Pub Date : 2025-01-01Epub Date: 2024-09-16DOI: 10.1139/gen-2024-0089
Thaíssa Boldieri de Souza, Letícia Maria Parteka, Yi-Tzu Kuo, Thiago Nascimento, Veit Schubert, Andrea Pedrosa-Harand, André Marques, Andreas Houben, André Luís Laforga Vanzela
Eleocharis R. Br. (Cyperaceae) species are known for having holocentric chromosomes, which enable rapid karyotype differentiation. High intra- and interspecific variations in chromosome numbers and genome sizes are documented for different Eleocharis species, frequently accompanied by fluctuations in the repetitive DNA fraction. However, a lack of detailed analysis has hampered a better understanding of the interplay between holocentricity and repetitive DNA evolution in this genus. In our study, we confirmed the holocentricity of Eleocharis chromosomes by immunostaining against the kinetochore protein KNL1 and the cell-cycle dependent posttranslational modifications histone H2AThr121ph and H3S10ph. We further studied the composition and chromosomal distribution of the main satellite DNA repeats found in the newly sequenced species Eleocharis maculosa, Eleocharisgeniculata, Eleocharis parodii, Eleocharis elegans, and Eleocharismontana. Five of the six satellites discovered were arranged in clusters, while EmaSAT14 was distributed irregularly along the chromatid length in a line-like manner. EmaSAT14 monomers were present in a few copies in few species across the Eleocharis phylogenetic tree. Nonetheless, they were accumulated within a restricted group of Maculosae series, subgenus Eleocharis. The data indicates that the amplification and line-like distribution of EmaSAT14 along chromatids may have occurred recently within a section of the genus.
Eleocharis R.Br.(香蒲科)物种以全中心染色体著称,这使得核型的快速分化成为可能。有资料表明,不同 Eleocharis 物种的染色体数目和基因组大小在种内和种间存在很大差异,经常伴随着重复 DNA 部分的波动。然而,由于缺乏详细的分析,人们无法更好地了解该属的全中心性和重复 DNA 演化之间的相互作用。在我们的研究中,我们通过免疫染色法检测动点蛋白KNL1和依赖于细胞周期的翻译后修饰组蛋白H2AThr121ph和H3S10ph,证实了象鼻虫染色体的全中心性。我们进一步研究了在新测序物种E. maculosa、E. geniculata、E. parodii、E. elegans和E. montana中发现的主要卫星DNA重复序列的组成和染色体分布。在发现的六个卫星DNA重复序列中,有五个呈簇状排列,而EmaSAT14则沿染色体长度呈线状不规则分布。EmaSAT14单体在整个榄香属系统发育树中的少数物种中以少量拷贝存在。尽管如此,这些单体还是积聚在荸荠科(Maculosae)的一个局限性群体--荸荠亚属(Eleocharis)中。这些数据表明,EmaSAT14沿染色体的扩增和线状分布可能是最近在该属的一个部分中发生的。
{"title":"Distinct patterns of satDNA distribution in holocentric chromosomes of spike-sedges (<i>Eleocharis</i>, Cyperaceae).","authors":"Thaíssa Boldieri de Souza, Letícia Maria Parteka, Yi-Tzu Kuo, Thiago Nascimento, Veit Schubert, Andrea Pedrosa-Harand, André Marques, Andreas Houben, André Luís Laforga Vanzela","doi":"10.1139/gen-2024-0089","DOIUrl":"10.1139/gen-2024-0089","url":null,"abstract":"<p><p><i>Eleocharis</i> R. Br. (Cyperaceae) species are known for having holocentric chromosomes, which enable rapid karyotype differentiation. High intra- and interspecific variations in chromosome numbers and genome sizes are documented for different <i>Eleocharis</i> species, frequently accompanied by fluctuations in the repetitive DNA fraction. However, a lack of detailed analysis has hampered a better understanding of the interplay between holocentricity and repetitive DNA evolution in this genus. In our study, we confirmed the holocentricity of <i>Eleocharis</i> chromosomes by immunostaining against the kinetochore protein KNL1 and the cell-cycle dependent posttranslational modifications histone H2AThr121ph and H3S10ph. We further studied the composition and chromosomal distribution of the main satellite DNA repeats found in the newly sequenced species <i>Eleocharis maculosa, Eleocharis</i> <i>geniculata, Eleocharis parodii, Eleocharis elegans</i>, and <i>Eleocharis</i> <i>montana</i>. Five of the six satellites discovered were arranged in clusters, while EmaSAT14 was distributed irregularly along the chromatid length in a line-like manner. EmaSAT14 monomers were present in a few copies in few species across the <i>Eleocharis</i> phylogenetic tree. Nonetheless, they were accumulated within a restricted group of Maculosae series, subgenus <i>Eleocharis</i>. The data indicates that the amplification and line-like distribution of EmaSAT14 along chromatids may have occurred recently within a section of the genus.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"1-13"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142284426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-21DOI: 10.1139/gen-2023-0110
