首页 > 最新文献

Genome最新文献

英文 中文
Chromosomes in the African frog genus Tomopterna (Pyxicephalidae) and probing the origin of tetraploid Tomopterna tandyi. 非洲平尾蛙属(Pyxicephalidae)的染色体与四倍体Tomopterna tandyi起源的探讨。
IF 3.1 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-12-01 Epub Date: 2022-10-12 DOI: 10.1139/gen-2022-0053
James P Bogart, Abeda Dawood, François S Becker, Alan Channing

Speciation by polyploidization has been documented to have independently occurred in 12 families of anuran amphibians. Tomopterna tandyi was described as a South African allotetraploid species of sand frogs in the family Pyxicephalidae. Recent taxonomic revisions and new species descriptions in the genus present problems with respect to the evolution of this tetraploid species. Chromosomes, mitochondrial and nuclear gene sequences, isozymes, and male mating calls were examined for T. tandyi and for diploid species of Tomopterna. Mitochondrial sequences confirmed the diploid species, T. adiastola, to be the maternal ancestor that gave rise to the tetraploid about 5 mya. Nuclear sequences and isozymes reveal a complex reticulation of paternal ancestry that may be explained by occasional hybridization of T. tandyi with diploid species of Tompoterna at various times in sympatric populations. Interspecific diploid to tetraploid gene introgression is suspected to have also occurred in Australian and North American tetraploid species of frogs. Diploid to tetraploid introgression is facilitated through triploid hybrids that are more viable than diploid hybrids and produce unreduced triploid eggs.

根据文献记载,由多倍体形成的物种独立发生在12个无脊椎两栖动物科中。tandyi Tomopterna是南非沙蛙科异源四倍体种。最近对该属的分类修订和新种描述提出了有关该四倍体物种进化的问题。研究了tandyi和Tomopterna二倍体种的染色体、线粒体和核基因序列、同工酶和雄性交配叫声。线粒体序列证实了二倍体物种,T. adiastola,是大约5000万年前产生四倍体的母系祖先。核序列和同工酶揭示了一个复杂的父系祖先网络,这可以解释为在同域种群中,T. tandyi与Tompoterna的二倍体物种在不同时期的偶尔杂交。种间二倍体到四倍体的基因渗入也被怀疑发生在澳大利亚和北美的四倍体蛙种中。二倍体向四倍体的渗入是通过三倍体杂交种促进的,三倍体杂交种比二倍体杂交种更有活力,产生未还原的三倍体卵。
{"title":"Chromosomes in the African frog genus <i>Tomopterna</i> (Pyxicephalidae) and probing the origin of tetraploid <i>Tomopterna tandyi</i>.","authors":"James P Bogart,&nbsp;Abeda Dawood,&nbsp;François S Becker,&nbsp;Alan Channing","doi":"10.1139/gen-2022-0053","DOIUrl":"https://doi.org/10.1139/gen-2022-0053","url":null,"abstract":"<p><p>Speciation by polyploidization has been documented to have independently occurred in 12 families of anuran amphibians. <i>Tomopterna tandyi</i> was described as a South African allotetraploid species of sand frogs in the family Pyxicephalidae. Recent taxonomic revisions and new species descriptions in the genus present problems with respect to the evolution of this tetraploid species. Chromosomes, mitochondrial and nuclear gene sequences, isozymes, and male mating calls were examined for <i>T. tandyi</i> and for diploid species of <i>Tomopterna.</i> Mitochondrial sequences confirmed the diploid species, <i>T. adiastola,</i> to be the maternal ancestor that gave rise to the tetraploid about 5 mya. Nuclear sequences and isozymes reveal a complex reticulation of paternal ancestry that may be explained by occasional hybridization of <i>T. tandyi</i> with diploid species of <i>Tompoterna</i> at various times in sympatric populations. Interspecific diploid to tetraploid gene introgression is suspected to have also occurred in Australian and North American tetraploid species of frogs. Diploid to tetraploid introgression is facilitated through triploid hybrids that are more viable than diploid hybrids and produce unreduced triploid eggs.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":"65 12","pages":"585-604"},"PeriodicalIF":3.1,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33501701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Autophagy in cell fate decisions: knowledge gained from Drosophila. 细胞命运决定中的自噬:从果蝇那里获得的知识。
IF 3.1 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-12-01 Epub Date: 2022-10-14 DOI: 10.1139/gen-2022-0069
Camille Lacarrière-Keïta, Sonya Nassari, Steve Jean

Autophagy is an important process that maintains adult tissue homeostasis and functions by protecting cells in autonomous and non-cell-autonomous ways. By degrading toxic components or proteins involved in cell signaling pathways, autophagy preserves the balance among stem cells, progenitors, and differentiated cells in various tissues. In this minireview, we discuss recent studies performed in Drosophila that highlight new roles of autophagy in adult cell fate decisions, including quiescence, proliferation, differentiation, and death.

