNP)阵列;然而,阵列无法评估整个基因组和整个群体的多样性。一种折中的方法是使用 SNP 阵列对整个群体进行基因分型,并使用全基因组测序对群体的一个子集进行基因分型。然后,这两个数据集都可用于将全基因组测序的标记推算到整个群体上。在这里,我们利用油菜(Brassica napus)嵌套关联图谱群体的数据,评估了全基因组测序数据的归因是否能增强基因组预测。我们采用了两种交叉验证方案来模拟预测近亲和远亲的情况,结果表明,归因标记数据并不能显著提高预测准确性,这可能是由于关系估计中的冗余和归因误差造成的。在模拟研究中,只观察到很小的改进,这进一步证实了研究结果。我们的结论是,SNP 阵列已经具备了通过关系和连锁不平衡估算所增加的信息。
{"title":"Genomic prediction in <i>Brassica napus</i>: evaluating the benefit of imputed whole-genome sequencing data.","authors":"Sven E Weber, Lennard Roscher-Ehrig, Tobias Kox, Amine Abbadi, Andreas Stahl, Rod J Snowdon","doi":"10.1139/gen-2023-0126","DOIUrl":"10.1139/gen-2023-0126","url":null,"abstract":"<p><p>Advances in sequencing technology allow whole plant genomes to be sequenced with high quality. Combining genotypic and phenotypic data in genomic prediction helps breeders to select crossing partners in partially phenotyped populations. In plant breeding programs, the cost of sequencing entire breeding populations still exceeds available genotyping budgets. Hence, the method for genotyping is still mainly single nucleotide polymorphism (SNP) arrays; however, arrays are unable to assess the entire genome- and population-wide diversity. A compromise involves genotyping the entire population using an SNP array and a subset of the population with whole-genome sequencing. Both datasets can then be used to impute markers from whole-genome sequencing onto the entire population. Here, we evaluate whether imputation of whole-genome sequencing data enhances genomic predictions, using data from a nested association mapping population of rapeseed (<i>Brassica napus</i>). Employing two cross-validation schemes that mimic scenarios for the prediction of close and distant relatives, we show that imputed marker data do not significantly improve prediction accuracy, likely due to redundancy in relationship estimates and imputation errors. In simulation studies, only small improvements were observed, further corroborating the findings. We conclude that SNP arrays are already equipped with the information that is added by imputation through relationship and linkage disequilibrium.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"210-222"},"PeriodicalIF":2.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140850004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-02-12DOI: 10.1139/gen-2023-0101
Rafael Kretschmer, Marcelo Santos de Souza, Ricardo José Gunski, Analía Del Valle Garnero, Thales Renato Ochotorena de Freitas, Edison Zefa, Gustavo Akira Toma, Marcelo de Bello Cioffi, Edivaldo Herculano Corrêa de Oliveira, Rebecca E O'Connor, Darren K Griffin
The Cuculiformes are a family of over 150 species that live in a range of habitats, such as forests, savannas, and deserts. Here, bacterial artificial chromosome (BAC) probes (75 from chicken and 14 from zebra finch macrochromosomes 1-10 +ZW and for microchromosomes 11-28 (except 16)) were used to investigate chromosome homologies between chicken and the squirrel cuckoo (Piaya cayana). In addition, repetitive DNA probes were applied to characterize the chromosome organization and to explore the role of these sequences in the karyotype evolution of P. cayana. We also applied BAC probes for chicken chromosome 17 and Z to the guira cuckoo (Guira guira) to test whether this species has an unusual Robertsonian translocation between a microchromosome and the Z chromosome, recently described in the smooth-billed ani (Crotophaga ani). Our results revealed extensive chromosome reorganization with inter- and intrachromosomal rearrangements in P. cayana, including a conspicuous chromosome size and heterochromatin polymorphism on chromosome pair 20. Furthermore, we confirmed that the Z-autosome Robertsonian translocation found in C. ani is also found in G. guira, not P. cayana. These findings suggest that this translocation occurred prior to the divergence between C. ani and G. guira, but after the divergence with P. cayana.