Nayyer Abdollahi Sisi, Eva Herzog, Amine Abbadi, Rod J Snowdon, Agnieszka A Golicz
Recombination, the reciprocal exchange of DNA between homologous chromosomes, is a mandatory step necessary for meiosis progression. Crossovers between homologous chromosomes generate new combinations of alleles and maintain genetic diversity. Due to genetic, epigenetic, and environmental factors, the recombination landscape is highly heterogeneous along the chromosomes and it also differs between populations and between sexes. Here, we investigated recombination characteristics across the 19 chromosomes of the model allopolyploid crop species oilseed rape (Brassica napus L.), using two unique multiparental populations derived from two genetically divergent founder pools, each of which comprised 50 genetically diverse founder accessions. A fully balanced, pairwise chain-crossing scheme was utilized to create each of the two populations. A total of 3213 individuals, spanning five successive generations, were genotyped using a 15K SNP array. We observed uneven distribution of recombination along chromosomes, with some genomic regions undergoing substantially more frequent recombination in both populations. In both populations, maternal recombination events were more frequent than paternal recombination. This study provides unique insight into the recombination landscape at chromosomal level and reveals a maternal-paternal bias for recombination number with implications for breeding.
重组是同源染色体之间 DNA 的相互交换,是减数分裂过程中必不可少的步骤。同源染色体之间的交叉产生新的等位基因组合,维持遗传多样性。由于遗传、表观遗传和环境因素的影响,染色体上的重组情况具有高度异质性,而且在不同种群和性别之间也存在差异。在这里,我们利用从两个基因不同的创始群体中衍生出来的两个独特的多亲本群体,研究了模式全多倍体作物油菜(Brassica napus L.)19条染色体上的重组特征。两个群体分别采用完全平衡的配对链式杂交方案。使用 15K SNP 阵列对连续五代共 3213 个个体进行了基因分型。我们观察到染色体上的重组分布不均,在两个种群中,某些基因组区域的重组频率要高得多。在这两个群体中,母系重组事件比父系重组更频繁。这项研究对染色体水平的重组情况提供了独特的见解,并揭示了重组数量的母本-父本偏倚,对育种具有重要意义。
{"title":"Analysis of the winter oilseed rape recombination landscape suggests maternal-paternal bias.","authors":"Nayyer Abdollahi Sisi, Eva Herzog, Amine Abbadi, Rod J Snowdon, Agnieszka A Golicz","doi":"10.1139/gen-2023-0110","DOIUrl":"10.1139/gen-2023-0110","url":null,"abstract":"<p><p>Recombination, the reciprocal exchange of DNA between homologous chromosomes, is a mandatory step necessary for meiosis progression. Crossovers between homologous chromosomes generate new combinations of alleles and maintain genetic diversity. Due to genetic, epigenetic, and environmental factors, the recombination landscape is highly heterogeneous along the chromosomes and it also differs between populations and between sexes. Here, we investigated recombination characteristics across the 19 chromosomes of the model allopolyploid crop species oilseed rape (<i>Brassica napus</i> L.), using two unique multiparental populations derived from two genetically divergent founder pools, each of which comprised 50 genetically diverse founder accessions. A fully balanced, pairwise chain-crossing scheme was utilized to create each of the two populations. A total of 3213 individuals, spanning five successive generations, were genotyped using a 15K SNP array. We observed uneven distribution of recombination along chromosomes, with some genomic regions undergoing substantially more frequent recombination in both populations. In both populations, maternal recombination events were more frequent than paternal recombination. This study provides unique insight into the recombination landscape at chromosomal level and reveals a maternal-paternal bias for recombination number with implications for breeding.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"445-453"},"PeriodicalIF":2.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142463225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-17DOI: 10.1139/gen-2023-0127
Samadhi B Jayarathna, Harmeet S Chawla, Mohammed M Mira, Robert W Duncan, Claudio Stasolla