自噬是维持成体组织稳态和功能的重要过程,通过自主和非细胞自主的方式保护细胞。通过降解参与细胞信号通路的有毒成分或蛋白质,自噬保持了各种组织中干细胞、祖细胞和分化细胞之间的平衡。在这篇综述中,我们讨论了最近在果蝇身上进行的研究,这些研究强调了自噬在成年细胞命运决定中的新作用,包括静止、增殖、分化和死亡。
{"title":"Autophagy in cell fate decisions: knowledge gained from <i>Drosophila</i>.","authors":"Camille Lacarrière-Keïta,&nbsp;Sonya Nassari,&nbsp;Steve Jean","doi":"10.1139/gen-2022-0069","DOIUrl":"https://doi.org/10.1139/gen-2022-0069","url":null,"abstract":"<p><p>Autophagy is an important process that maintains adult tissue homeostasis and functions by protecting cells in autonomous and non-cell-autonomous ways. By degrading toxic components or proteins involved in cell signaling pathways, autophagy preserves the balance among stem cells, progenitors, and differentiated cells in various tissues. In this minireview, we discuss recent studies performed in <i>Drosophila</i> that highlight new roles of autophagy in adult cell fate decisions, including quiescence, proliferation, differentiation, and death.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":"65 12","pages":"573-584"},"PeriodicalIF":3.1,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33511157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
miR-181a-5p is a potential candidate epigenetic biomarker in multiple sclerosis. miR-181a-5p是多发性硬化症的潜在候选表观遗传生物标志物。
IF 3.1 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-11-01 Epub Date: 2022-09-14 DOI: 10.1139/gen-2022-0040
Tuba Gökdoğan Edgünlü, Şenay Görücü Yılmaz, Ufuk Emre, Bahar Taşdelen, Oktay Kuru, Gülnihal Kutlu, Mehmet Emin Erdal

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by demyelination and axonal degeneration. Abnormal expression of microRNAs (miRNAs) plays an important role in MS pathology. In this cohort study, differential expression of the four miRNAs (hsa-miR-155-5phsa-miR-9-5phsa-miR-181a-5p, and hsa-miR-125b-5p) was investigated in 69 individuals, including 39 MS patients (relapsing-remitting MS (RRMS), n = 27; secondary progressive MS (SPMS), n = 12) and 30 healthy controls. In silico analyses revealed possible genes and pathways specific to miRNAs. Peripheral blood miRNA expressions were detected by quantitative real-time PCR (qPCR). hsa-miR-181a-5p was downregulated and associated with increased MS risk (P = 0.012). The other three miRNAs were upregulated and not associated with MS (P < 0.05). The area under the curve (AUC) is 0.779. In silico analyses showed that hsa-miR-181a-5p may participate in MS pathology by targeting MAP2K1CREB1ATXN1, and ATXN3 genes in inflammation and neurodegeneration pathways. The circulatory hsa-miR-181a-5p can regulate target genes, reversing the mechanisms involved in MS pathologies such as protein uptake and processing, cell proliferation and survival, inflammation, and neurodegeneration. Thus, this miRNA could be used as an epigenomic-guided diagnostic tool and for therapeutic purpose.

多发性硬化(MS)是一种以脱髓鞘和轴突变性为特征的中枢神经系统(CNS)慢性炎症性疾病。microRNAs (miRNAs)的异常表达在MS病理中起着重要作用。在这项队列研究中,研究人员在69名个体中研究了四种mirna (hsa-miR-155-5p、hsa-miR-9-5p、hsa-miR-181a-5p和hsa-miR-125b-5p)的差异表达,其中包括39名MS患者(复发-缓解型MS (RRMS), n = 27;继发性进展性MS (SPMS, n = 12)和30名健康对照。计算机分析揭示了可能的mirna特异性基因和途径。采用实时荧光定量PCR (qPCR)检测外周血miRNA的表达。hsa-miR-181a-5p下调并与MS风险增加相关(P = 0.012)。其他三种mirna上调,与MS无关(P hsa-miR-181a-5p可能通过靶向炎症和神经退行性通路中的MAP2K1、CREB1、ATXN1和ATXN3基因参与MS病理。循环hsa-miR-181a-5p可以调节靶基因,逆转MS病理如蛋白质摄取和加工、细胞增殖和存活、炎症和神经变性等机制。因此,该miRNA可作为表观基因组指导的诊断工具和治疗目的。
{"title":"miR-181a-5p is a potential candidate epigenetic biomarker in multiple sclerosis.","authors":"Tuba Gökdoğan Edgünlü,&nbsp;Şenay Görücü Yılmaz,&nbsp;Ufuk Emre,&nbsp;Bahar Taşdelen,&nbsp;Oktay Kuru,&nbsp;Gülnihal Kutlu,&nbsp;Mehmet Emin Erdal","doi":"10.1139/gen-2022-0040","DOIUrl":"https://doi.org/10.1139/gen-2022-0040","url":null,"abstract":"<p><p>Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by demyelination and axonal degeneration. Abnormal expression of microRNAs (miRNAs) plays an important role in MS pathology. In this cohort study, differential expression of the four miRNAs (<i>hsa-miR-155-5p</i>, <i>hsa-miR-9-5p</i>, <i>hsa-miR-181a-5p</i>, and <i>hsa-miR-125b-5p)</i> was investigated in 69 individuals, including 39 MS patients (relapsing-remitting MS (RRMS), <i>n</i> = 27; secondary progressive MS (SPMS), <i>n</i> = 12) and 30 healthy controls. In silico analyses revealed possible genes and pathways specific to miRNAs. Peripheral blood miRNA expressions were detected by quantitative real-time PCR (qPCR). <i>hsa-miR-181a-5p</i> was downregulated and associated with increased MS risk (<i>P</i> = 0.012). The other three miRNAs were upregulated and not associated with MS (<i>P</i> < 0.05). The area under the curve (AUC) is 0.779. In silico analyses showed that <i>hsa-miR-181a-5p</i> may participate in MS pathology by targeting <i>MAP2K1</i>, <i>CREB1</i>, <i>ATXN1</i>, and <i>ATXN3</i> genes in inflammation and neurodegeneration pathways. The circulatory <i>hsa-miR-181a-5p</i> can regulate target genes, reversing the mechanisms involved in MS pathologies such as protein uptake and processing, cell proliferation and survival, inflammation, and neurodegeneration. Thus, this miRNA could be used as an epigenomic-guided diagnostic tool and for therapeutic purpose.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":"65 11","pages":"547-561"},"PeriodicalIF":3.1,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40356582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Using telomeric length measurements and methylation to understand the karyotype diversification of Ctenomys minutus (a small fossorial mammal). 使用端粒长度测量和甲基化来了解分钟栉水母(一种小型化石哺乳动物)的核型多样化。
IF 3.1 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-11-01 Epub Date: 2022-08-31 DOI: 10.1139/gen-2022-0018
C A Matzenbacher, J Da Silva, A L H Garcia, R Kretschmer, M Cappetta, E H C de Oliveira, T R O de Freitas