鹃形目有 150 多个物种,生活在森林、热带草原和沙漠等多种栖息地。本文利用细菌人工染色体(BAC)探针(75个来自鸡,14个来自斑马雀大染色体1-10 +ZW和微染色体11-28(16除外))研究鸡和松鼠杜鹃(Piaya cayana)的染色体同源性。此外,我们还使用了重复 DNA 探针来描述染色体组织的特征,并探索这些序列在松鼠杜鹃核型进化中的作用。我们还在吉拉杜鹃(Guira guira)中应用了鸡第17号染色体和Z染色体的BAC探针,以检验该物种是否存在微染色体与Z染色体之间不寻常的罗伯逊易位(最近在平嘴杜鹃(Crotophaga ani)中描述过)。我们的研究结果表明,P. cayana 的染色体在染色体间和染色体内发生了广泛的重组,包括第 20 对染色体上明显的染色体大小和异染色质多态性。此外,我们证实在 C. ani 中发现的 Z 自体罗伯逊易位也存在于 G. guira 中,而不是 P. cayana 中。这些发现表明,这种易位发生在 C. ani 与 G. guira 的分化之前,而在与 P. cayana 的分化之后。
{"title":"Understanding the chromosomal evolution in cuckoos (Aves, Cuculiformes): a journey through unusual rearrangements.","authors":"Rafael Kretschmer, Marcelo Santos de Souza, Ricardo José Gunski, Analía Del Valle Garnero, Thales Renato Ochotorena de Freitas, Edison Zefa, Gustavo Akira Toma, Marcelo de Bello Cioffi, Edivaldo Herculano Corrêa de Oliveira, Rebecca E O'Connor, Darren K Griffin","doi":"10.1139/gen-2023-0101","DOIUrl":"10.1139/gen-2023-0101","url":null,"abstract":"<p><p>The Cuculiformes are a family of over 150 species that live in a range of habitats, such as forests, savannas, and deserts. Here, bacterial artificial chromosome (BAC) probes (75 from chicken and 14 from zebra finch macrochromosomes 1-10 +ZW and for microchromosomes 11-28 (except 16)) were used to investigate chromosome homologies between chicken and the squirrel cuckoo (<i>Piaya cayana</i>). In addition, repetitive DNA probes were applied to characterize the chromosome organization and to explore the role of these sequences in the karyotype evolution of <i>P</i>. <i>cayana</i>. We also applied BAC probes for chicken chromosome 17 and Z to the guira cuckoo (<i>Guira guira</i>) to test whether this species has an unusual Robertsonian translocation between a microchromosome and the Z chromosome, recently described in the smooth-billed ani (<i>Crotophaga ani</i>). Our results revealed extensive chromosome reorganization with inter- and intrachromosomal rearrangements in <i>P</i>. <i>cayana</i>, including a conspicuous chromosome size and heterochromatin polymorphism on chromosome pair 20. Furthermore, we confirmed that the Z-autosome Robertsonian translocation found in <i>C</i>. <i>ani</i> is also found in <i>G</i>. <i>guira</i>, not <i>P</i>. <i>cayana</i>. These findings suggest that this translocation occurred prior to the divergence between <i>C</i>. <i>ani</i> and <i>G</i>. <i>guira</i>, but after the divergence with <i>P</i>. <i>cayana</i>.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"168-177"},"PeriodicalIF":3.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139722300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-03-01DOI: 10.1139/gen-2023-0041
Monir Poorrashidi, Megan Hitchcock, Jianping Xu
Campylobacter infections are a leading cause of bacterial diarrheal illness worldwide, with increasing reports of outbreaks in both developing and developed countries. Most studies investigating strain genotypes and epidemiology of Campylobacter jejuni examined on a local scale. Using the archived multilocus sequence typing data at seven loci, and associated strain metadata from the PubMLST database, here we investigated the spatial and temporal genetic structure of the global population of C. jejuni. Our analyses revealed evidence for clonal dispersals of multiple sequence types (STs) among countries and continents. However, despite the observed clonal dispersal and that most genetic variations were found within individual geographic subpopulations, both the non-clone-corrected and clone-corrected samples showed evidence of significant genetic differentiation among national and continental subpopulations, with non-clone-corrected samples showing greater differentiation than clone-corrected samples. Phylogenetic incompatibility analyses provided evidence for recombination within each continental subpopulation. However, linkage disequilibrium analyses rejected the hypothesis of random recombination across the samples. Temporally, multiple STs were found to persist across four decades and the five globally most common STs showed relatively stable frequencies over the last two decades. We discussed the implications of our results to food security, disease transmission, and public health management.