Brassica napus L. plants are sensitive to water stress conditions throughout their life cycle from seed germination to seed setting. This study aims at identifying quantitative trait loci (QTL) linked to B. napus tolerance to water stress mimicked by applications of 10% polyethylene glycol-6000 (PEG-6000). Two doubled haploid populations, each consisting of 150 genotypes, were used for this research. Plants at the two true leaf stage of development were grown in the absence (control) or presence (stress) of PEG-6000 under controlled environmental conditions for 48 h, and the drought stress index was calculated for each genotype. All genotypes, along with their parents, were genotyped using the Brassica Infinium 90K SNP BeadChip Array. Inclusive composite interval mapping was used to identify QTL. Six QTL and 12 putative QTL associated with water stress tolerance were identified across six chromosomes (A2, A3, A4, A9, C3, and C7). Collectively, 2154 candidate genes for water stress tolerance were identified for all the identified QTL. Among them, 213 genes were identified as being directly associated with water stress (imposed by PEG-6000) tolerance based on nine functional annotations. These results can be incorporated into future breeding initiatives to select plant material with the ability to cope effectively with water stress.
{"title":"Mapping of quantitative trait loci (QTL) in <i>Brassica napus</i> L. for tolerance to water stress.","authors":"Samadhi B Jayarathna, Harmeet S Chawla, Mohammed M Mira, Robert W Duncan, Claudio Stasolla","doi":"10.1139/gen-2023-0127","DOIUrl":"10.1139/gen-2023-0127","url":null,"abstract":"<p><p><i>Brassica napus</i> L. plants are sensitive to water stress conditions throughout their life cycle from seed germination to seed setting. This study aims at identifying quantitative trait loci (QTL) linked to <i>B. napus</i> tolerance to water stress mimicked by applications of 10% polyethylene glycol-6000 (PEG-6000). Two doubled haploid populations, each consisting of 150 genotypes, were used for this research. Plants at the two true leaf stage of development were grown in the absence (control) or presence (stress) of PEG-6000 under controlled environmental conditions for 48 h, and the drought stress index was calculated for each genotype. All genotypes, along with their parents, were genotyped using the Brassica Infinium 90K SNP BeadChip Array. Inclusive composite interval mapping was used to identify QTL. Six QTL and 12 putative QTL associated with water stress tolerance were identified across six chromosomes (A2, A3, A4, A9, C3, and C7). Collectively, 2154 candidate genes for water stress tolerance were identified for all the identified QTL. Among them, 213 genes were identified as being directly associated with water stress (imposed by PEG-6000) tolerance based on nine functional annotations. These results can be incorporated into future breeding initiatives to select plant material with the ability to cope effectively with water stress.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"482-492"},"PeriodicalIF":2.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142463228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-16DOI: 10.1139/gen-2024-0061
Aldrin Y Cantila, Sheng Chen, Kadambot H M Siddique, Wallace A Cowling
Heat stress affects the growth and development of Brassicaceae crops. Plant breeders aim to mitigate the effects of heat stress by selecting for heat stress tolerance, but the genes responsible for heat stress in Brassicaceae remain largely unknown. During heat stress, heat shock proteins (HSPs) function as molecular chaperones to aid in protein folding, and heat shock transcription factors (HSFs) serve as transcriptional regulators of HSP expression. We identified 5002 heat shock related genes, including HSPs and HSFs, across 32 genomes in Brassicaceae. Among these, 3347 genes were duplicated, with segmented duplication primarily contributing to their expansion. We identified 466 physical gene clusters, including 240 homogenous clusters and 226 heterogeneous clusters, shedding light on the organization of heat shock related genes. Notably, 37 genes were co-located with published thermotolerance quantitative trait loci, which supports their functional role in conferring heat stress tolerance. This study provides a comprehensive resource for the identification of functional Brassicaceae heat shock related genes, elucidates their clustering and duplication patterns and establishes the genomic foundation for future heat tolerance research. We hypothesise that genetic variants in HSP and HSF genes in certain species have potential for improving heat stress tolerance in Brassicaceae crops.