The genus Ctenomys has been widely used in karyotype evolution studies due to the variation in their diploid numbers. Ctenomys minutus is characterized by intraspecific variation in diploid number (2n = 42, 46, 48, and 50), which makes it an interesting model to investigate genomic rearrangements mechanisms that could lead to different cytotypes in this species. Thereupon, it has been already shown that DNA methylation may participate in chromosome structure. Therefore, we aimed to investigate whether telomeres and global DNA methylation had a role in the genome rearrangements that led to this variation in C. minutus. We also realized an analysis for the presence of intrachromosomal telomeric repeats (ITRs) by fluorescence in situ hybridization. Our study demonstrated that neither telomere length nor DNA methylation had significant differences among the cytotypes. However, if only females were considered, there were significant differences for telomere length and methylation. Young individuals, regardless of their cytotypes, had the most methylated DNA. Regarding the ITRs, we found a signal on chromosome 1 in 2n = 50b. No evidence was found that telomere length or methylation could have influenced chromosomal rearrangements, although new cytotypes seem to have emerged within the distribution of parental cytotypes by the accumulation of different chromosomal rearrangements.

由于其二倍体数量的差异,在核型进化研究中得到了广泛的应用。Ctenomys minuus的二倍体数量在种内发生变异(2n = 42、46、48和50),这使得它成为研究该物种中可能导致不同细胞型的基因组重排机制的一个有趣模型。因此,已经证明DNA甲基化可能参与染色体结构。因此,我们的目的是研究端粒和整体DNA甲基化是否在导致C. minuus这种变异的基因组重排中起作用。我们还实现了荧光原位杂交分析染色体内端粒重复序列(ITRs)的存在。我们的研究表明,端粒长度和DNA甲基化在细胞型之间都没有显著差异。然而,如果只考虑女性,端粒长度和甲基化有显著差异。无论细胞类型如何,年轻个体的DNA甲基化程度最高。关于itr,我们在2n = 50b的1号染色体上发现了一个信号。没有证据表明端粒长度或甲基化可能影响染色体重排,尽管新的细胞型似乎在亲本细胞型分布中通过不同染色体重排的积累而出现。
{"title":"Using telomeric length measurements and methylation to understand the karyotype diversification of <i>Ctenomys minutus</i> (a small fossorial mammal).","authors":"C A Matzenbacher,&nbsp;J Da Silva,&nbsp;A L H Garcia,&nbsp;R Kretschmer,&nbsp;M Cappetta,&nbsp;E H C de Oliveira,&nbsp;T R O de Freitas","doi":"10.1139/gen-2022-0018","DOIUrl":"https://doi.org/10.1139/gen-2022-0018","url":null,"abstract":"<p><p>The genus <i>Ctenomys</i> has been widely used in karyotype evolution studies due to the variation in their diploid numbers. <i>Ctenomys minutus</i> is characterized by intraspecific variation in diploid number (2<i>n</i> = 42, 46, 48, and 50), which makes it an interesting model to investigate genomic rearrangements mechanisms that could lead to different cytotypes in this species. Thereupon, it has been already shown that DNA methylation may participate in chromosome structure. Therefore, we aimed to investigate whether telomeres and global DNA methylation had a role in the genome rearrangements that led to this variation in <i>C. minutus</i>. We also realized an analysis for the presence of intrachromosomal telomeric repeats (ITRs) by fluorescence in situ hybridization. Our study demonstrated that neither telomere length nor DNA methylation had significant differences among the cytotypes. However, if only females were considered, there were significant differences for telomere length and methylation. Young individuals, regardless of their cytotypes, had the most methylated DNA. Regarding the ITRs, we found a signal on chromosome 1 in 2<i>n</i> = 50b. No evidence was found that telomere length or methylation could have influenced chromosomal rearrangements, although new cytotypes seem to have emerged within the distribution of parental cytotypes by the accumulation of different chromosomal rearrangements.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":"65 11","pages":"563-572"},"PeriodicalIF":3.1,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40334923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of the 12-oxophytoeienoic acid reductase (OPR) gene family in pepper (Capsicum annuum L.) and functional characterization of CaOPR6 in pepper fruit development and stress response. 辣椒(Capsicum annuum L.) 12-氧植物烯酸还原酶(OPR)基因家族的鉴定及CaOPR6在辣椒果实发育和胁迫响应中的功能表征
IF 3.1 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-11-01 Epub Date: 2022-08-09 DOI: 10.1139/gen-2022-0037
Wen-Feng Nie, Yue Chen, Junjie Tao, Yu Li, Jianping Liu, Yong Zhou, Youxin Yang