{"title":"Meta-analyses of the global multilocus genotypes of the human pathogen <i>Campylobacter jejuni</i>.","authors":"Monir Poorrashidi, Megan Hitchcock, Jianping Xu","doi":"10.1139/gen-2023-0041","DOIUrl":"10.1139/gen-2023-0041","url":null,"abstract":"<p><p><i>Campylobacter</i> infections are a leading cause of bacterial diarrheal illness worldwide, with increasing reports of outbreaks in both developing and developed countries. Most studies investigating strain genotypes and epidemiology of <i>Campylobacter jejuni</i> examined on a local scale. Using the archived multilocus sequence typing data at seven loci, and associated strain metadata from the PubMLST database, here we investigated the spatial and temporal genetic structure of the global population of <i>C. jejuni</i>. Our analyses revealed evidence for clonal dispersals of multiple sequence types (STs) among countries and continents. However, despite the observed clonal dispersal and that most genetic variations were found within individual geographic subpopulations, both the non-clone-corrected and clone-corrected samples showed evidence of significant genetic differentiation among national and continental subpopulations, with non-clone-corrected samples showing greater differentiation than clone-corrected samples. Phylogenetic incompatibility analyses provided evidence for recombination within each continental subpopulation. However, linkage disequilibrium analyses rejected the hypothesis of random recombination across the samples. Temporally, multiple STs were found to persist across four decades and the five globally most common STs showed relatively stable frequencies over the last two decades. We discussed the implications of our results to food security, disease transmission, and public health management.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"189-203"},"PeriodicalIF":2.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140012466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
For peanut, the lack of stable cytological markers is a barrier to tracking specific chromosomes, elucidating the genetic relationships between genomes and identifying chromosomal variations. Chromosome mapping using single-copy oligonucleotide (oligo) probe libraries has unique advantages for identifying homologous chromosomes and chromosomal rearrangements. In this study, we developed two whole-chromosome single-copy oligo probe libraries, LS-7A and LS-8A, based on the reference genome sequences of chromosomes 7A and 8A of Arachis duranensis. Fluorescence in situ hybridization (FISH) analysis confirmed that the libraries could specifically paint chromosomes 7 and 8. In addition, sequential FISH and electronic localization of LS-7A and LS-8A in A. duranensis (AA) and A. ipaensis (BB) showed that chromosomes 7A and 8A contained translocations and inversions relative to chromosomes 7B and 8B. Analysis of the chromosomes of wild Arachis species using LS-8A confirmed that this library could accurately and effectively identify A genome species. Finally, LS-7A and LS-8A were used to paint the chromosomes of interspecific hybrids and their progenies, which verified the authenticity of the interspecific hybrids and identified a disomic addition line. This study provides a model for developing specific oligo probes to identify the structural variations of other chromosomes in Arachis and demonstrates the practical utility of LS-7A and LS-8A.