{"title":"Heat shock responsive genes in Brassicaceae: genome-wide identification, phylogeny, and evolutionary associations within and between genera.","authors":"Aldrin Y Cantila, Sheng Chen, Kadambot H M Siddique, Wallace A Cowling","doi":"10.1139/gen-2024-0061","DOIUrl":"10.1139/gen-2024-0061","url":null,"abstract":"<p><p>Heat stress affects the growth and development of Brassicaceae crops. Plant breeders aim to mitigate the effects of heat stress by selecting for heat stress tolerance, but the genes responsible for heat stress in Brassicaceae remain largely unknown. During heat stress, heat shock proteins (HSPs) function as molecular chaperones to aid in protein folding, and heat shock transcription factors (HSFs) serve as transcriptional regulators of HSP expression. We identified 5002 heat shock related genes, including HSPs and HSFs, across 32 genomes in Brassicaceae. Among these, 3347 genes were duplicated, with segmented duplication primarily contributing to their expansion. We identified 466 physical gene clusters, including 240 homogenous clusters and 226 heterogeneous clusters, shedding light on the organization of heat shock related genes. Notably, 37 genes were co-located with published thermotolerance quantitative trait loci, which supports their functional role in conferring heat stress tolerance. This study provides a comprehensive resource for the identification of functional Brassicaceae heat shock related genes, elucidates their clustering and duplication patterns and establishes the genomic foundation for future heat tolerance research. We hypothesise that genetic variants in HSP and HSF genes in certain species have potential for improving heat stress tolerance in Brassicaceae crops.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"464-481"},"PeriodicalIF":2.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142463227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-16DOI: 10.1139/gen-2024-0030
Hari D Upadhyaya, Lihua Wang, Andrew H Paterson, C L L Gowda, Rajendra Kumar, Jieqin Li, Yi-Hong Wang
Key message We mapped 11 sorghum traits, identified 33 candidate genes, and found a grain yield gene (GID1) that regulates seed development and a grass-specific tillering gene (DUF1618) transferred to Striga hermonthica.