The 12-oxophytoeienoic acid reductase (OPR) is a kind of enzyme in the octadecanoid biosynthesis pathway that determines the biosynthesis of jasmonic acid. Although the roles of OPRs have been extensively studied in several crop plants, little is known about the biological functions of OPR-encoding genes in Capsicum annuum plants. In this study, seven OPR family genes (CaOPR1-7) were identified from the C. annuum genome. The physical and chemical properties of CaOPR1-7 were further analyzed, including gene expression patterns, promoter elements, and chromosomal locations. The results showed that the seven CaOPR homologues could be divided into two subgroups, and CaOPR6 was highly similar to AtOPR3 in Arabidopsis. The expression of CaOPR6 was significantly induced by various stresses such as cold, salt, and pathogen infection, indicating that CaOPR6 plays important roles in response to abiotic and biotic stresses. Overall, these findings improve the understanding of the biological functions of CaOPR6 in the development of pepper fruit and stress response of pepper plants, and facilitate further studies on the molecular biology of OPR proteins in Solanaceae vegetables.

12-氧植物烯酸还原酶(OPR)是类十八烷生物合成途径中决定茉莉酸生物合成的一种酶。虽然opr在几种作物中的作用已被广泛研究,但对opr编码基因在辣椒植物中的生物学功能知之甚少。本研究从玉米基因组中鉴定出7个OPR家族基因(CaOPR1-7)。进一步分析CaOPR1-7的理化性质,包括基因表达模式、启动子元件和染色体位置。结果表明,7个CaOPR同源物可分为两个亚群,CaOPR6在拟南芥中与AtOPR3高度相似。CaOPR6的表达在低温、盐胁迫、病原菌感染等多种胁迫下均受到显著诱导,表明CaOPR6在应对非生物胁迫和生物胁迫中发挥重要作用。总的来说,这些发现提高了对CaOPR6在辣椒果实发育和辣椒植物胁迫反应中的生物学功能的认识,并为进一步研究茄科蔬菜中OPR蛋白的分子生物学研究提供了基础。
{"title":"Identification of the 12-oxophytoeienoic acid reductase (<i>OPR</i>) gene family in pepper (<i>Capsicum annuum</i> L.) and functional characterization of <i>CaOPR6</i> in pepper fruit development and stress response.","authors":"Wen-Feng Nie,&nbsp;Yue Chen,&nbsp;Junjie Tao,&nbsp;Yu Li,&nbsp;Jianping Liu,&nbsp;Yong Zhou,&nbsp;Youxin Yang","doi":"10.1139/gen-2022-0037","DOIUrl":"https://doi.org/10.1139/gen-2022-0037","url":null,"abstract":"<p><p>The 12-oxophytoeienoic acid reductase (OPR) is a kind of enzyme in the octadecanoid biosynthesis pathway that determines the biosynthesis of jasmonic acid. Although the roles of OPRs have been extensively studied in several crop plants, little is known about the biological functions of OPR-encoding genes in <i>Capsicum annuum</i> plants. In this study, seven OPR family genes (<i>CaOPR1-7</i>) were identified from the <i>C. annuum</i> genome. The physical and chemical properties of <i>CaOPR1-7</i> were further analyzed, including gene expression patterns, promoter elements, and chromosomal locations. The results showed that the seven CaOPR homologues could be divided into two subgroups, and CaOPR6 was highly similar to AtOPR3 in <i>Arabidopsis</i>. The expression of <i>CaOPR6</i> was significantly induced by various stresses such as cold, salt, and pathogen infection, indicating that <i>CaOPR6</i> plays important roles in response to abiotic and biotic stresses. Overall, these findings improve the understanding of the biological functions of <i>CaOPR6</i> in the development of pepper fruit and stress response of pepper plants, and facilitate further studies on the molecular biology of OPR proteins in <i>Solanaceae</i> vegetables.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":"65 11","pages":"537-545"},"PeriodicalIF":3.1,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40693140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zebrafish optineurin: genomic organization and transcription regulation. 斑马鱼优神经蛋白:基因组组织和转录调控。
IF 3.1 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-10-01 Epub Date: 2022-08-29 DOI: 10.1139/gen-2022-0019
Iris A L Silva, Débora Varela, M Leonor Cancela, Natércia Conceição

Optineurin (OPTN) is involved in a variety of mechanisms, such as autophagy, vesicle trafficking, and nuclear factor kappa-B (NF-κB) signaling. Mutations in the OPTN gene have been associated with different pathologies, including glaucoma, amyotrophic lateral sclerosis, and Paget's disease of bone. Since the relationship between fish and mammalian OPTN is not well understood, the objective of the present work was to characterize the zebrafish optn gene and protein structure and to investigate its transcriptional regulation. Through a comparative in silico analysis, we observed that zebrafish optn presents genomic features similar to those of its human counterpart, including its neighboring genes and structure. A comparison of OPTN protein from different species revealed a high degree of conservation in its functional domains and three-dimensional structure. Furthermore, our in vitro transient-reporter analysis identified a functional promoter in the upstream region of the zebrafish optn gene, along with a region important for its transcription regulation. Site-directed mutagenesis revealed that the NF-κB motif is responsible for the activation of this region. In conclusion, with this study, we characterize zebrafish optn and our results indicate that zebrafish can be considered as an alternative model to study OPTN's biological role in bone-related diseases.