{"title":"Development and application of whole-chromosome painting of chromosomes 7A and 8A of <i>Arachis duranensis</i> based on chromosome-specific single-copy oligonucleotides.","authors":"Chenyu Li, Liuyang Fu, Qian Wang, Hua Liu, Guoquan Chen, Feiyan Qi, Maoning Zhang, Yaoguang Jia, Xiaona Li, Bingyan Huang, Wenzhao Dong, Pei Du, Xinyou Zhang","doi":"10.1139/gen-2023-0116","DOIUrl":"10.1139/gen-2023-0116","url":null,"abstract":"<p><p>For peanut, the lack of stable cytological markers is a barrier to tracking specific chromosomes, elucidating the genetic relationships between genomes and identifying chromosomal variations. Chromosome mapping using single-copy oligonucleotide (oligo) probe libraries has unique advantages for identifying homologous chromosomes and chromosomal rearrangements. In this study, we developed two whole-chromosome single-copy oligo probe libraries, LS-7A and LS-8A, based on the reference genome sequences of chromosomes 7A and 8A of <i>Arachis duranensis</i>. Fluorescence in situ hybridization (FISH) analysis confirmed that the libraries could specifically paint chromosomes 7 and 8. In addition, sequential FISH and electronic localization of LS-7A and LS-8A in <i>A. duranensis (</i>AA) and <i>A. ipaensis</i> (BB) showed that chromosomes 7A and 8A contained translocations and inversions relative to chromosomes 7B and 8B. Analysis of the chromosomes of wild <i>Arachis</i> species using LS-8A confirmed that this library could accurately and effectively identify A genome species. Finally, LS-7A and LS-8A were used to paint the chromosomes of interspecific hybrids and their progenies, which verified the authenticity of the interspecific hybrids and identified a disomic addition line. This study provides a model for developing specific oligo probes to identify the structural variations of other chromosomes in <i>Arachis</i> and demonstrates the practical utility of LS-7A and LS-8A.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"178-188"},"PeriodicalIF":3.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139939909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-02-08DOI: 10.1139/gen-2023-0084
Emily L Wynn, A Springer Browne, Michael L Clawson
Mycoplasmopsis bovis is a worldwide economically important pathogen of cattle that can cause or indirectly contribute to bovine respiratory disease. M. bovis is also a primary etiological agent of respiratory disease in bison with high mortality rates. A major challenge in the development of an efficacious M. bovis vaccine is the design of antigens that contain both MHC-1 and MHC-2 T-cell epitopes, and that account for population level diversity within the species. Publicly available genomes and sequence read archive libraries of 381 M. bovis strains isolated from cattle (n = 202) and bison (n = 179) in North America were used to identify a core genome of 575 genes, including 38 that encode either known or predicted secreted or outer membrane proteins. The antigenic potentials of the proteins were characterized by the presence and strength of their T-cell epitopes, and their protein variant diversity at the population-level. The proteins had surprisingly low diversity and varying predictive levels of T-cell antigenicity. These results provide a reference for the selection or design of antigens for vaccine testing against strains infecting North American cattle and bison.
牛支原体是一种具有全球重要经济价值的牛病原体,可引起或间接引起牛呼吸道疾病。牛支原体也是野牛呼吸道疾病的主要病原体,死亡率很高。开发有效的牛海绵状芽孢杆菌疫苗的一大挑战是设计同时包含 MHC-1 和 MHC-2 T 细胞表位的抗原,并考虑到该物种内种群水平的多样性。我们利用从北美牛(202 头)和野牛(179 头)中分离出的 381 株牛海绵状芽孢杆菌的公开基因组和序列读取档案(SRA)文库,确定了包含 575 个基因的核心基因组,其中 38 个基因编码已知或预测的分泌蛋白或外膜蛋白。这些蛋白质的抗原潜能是通过其 T 细胞表位的存在和强度以及在群体水平上的蛋白质变异多样性来描述的。这些蛋白质的多样性出奇地低,T 细胞抗原性的预测水平也各不相同。这些结果为选择或设计针对北美牛和野牛感染菌株的疫苗测试抗原提供了参考。