{"title":"Association mapping identifies stable loci containing novel genes for developmental and reproductive traits in sorghum.","authors":"Hari D Upadhyaya, Lihua Wang, Andrew H Paterson, C L L Gowda, Rajendra Kumar, Jieqin Li, Yi-Hong Wang","doi":"10.1139/gen-2024-0030","DOIUrl":"10.1139/gen-2024-0030","url":null,"abstract":"<p><p><b>Key message</b> We mapped 11 sorghum traits, identified 33 candidate genes, and found a grain yield gene (<i>GID1</i>) that regulates seed development and a grass-specific tillering gene (DUF1618) transferred to <i>Striga hermonthica</i>.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"454-463"},"PeriodicalIF":2.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142463226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-03DOI: 10.1139/gen-2023-0094
Krystyn J Forbes, McIntyre A Barrera, Karsten Nielsen-Roine, Evan W Hersh, Jasmine K Janes, William L Harrower, Jamieson C Gorrell
Mitochondrial DNA is commonly used in population genetic studies to investigate spatial structure, intraspecific variation, and phylogenetic relationships. The control region is the most rapidly evolving and largest non-coding region, but its analysis can be complicated by heteroplasmic signals of genome duplication in many mammals, including felids. Here, we describe the presence of heteroplasmy in the control region of Canada lynx (Lynx canadensis) through intra-individual sequence variation. Our results demonstrate multiple haplotypes of varying length in each lynx, resulting from different copy numbers of the repetitive sequence RS-2 and suggest possible heteroplasmic single nucleotide polymorphisms in both repetitive sequences RS-2 and RS-3. Intra-individual variation was only observed in the repetitive sequences while inter-individual variation was detected in the flanking regions outside of the repetitive sequences, indicating that heteroplasmic mutations are restricted to these repeat regions. Although each lynx displayed multiple haplotypes of varying length, we found the most common variant contained three complete copies of the RS-2 repeat unit, suggesting copy number is regulated by stabilizing selection. While genome duplication offers potential for increased diversity, heteroplasmy may lead to a selective advantage or detriment in the face of mitochondrial function and disease, which could have significant implications for wildlife populations experiencing decline (e.g., bottlenecks) as a result of habitat modification or climate change.
{"title":"Stabilizing selection and mitochondrial heteroplasmy in the Canada lynx (<i>Lynx canadensis)</i>.","authors":"Krystyn J Forbes, McIntyre A Barrera, Karsten Nielsen-Roine, Evan W Hersh, Jasmine K Janes, William L Harrower, Jamieson C Gorrell","doi":"10.1139/gen-2023-0094","DOIUrl":"10.1139/gen-2023-0094","url":null,"abstract":"<p><p>Mitochondrial DNA is commonly used in population genetic studies to investigate spatial structure, intraspecific variation, and phylogenetic relationships. The control region is the most rapidly evolving and largest non-coding region, but its analysis can be complicated by heteroplasmic signals of genome duplication in many mammals, including felids. Here, we describe the presence of heteroplasmy in the control region of Canada lynx (<i>Lynx canadensis</i>) through intra-individual sequence variation. Our results demonstrate multiple haplotypes of varying length in each lynx, resulting from different copy numbers of the repetitive sequence RS-2 and suggest possible heteroplasmic single nucleotide polymorphisms in both repetitive sequences RS-2 and RS-3. Intra-individual variation was only observed in the repetitive sequences while inter-individual variation was detected in the flanking regions outside of the repetitive sequences, indicating that heteroplasmic mutations are restricted to these repeat regions. Although each lynx displayed multiple haplotypes of varying length, we found the most common variant contained three complete copies of the RS-2 repeat unit, suggesting copy number is regulated by stabilizing selection. While genome duplication offers potential for increased diversity, heteroplasmy may lead to a selective advantage or detriment in the face of mitochondrial function and disease, which could have significant implications for wildlife populations experiencing decline (e.g., bottlenecks) as a result of habitat modification or climate change.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"493-502"},"PeriodicalIF":2.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142125508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-07-31DOI: 10.1139/gen-2024-0036
Avneet K Chhina, Niloufar Abhari, Arne Mooers, Jayme M M Lewthwaite
We unified the recent literature with the goal to contribute to the discussion on how genetic diversity might best be conserved. We argue that this decision will be guided by how genomic variation is distributed among manageable populations (i.e., its spatial structure), the degree to which adaptive potential is best predicted by variation across the entire genome or the subset of that variation that is identified as putatively adaptive (i.e., its genomic structure), and whether we are managing species as single entities or as collections of diversifying lineages. The distribution of genetic variation and our ultimate goal will have practical implications for on-the-ground management. If adaptive variation is largely polygenic or responsive to change, its spatial structure might be broadly governed by the forces determining genome-wide variation (linked selection, drift, and gene flow), making measurement and prioritization straightforward. If we are managing species as single entities, then population-level prioritization schemes are possible so as to maximize future pooled genetic variation. We outline one such scheme based on the popular Shapley value from cooperative game theory that considers the relative genetic contribution of a population to an unknown future collection of populations.