OPTN参与多种机制,如自噬、囊泡运输和核因子κ b (NF-κB)信号传导。OPTN基因的突变与不同的病理有关,包括青光眼、肌萎缩性侧索硬化症和骨佩吉特病。由于鱼类和哺乳动物OPTN之间的关系尚不清楚,本研究的目的是表征斑马鱼的OPTN基因和蛋白结构,并研究其转录调控。通过对比分析,我们观察到斑马鱼的optn具有与人类相似的基因组特征,包括其邻近基因和结构。不同物种的OPTN蛋白在功能域和三维结构上具有高度的保守性。此外,我们的体外瞬时报告分析在斑马鱼optn基因的上游区域发现了一个功能性启动子,以及一个对其转录调控重要的区域。定点突变显示NF-κB基序负责该区域的激活。总之,通过本研究,我们对斑马鱼的optn进行了表征,我们的结果表明斑马鱼可以被视为研究optn在骨相关疾病中的生物学作用的替代模型。
{"title":"Zebrafish optineurin: genomic organization and transcription regulation.","authors":"Iris A L Silva,&nbsp;Débora Varela,&nbsp;M Leonor Cancela,&nbsp;Natércia Conceição","doi":"10.1139/gen-2022-0019","DOIUrl":"https://doi.org/10.1139/gen-2022-0019","url":null,"abstract":"<p><p>Optineurin (OPTN) is involved in a variety of mechanisms, such as autophagy, vesicle trafficking, and nuclear factor kappa-B (NF-κB) signaling. Mutations in the <i>OPTN</i> gene have been associated with different pathologies, including glaucoma, amyotrophic lateral sclerosis, and Paget's disease of bone. Since the relationship between fish and mammalian OPTN is not well understood, the objective of the present work was to characterize the zebrafish <i>optn</i> gene and protein structure and to investigate its transcriptional regulation. Through a comparative in silico analysis, we observed that zebrafish <i>optn</i> presents genomic features similar to those of its human counterpart, including its neighboring genes and structure. A comparison of OPTN protein from different species revealed a high degree of conservation in its functional domains and three-dimensional structure. Furthermore, our in vitro transient-reporter analysis identified a functional promoter in the upstream region of the zebrafish <i>optn</i> gene, along with a region important for its transcription regulation. Site-directed mutagenesis revealed that the NF-κB motif is responsible for the activation of this region. In conclusion, with this study, we characterize zebrafish <i>optn</i> and our results indicate that zebrafish can be considered as an alternative model to study OPTN's biological role in bone-related diseases.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":"65 10","pages":"513-523"},"PeriodicalIF":3.1,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33445757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Marsupial satellite DNA as faithful reflections of long-terminal repeat retroelement structure. 有袋动物卫星DNA作为长端重复逆元结构的忠实反射。
IF 3.1 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-09-01 Epub Date: 2022-08-05 DOI: 10.1139/gen-2022-0039
Sakura Hayashi, Yusuke Honda, Etsuko Kanesaki, Akihiko Koga

Long terminal repeat (LTR) retroelements, including endogenous retroviruses, are one of the origins of satellite DNAs. However, the vast majority of satellite DNAs originating from LTR retroelements consists of parts of the element. In addition, they frequently contain sequences unrelated to that element. Here we report a novel marsupial satellite DNA (named walbRep) that contains, and consists solely of, the entire sequence of an LTR retroelement (the walb element). As is common with LTR retroelements, walb copies exhibit length variation. We focused on the abundance of copies of a specific length (2.7 kb) in the genome of the red-necked wallaby. Cloning and analyses of long genomic DNA fragments revealed a satellite DNA in which the LTR sequence (0.4 kb) and the sequence of the internal region of a nonautonomous walb copy (2.3 kb) were repeated alternately. The junctions between these two components exhibited the same end-to-end arrangements as those in the walb element. This satellite organization could be accounted for by a simple formation model that includes slippage during chromosome pairing followed by homologous recombination but does not invoke any other types of rearrangements. We discuss the possible reasons why satellite DNAs having such structures are rarely found in mammals.