{"title":"Diversity and antigenic potentials of <i>Mycoplasmopsis bovis</i> secreted and outer membrane proteins within a core genome of strains isolated from North American bison and cattle.","authors":"Emily L Wynn, A Springer Browne, Michael L Clawson","doi":"10.1139/gen-2023-0084","DOIUrl":"10.1139/gen-2023-0084","url":null,"abstract":"<p><p><i>Mycoplasmopsis bovis</i> is a worldwide economically important pathogen of cattle that can cause or indirectly contribute to bovine respiratory disease. <i>M. bovis</i> is also a primary etiological agent of respiratory disease in bison with high mortality rates. A major challenge in the development of an efficacious <i>M. bovis</i> vaccine is the design of antigens that contain both MHC-1 and MHC-2 T-cell epitopes, and that account for population level diversity within the species. Publicly available genomes and sequence read archive libraries of 381 <i>M. bovis</i> strains isolated from cattle (<i>n</i> = 202) and bison (<i>n</i> = 179) in North America were used to identify a core genome of 575 genes, including 38 that encode either known or predicted secreted or outer membrane proteins. The antigenic potentials of the proteins were characterized by the presence and strength of their T-cell epitopes, and their protein variant diversity at the population-level. The proteins had surprisingly low diversity and varying predictive levels of T-cell antigenicity. These results provide a reference for the selection or design of antigens for vaccine testing against strains infecting North American cattle and bison.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"204-209"},"PeriodicalIF":3.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139706516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-02-27DOI: 10.1139/gen-2023-0135
Yina Her, Danielle M Pascual, Zoe Goldstone-Joubert, Paul C Marcogliese
The last decade has been highlighted by the increased use of next-generation DNA sequencing technology to identify novel human disease genes. A critical downstream part of this process is assigning function to a candidate gene variant. Functional studies in Drosophila melanogaster, the common fruit fly, have made a prominent contribution in annotating variant impact in an in vivo system. The use of patient-derived knock-in flies or rescue-based, "humanization", approaches are novel and valuable strategies in variant testing but have been recently widely reviewed. An often-overlooked strategy for determining variant impact has been GAL4/upstream activation sequence-mediated tissue-defined overexpression in Drosophila. This mini-review will summarize the recent contribution of ectopic overexpression of human reference and variant cDNA in Drosophila to assess variant function, interpret the consequence of the variant, and in some cases infer biological mechanisms.
近十年来,越来越多地使用新一代 DNA 测序技术来鉴定新型人类疾病基因。这一过程的一个关键下游环节是为候选基因变异赋予功能。在黑腹果蝇(常见的果蝇)中进行的功能研究,为注释变异基因在体内系统中的影响做出了突出贡献。使用源自患者的基因敲入蝇或基于拯救的 "人源化 "方法是变异测试中既新颖又有价值的策略,但最近已被广泛评述。果蝇中 GAL4/UAS 介导的组织定义过表达是确定变异影响的一种经常被忽视的策略。本微型综述将总结果蝇异位过表达人类参考和变异 cDNA 在评估变异功能、解释变异后果以及在某些情况下推断生物机制方面的最新贡献。
{"title":"Variant functional assessment in <i>Drosophila</i> by overexpression: what can we learn?","authors":"Yina Her, Danielle M Pascual, Zoe Goldstone-Joubert, Paul C Marcogliese","doi":"10.1139/gen-2023-0135","DOIUrl":"10.1139/gen-2023-0135","url":null,"abstract":"<p><p>The last decade has been highlighted by the increased use of next-generation DNA sequencing technology to identify novel human disease genes. A critical downstream part of this process is assigning function to a candidate gene variant. Functional studies in <i>Drosophila melanogaster</i>, the common fruit fly, have made a prominent contribution in annotating variant impact in an in vivo system. The use of patient-derived knock-in flies or rescue-based, \"humanization\", approaches are novel and valuable strategies in variant testing but have been recently widely reviewed. An often-overlooked strategy for determining variant impact has been GAL4/upstream activation sequence-mediated tissue-defined overexpression in <i>Drosophila</i>. This mini-review will summarize the recent contribution of ectopic overexpression of human reference and variant cDNA in <i>Drosophila</i> to assess variant function, interpret the consequence of the variant, and in some cases infer biological mechanisms.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"158-167"},"PeriodicalIF":2.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139982802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}