{"title":"Linking the spatial and genomic structure of adaptive potential for conservation management: a review.","authors":"Avneet K Chhina, Niloufar Abhari, Arne Mooers, Jayme M M Lewthwaite","doi":"10.1139/gen-2024-0036","DOIUrl":"10.1139/gen-2024-0036","url":null,"abstract":"<p><p>We unified the recent literature with the goal to contribute to the discussion on how genetic diversity might best be conserved. We argue that this decision will be guided by how genomic variation is distributed among manageable populations (i.e., its spatial structure), the degree to which adaptive potential is best predicted by variation across the entire genome or the subset of that variation that is identified as putatively adaptive (i.e., its genomic structure), and whether we are managing species as single entities or as collections of diversifying lineages. The distribution of genetic variation and our ultimate goal will have practical implications for on-the-ground management. If adaptive variation is largely polygenic or responsive to change, its spatial structure might be broadly governed by the forces determining genome-wide variation (linked selection, drift, and gene flow), making measurement and prioritization straightforward. If we are managing species as single entities, then population-level prioritization schemes are possible so as to maximize future pooled genetic variation. We outline one such scheme based on the popular Shapley value from cooperative game theory that considers the relative genetic contribution of a population to an unknown future collection of populations.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"403-423"},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141859522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-07-12DOI: 10.1139/gen-2024-0005
Tanuja, Madasamy Parani
β-Caryophyllene possesses potential anticancer properties against various cancers, including breast, colon, and lung cancer. Therefore, the essential oil of Ayapana triplinervis, which is rich in β-caryophyllene, can be a potential herbal remedy for treating cancer. However, molecular and genomic studies on A. triplinervis are still sparse. In this study, we obtained 14.7 Gb of RNA-Seq data from A. triplinervis leaf RNA and assembled 137 554 transcripts with an N50 value of 1437 bp. We annotated 72 436 (52.7%) transcripts and mapped 10 640 transcripts to 156 biochemical pathways. Among them, 218 were related to terpenoid backbone biosynthesis, while 27 were linked to sesquiterpenoid and triterpenoid pathways. Ninety-four transcripts were annotated in the β-caryophyllene and lupeol pathways. From these transcripts, for the first time, we identified 25 full-length genes encoding all the 17 enzymes involved in β-caryophyllene biosynthesis and an additional five genes involved in lupeol biosynthesis. These genes will be useful for the metabolic engineering of β-caryophyllene and lupeol biosynthesis, not just in A. triplinervis but also in other species.