包括内源性逆转录病毒在内的长末端重复(LTR)逆转录因子是卫星dna的起源之一。然而,绝大多数来自LTR逆转录元件的卫星dna由该元件的部分组成。此外,它们经常包含与该元素无关的序列。在这里,我们报告了一种新的有袋动物卫星DNA(命名为walbRep),它包含并仅由LTR逆行元件(walb元件)的整个序列组成。与LTR逆转录元件一样,walb拷贝也表现出长度变化。我们关注的是红颈小袋鼠基因组中特定长度(2.7 kb)拷贝的丰度。对基因组长片段DNA的克隆和分析发现,在卫星DNA中,LTR序列(0.4 kb)和一个非自主walb拷贝的内部区域序列(2.3 kb)交替重复。这两个组成部分之间的连接表现出与walb元素相同的端到端排列。这种卫星组织可以用一个简单的形成模型来解释,该模型包括染色体配对期间的滑移,随后是同源重组,但不调用任何其他类型的重排。我们讨论了具有这种结构的卫星dna很少在哺乳动物中发现的可能原因。
{"title":"Marsupial satellite DNA as faithful reflections of long-terminal repeat retroelement structure.","authors":"Sakura Hayashi,&nbsp;Yusuke Honda,&nbsp;Etsuko Kanesaki,&nbsp;Akihiko Koga","doi":"10.1139/gen-2022-0039","DOIUrl":"https://doi.org/10.1139/gen-2022-0039","url":null,"abstract":"<p><p>Long terminal repeat (LTR) retroelements, including endogenous retroviruses, are one of the origins of satellite DNAs. However, the vast majority of satellite DNAs originating from LTR retroelements consists of parts of the element. In addition, they frequently contain sequences unrelated to that element. Here we report a novel marsupial satellite DNA (named walbRep) that contains, and consists solely of, the entire sequence of an LTR retroelement (the <i>walb</i> element). As is common with LTR retroelements, <i>walb</i> copies exhibit length variation. We focused on the abundance of copies of a specific length (2.7 kb) in the genome of the red-necked wallaby. Cloning and analyses of long genomic DNA fragments revealed a satellite DNA in which the LTR sequence (0.4 kb) and the sequence of the internal region of a nonautonomous <i>walb</i> copy (2.3 kb) were repeated alternately. The junctions between these two components exhibited the same end-to-end arrangements as those in the <i>walb</i> element. This satellite organization could be accounted for by a simple formation model that includes slippage during chromosome pairing followed by homologous recombination but does not invoke any other types of rearrangements. We discuss the possible reasons why satellite DNAs having such structures are rarely found in mammals.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":"65 9","pages":"469-478"},"PeriodicalIF":3.1,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40584689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Enriched tandem repeats in chromosomal fusion points of Rineloricaria latirostris (Boulenger, 1900) (Siluriformes: Loricariidae). 在染色体融合点上富集串联重复序列(Boulenger, 1900)(蛭形目:蛭形螨科)。
IF 3.1 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-09-01 Epub Date: 2022-08-08 DOI: 10.1139/gen-2022-0043
Larissa Glugoski, Viviane Nogaroto, Geize Aparecida Deon, Matheus Azambuja, Orlando Moreira-Filho, Marcelo Ricardo Vicari

Cytogenetic data showed the enrichment of repetitive DNAs in chromosomal rearrangement points between closely related species in armored catfishes. Still, few studies integrated cytogenetic and genomic data aiming to identify their prone-to-break DNA sites. Here, we aimed to obtain the repetitive fraction in Rineloricaria latirostris to recognize the microsatellite and homopolymers flanking the regions previously described as chromosomal fusion points. The results indicated that repetitive DNAs in R. latirostris are predominantly DNA transposons, and considering the microsatellite and homopolymers, A/T-rich expansions were the most abundant. The in situ localization demonstrated the A/T-rich repetitive sequences were scattered on the chromosomes, while A/G-rich microsatellite units were accumulated in some regions. The DNA transposon hAT, the 5S rDNA, and 45S rDNA (previously identified in Robertsonian fusion points in R. latirostris) were clusterized with some microsatellites, especially (CA)n, (GA)n, and poly-A, which were also enriched in regions of chromosomal fusions. Our findings demonstrated that repetitive sequences such as rDNAs, hAT transposons, and microsatellite units flank probable evolutionary breakpoint regions in R. latirostris. However, due to the sequence unit homologies in different chromosomal sites, these repeat DNAs only may facilitate chromosome fusion events in R. latirostris rather than working as a double-strand breakpoint site.

细胞遗传学数据显示,在亲缘关系密切的甲鱼中,重复dna在染色体重排点上富集。然而,很少有研究将细胞遗传学和基因组数据结合起来,旨在确定它们的前断裂DNA位点。在这里,我们的目的是获得重复分数,以识别微卫星和同聚物两侧的区域以前被描述为染色体融合点。结果表明,红豆豆的重复DNA以DNA转座子为主,考虑到微卫星和均聚物,A/ t富集扩增最为丰富。原位定位结果表明,富含A/ t的重复序列分散在染色体上,而富含A/ g的微卫星单元在某些区域积累。DNA转座子hAT、5S rDNA和45S rDNA(先前在r.l latirostris的Robertsonian融合点中发现)聚集了一些微卫星,特别是(CA)n、(GA)n和poly-A,这些微卫星也富集在染色体融合区域。我们的研究结果表明,rnas、hAT转座子和微卫星单元等重复序列位于可能的进化断点区域的侧面。然而,由于不同染色体位点的序列单位同源性,这些重复dna只可能促进染色体融合事件,而不是作为双链断点位点。
{"title":"Enriched tandem repeats in chromosomal fusion points of <i>Rineloricaria latirostris</i> (Boulenger, 1900) (Siluriformes: Loricariidae).","authors":"Larissa Glugoski,&nbsp;Viviane Nogaroto,&nbsp;Geize Aparecida Deon,&nbsp;Matheus Azambuja,&nbsp;Orlando Moreira-Filho,&nbsp;Marcelo Ricardo Vicari","doi":"10.1139/gen-2022-0043","DOIUrl":"https://doi.org/10.1139/gen-2022-0043","url":null,"abstract":"<p><p>Cytogenetic data showed the enrichment of repetitive DNAs in chromosomal rearrangement points between closely related species in armored catfishes. Still, few studies integrated cytogenetic and genomic data aiming to identify their prone-to-break DNA sites. Here, we aimed to obtain the repetitive fraction in <i>Rineloricaria latirostris</i> to recognize the microsatellite and homopolymers flanking the regions previously described as chromosomal fusion points. The results indicated that repetitive DNAs in <i>R. latirostris</i> are predominantly DNA transposons, and considering the microsatellite and homopolymers, A/T-rich expansions were the most abundant. The in situ localization demonstrated the A/T-rich repetitive sequences were scattered on the chromosomes, while A/G-rich microsatellite units were accumulated in some regions. The DNA transposon <i>hAT</i>, the 5S rDNA, and 45S rDNA (previously identified in Robertsonian fusion points in <i>R. latirostris</i>) were clusterized with some microsatellites, especially (CA)<i><sub>n</sub></i>, (GA)<i><sub>n</sub></i>, and poly-A, which were also enriched in regions of chromosomal fusions. Our findings demonstrated that repetitive sequences such as rDNAs, <i>hAT</i> transposons, and microsatellite units flank probable evolutionary breakpoint regions in <i>R. latirostris</i>. However, due to the sequence unit homologies in different chromosomal sites, these repeat DNAs only may facilitate chromosome fusion events in <i>R. latirostris</i> rather than working as a double-strand breakpoint site.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":"65 9","pages":"479-489"},"PeriodicalIF":3.1,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40595209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Analysis and evaluation of different sequencing depths from 5 to 20 million reads in shotgun metagenomic sequencing, with optimal minimum depth being recommended. 霰弹枪宏基因组测序中5 ~ 2000万reads不同测序深度的分析与评价,推荐最佳最小深度。
IF 3.1 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-09-01 Epub Date: 2022-09-06 DOI: 10.1139/gen-2021-0120
Jin Liu, Xiaokai Wang, Hailiang Xie, Qinghua Zhong, Yan Xia