{"title":"Identification of full-length genes involved in the biosynthesis of β-caryophyllene and lupeol from the leaf transcriptome of <i>Ayapana triplinervis</i>.","authors":"Tanuja, Madasamy Parani","doi":"10.1139/gen-2024-0005","DOIUrl":"10.1139/gen-2024-0005","url":null,"abstract":"<p><p>β-Caryophyllene possesses potential anticancer properties against various cancers, including breast, colon, and lung cancer. Therefore, the essential oil of <i>Ayapana triplinervis</i>, which is rich in β-caryophyllene, can be a potential herbal remedy for treating cancer. However, molecular and genomic studies on <i>A. triplinervis</i> are still sparse<i>.</i> In this study, we obtained 14.7 Gb of RNA-Seq data from <i>A. triplinervis</i> leaf RNA and assembled 137 554 transcripts with an N50 value of 1437 bp. We annotated 72 436 (52.7%) transcripts and mapped 10 640 transcripts to 156 biochemical pathways. Among them, 218 were related to terpenoid backbone biosynthesis, while 27 were linked to sesquiterpenoid and triterpenoid pathways. Ninety-four transcripts were annotated in the β-caryophyllene and lupeol pathways. From these transcripts, for the first time, we identified 25 full-length genes encoding all the 17 enzymes involved in β-caryophyllene biosynthesis and an additional five genes involved in lupeol biosynthesis. These genes will be useful for the metabolic engineering of β-caryophyllene and lupeol biosynthesis, not just in <i>A. triplinervis</i> but also in other species.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"440-444"},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141599108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ticks transmit pathogens of veterinary and public health importance. Understanding their diversity is critical as infestations lead to significant economic losses globally. To date, over 90 species across three families have been identified in South Africa. However, the taxonomy of most species has not been resolved due to morphological identification challenges. DNA barcoding through the Barcode of Life Data Systems (BOLD) is therefore a valuable tool for species verifications for biodiversity assessments. This study conducted an analysis of South African tick COI barcodes on BOLD by verifying species on checklists, literature, and other sequence databases. The compiled list represented 97 species, including indigenous (59), endemics (27), introduced (2), invasives (1), and eight that could not be classified. Analyses indicated that 31 species (32%) from 11 genera have verified COI barcodes. These are distributed across all nine provinces with the Eastern Cape having the highest species diversity, followed by Limpopo, with KwaZulu-Natal having the least diversity. Rhipicephalus, Hyalomma, and Argas species had multiple barcode index numbers, suggesting cryptic diversity or unresolved taxonomy. We identified 21 species of veterinary or zoonotic importance from the Argasidae and Ixodidae families that should be prioritised for barcoding. Coordinating studies and defining barcoding targets is necessary to ensure that tick checklists are updated to support decision-making for the control of vector-borne diseases and alien invasives.
蜱虫传播对兽医和公共卫生具有重要意义的病原体。了解蜱虫的多样性至关重要,因为蜱虫侵扰会给全球造成重大经济损失。南非已发现三个科约 90 多个物种。然而,由于形态鉴定方面的困难,大多数物种的分类尚未得到解决。因此,通过生命条形码数据系统(BOLD)进行 DNA 条形编码是生物多样性评估中物种验证的重要工具。本研究通过核查核对表、文献和其他序列数据库中的物种,对 BOLD 上的南非蜱 COI 条形码进行了分析。编制的清单上有 97 个物种,包括本土物种(59 个)、特有物种(27 个)、引进物种(2 个)、入侵物种(1 个)和 8 个无法分类的物种。分析表明,11 个属的 31 个物种(32%)已验证了 COI 条形码。这些物种分布在所有九个省份,其中东开普省的物种多样性最高,其次是林波波省,夸祖鲁-纳塔尔省的物种多样性最低。Rhipicephalus、Hyalomma和Argas物种有多个条形码索引号(BINs),这表明存在隐性多样性或未解决的分类问题。我们从 Argasidae 和 Ixodidae 科中确定了 21 个具有兽医或人畜共患病重要性的物种,这些物种应优先进行条形码编码。有必要协调研究工作并确定条形码目标,以确保更新蜱虫检查列表,为控制病媒传播疾病和外来入侵生物的决策提供支持。
{"title":"An analysis of the gaps in the South African DNA barcoding library of ticks of veterinary and public health importance.","authors":"Nozipho Khumalo, Mamohale Chaisi, Rebecca Magoro, Monica Mwale","doi":"10.1139/gen-2024-0052","DOIUrl":"10.1139/gen-2024-0052","url":null,"abstract":"<p><p>Ticks transmit pathogens of veterinary and public health importance. Understanding their diversity is critical as infestations lead to significant economic losses globally. To date, over 90 species across three families have been identified in South Africa. However, the taxonomy of most species has not been resolved due to morphological identification challenges. DNA barcoding through the Barcode of Life Data Systems (BOLD) is therefore a valuable tool for species verifications for biodiversity assessments. This