Our study was to analyze and evaluate the impact of different shotgun metagenomic sequencing depths from 5 to 20 million in metagenome-wide association studies (MWASs), and to determine the optimal minimum sequencing depth. We included a set of 200 previously published gut microbial shotgun metagenomic sequencing data on obesity (100 obese vs. 100 non-obese). The reads with original sequencing depths >20 million were downsized into seven experimental groups with depths from 5 to 20 million (interval 2.5 million). Using both integrated gene cluster (IGC) and metagenomic phylogenetic analysis 2 (MetaPhlAn2), we obtained and analyzed the read matching rates, gene count, species richness and abundance, diversity, and clinical biomarkers of the experimental groups with the original depth as the control group. An additional set of 100 published data from a colorectal cancer (CRC) study was included for validation (50 CRC vs. 50 CRC-free). Our results showed that more genes and species were identified following the increase in sequencing depths. When it reached 15 million or higher, the species richness became more stable with changing rate of 5% or lower, and the species composition more stable with ICC intraclass correlation coefficient (ICC) higher than 0.75. In terms of species abundance, 81% and 97% of species showed significant differences in IGC and MetaPhlAn2 among all groups with p < 0.05. Diversity showed significant differences across all groups, with decreasing differences of diversity between the experimental and the control groups following the increase in sequencing depth. The area under a receiver operating characteristic curve, AUC, of the obesity classifier for running the obesity testing samples showed an increasing trend following the increase in sequencing depth (τ = 0.29). The validation results were consistent with the above results. Our study found that the higher the sequencing depth is, the more the microbial information in structure and composition it provides. We also found that when sequencing depth was 15 million or higher, we obtained more stable species compositions and disease classifiers with good performance. Therefore, we recommend 15 million as the optimal minimum sequencing depth for an MWAS.

本研究旨在分析和评估不同的散弹枪宏基因组测序深度(500 - 2000万)对宏基因组关联研究(MWASs)的影响,并确定最佳最小测序深度。我们纳入了一组200个先前发表的关于肥胖的肠道微生物散弹枪宏基因组测序数据(100个肥胖与100个非肥胖)。原始测序深度> 2000万的reads被缩减为7个实验组,深度从500万到2000万(间隔250万)。利用整合基因聚类(IGC)和宏基因组系统发育分析2 (MetaPhlAn2),以原始深度为对照组,获得并分析了实验组的reads匹配率、基因数量、物种丰富度和丰度、多样性和临床生物标志物。另外一组来自结直肠癌(CRC)研究的100个已发表数据被纳入验证(50个结直肠癌vs 50个无结直肠癌)。结果表明,随着测序深度的增加,可以识别出更多的基因和物种。当物种丰富度达到1500万或更高时,物种丰富度更加稳定,变化率为5%或更低,物种组成更加稳定,ICC类内相关系数(ICC)大于0.75。在物种丰度方面,81%和97%的物种在IGC和MetaPhlAn2上存在显著差异(p τ = 0.29)。验证结果与上述结果一致。我们的研究发现,测序深度越高,提供的微生物结构和组成信息越多。我们还发现,当测序深度为1500万或更高时,我们获得了更稳定的物种组成和性能良好的疾病分类器。因此,我们推荐1500万作为MWAS的最佳最小测序深度。
{"title":"Analysis and evaluation of different sequencing depths from 5 to 20 million reads in shotgun metagenomic sequencing, with optimal minimum depth being recommended.","authors":"Jin Liu,&nbsp;Xiaokai Wang,&nbsp;Hailiang Xie,&nbsp;Qinghua Zhong,&nbsp;Yan Xia","doi":"10.1139/gen-2021-0120","DOIUrl":"https://doi.org/10.1139/gen-2021-0120","url":null,"abstract":"<p><p>Our study was to analyze and evaluate the impact of different shotgun metagenomic sequencing depths from 5 to 20 million in metagenome-wide association studies (MWASs), and to determine the optimal minimum sequencing depth. We included a set of 200 previously published gut microbial shotgun metagenomic sequencing data on obesity (100 obese vs. 100 non-obese). The reads with original sequencing depths >20 million were downsized into seven experimental groups with depths from 5 to 20 million (interval 2.5 million). Using both integrated gene cluster (IGC) and metagenomic phylogenetic analysis 2 (MetaPhlAn2), we obtained and analyzed the read matching rates, gene count, species richness and abundance, diversity, and clinical biomarkers of the experimental groups with the original depth as the control group. An additional set of 100 published data from a colorectal cancer (CRC) study was included for validation (50 CRC vs. 50 CRC-free). Our results showed that more genes and species were identified following the increase in sequencing depths. When it reached 15 million or higher, the species richness became more stable with changing rate of 5% or lower, and the species composition more stable with ICC intraclass correlation coefficient (ICC) higher than 0.75. In terms of species abundance, 81% and 97% of species showed significant differences in IGC and MetaPhlAn2 among all groups with <i>p</i> < 0.05. Diversity showed significant differences across all groups, with decreasing differences of diversity between the experimental and the control groups following the increase in sequencing depth. The area under a receiver operating characteristic curve, AUC, of the obesity classifier for running the obesity testing samples showed an increasing trend following the increase in sequencing depth (<i>τ</i> = 0.29). The validation results were consistent with the above results. Our study found that the higher the sequencing depth is, the more the microbial information in structure and composition it provides. We also found that when sequencing depth was 15 million or higher, we obtained more stable species compositions and disease classifiers with good performance. Therefore, we recommend 15 million as the optimal minimum sequencing depth for an MWAS.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":"65 9","pages":"491-504"},"PeriodicalIF":3.1,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40595207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Genome-wide association studies identified loci associated with both feed conversion ratio and residual feed intake in Yorkshire pigs. 全基因组关联研究确定了与约克郡猪饲料转化率和剩余采食量相关的位点。
IF 3.1 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-05-20 DOI: 10.1139/gen-2021-0105
Kai Wang, Shujie Wang, Xiang‐Fen Ji, Dong Chen, Qi Shen, Yang Yu, Wei-hang Xiao, Pingxian Wu, G. Tang
Feed occupies a significant proportion in the production cost of pigs, and the feed efficiency (FE) in pigs are of utmost economic importance. Hence, the objective of this study is to identify single nucleotide polymorphisms (SNPs) and candidate genes associated with FE related traits, including feed conversion ratio (FCR) and residual feed intake (RFI). A genome-wide association study (GWAS) was conducted for FCR and RFI in 169 Yorkshire pigs using whole-genome sequencing data. A total of 23 and 33 suggestive significant SNPs (P<1×10^(-6)) were detected for FCR and RFI, respectively. However, none of the SNPs achieved the genome-wide significance threshold (P<5×10^(-8)). Importantly, three common SNPs (SSC7:7987268, SSC13:42350250, and SSC13:42551718) were associated with both FCR and RFI. Additionally, the NEDD9 gene related to FCR and RFI traits was overlapped. This study detected novel SNPs on SSC7 and SSC13 common for FCR and RFI. These results provide new insights into the genetic mechanisms and candidate genes of FE-related traits in pigs.
饲料在猪的生产成本中占有相当大的比重,猪的饲料效率具有极其重要的经济意义。因此,本研究的目的是鉴定与饲料系数(FCR)和剩余采食量(RFI)等饲料相关性状相关的单核苷酸多态性(snp)和候选基因。利用全基因组测序数据对169头约克郡猪的FCR和RFI进行了全基因组关联研究(GWAS)。FCR和RFI分别检测到23个和33个提示性显著snp (P<1×10^(-6))。然而,没有一个snp达到全基因组显著性阈值(P<5×10^(-8))。重要的是,三个常见的snp (SSC7:7987268, SSC13:42350250和SSC13:42551718)与FCR和RFI都相关。此外,与FCR和RFI性状相关的NEDD9基因存在重叠。本研究检测到了FCR和RFI常见的SSC7和SSC13上的新snp。这些结果为猪fe相关性状的遗传机制和候选基因提供了新的见解。
{"title":"Genome-wide association studies identified loci associated with both feed conversion ratio and residual feed intake in Yorkshire pigs.","authors":"Kai Wang, Shujie Wang, Xiang‐Fen Ji, Dong Chen, Qi Shen, Yang Yu, Wei-hang Xiao, Pingxian Wu, G. Tang","doi":"10.1139/gen-2021-0105","DOIUrl":"https://doi.org/10.1139/gen-2021-0105","url":null,"abstract":"Feed occupies a significant proportion in the production cost of pigs, and the feed efficiency (FE) in pigs are of utmost economic importance. Hence, the objective of this study is to identify single nucleotide polymorphisms (SNPs) and candidate genes associated with FE related traits, including feed conversion ratio (FCR) and residual feed intake (RFI). A genome-wide association study (GWAS) was conducted for FCR and RFI in 169 Yorkshire pigs using whole-genome sequencing data. A total of 23 and 33 suggestive significant SNPs (P<1×10^(-6)) were detected for FCR and RFI, respectively. However, none of the SNPs achieved the genome-wide significance threshold (P<5×10^(-8)). Importantly, three common SNPs (SSC7:7987268, SSC13:42350250, and SSC13:42551718) were associated with both FCR and RFI. Additionally, the NEDD9 gene related to FCR and RFI traits was overlapped. This study detected novel SNPs on SSC7 and SSC13 common for FCR and RFI. These results provide new insights into the genetic mechanisms and candidate genes of FE-related traits in pigs.","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46111269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Genome
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1