study conducted an analysis of South African tick <i>COI</i> barcodes on BOLD by verifying species on checklists, literature, and other sequence databases. The compiled list represented 97 species, including indigenous (59), endemics (27), introduced (2), invasives (1), and eight that could not be classified. Analyses indicated that 31 species (32%) from 11 genera have verified <i>COI</i> barcodes. These are distributed across all nine provinces with the Eastern Cape having the highest species diversity, followed by Limpopo, with KwaZulu-Natal having the least diversity. <i>Rhipicephalus, Hyalomma</i>, and <i>Argas</i> species had multiple barcode index numbers, suggesting cryptic diversity or unresolved taxonomy. We identified 21 species of veterinary or zoonotic importance from the Argasidae and Ixodidae families that should be prioritised for barcoding. Coordinating studies and defining barcoding targets is necessary to ensure that tick checklists are updated to support decision-making for the control of vector-borne diseases and alien invasives.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"392-402"},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141633203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cricula trifenestrata Helfer (commonly known as Amphutukoni muga/Cricula silkworm), a wild sericigenous insect produces golden yellow silk similar to Antheraea assamensis (muga silkworm), with significant potential as a natural fiber and biomaterial. Cricula is considered as a pest as it competes for food with muga, which produces the prized golden silk. This study focuses on decoding the mitochondrial genome of C. trifenestrata using next-generation sequencing technology and includes comparative analysis with Bombycoids and other lepidopteran insects. We found that the Cricula mitogenome spans 15 425 bp and exhibits typical gene content and arrangement consistent with other Saturniids and lepidopterans. All protein-coding genes were found to undergo purifying selection, with the highest and lowest conservation observed in the cox1 and atp8 gene, respectively, indicating their potential role in future evolutionary events. We identified two types of mismatches: 23 "G-U" and 6 "U-U" pairs, similar to those found in Actias selene among the Saturniids. Additionally, our study uncovered the presence of two 33 bp repeat units and a "TTAGA" motif in the control region, in contrast to the typical "ATAGA" motif, suggesting functional similarity with evolving sequences. Furthermore, phylogenetic analysis supports the close relationship of Cricula with other species within the Saturniidae family.
{"title":"Comparative genomic and phylogenetic analysis of the complete mitochondrial genome of <i>Cricula trifenestrata</i> (Helfer) among lepidopteran insects.","authors":"Deepika Singh, Ponnala Vimal Mosahari, Pragya Sharma, Kartik Neog, Utpal Bora","doi":"10.1139/gen-2023-0037","DOIUrl":"10.1139/gen-2023-0037","url":null,"abstract":"<p><p><i>Cricula trifenestrata</i> Helfer (commonly known as Amphutukoni muga/Cricula silkworm), a wild sericigenous insect produces golden yellow silk similar to <i>Antheraea assamensis</i> (muga silkworm), with significant potential as a natural fiber and biomaterial. <i>Cricula</i> is considered as a pest as it competes for food with muga, which produces the prized golden silk. This study focuses on decoding the mitochondrial genome of <i>C. trifenestrata</i> using next-generation sequencing technology and includes comparative analysis with Bombycoids and other lepidopteran insects. We found that the <i>Cricula</i> mitogenome spans 15 425 bp and exhibits typical gene content and arrangement consistent with other Saturniids and lepidopterans. All protein-coding genes were found to undergo purifying selection, with the highest and lowest conservation observed in the <i>cox1</i> and <i>atp8</i> gene, respectively, indicating their potential role in future evolutionary events. We identified two types of mismatches: 23 \"G-U\" and 6 \"U-U\" pairs, similar to those found in <i>Actias selene</i> among the Saturniids. Additionally, our study uncovered the presence of two 33 bp repeat units and a \"TTAGA\" motif in the control region, in contrast to the typical \"ATAGA\" motif, suggesting functional similarity with evolving sequences. Furthermore, phylogenetic analysis supports the close relationship of <i>Cricula</i> with other species within the Saturniidae family.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"424-439"},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}