The American Society of Mechanical Engineers (ASME) published Section XI Code Case N-648-1 [1] in order to provide alternative examinations of reactor vessel nozzle inner radii. The Code Case was created because ultrasonic examination of the inner radius regions of reactor vessels nozzles is not practical within the operating fleet and the likelihood of flaws developing within these locations is extremely low. Justification for using alternative visual examinations was provided in a paper published at the 2001 Pressure Vessel and Piping (PVP) Technology Conference [2]. This 2001 PVP paper used linear elastic fracture mechanics (LEFM) to demonstrate tolerance for flaws significantly larger than would be detected using nondestructive examination techniques. However, the Code Case [1] and PVP paper [2] were only applicable to operating plants in the United States. Thus, there was a need to provide a similar fracture analysis considering the AP1000® design to support elimination of volumetric examinations of the nozzle inner radius regions. It was also important to consider improvements in facture mechanics techniques that have been recently published in the ASME Code. The ductile behavior of the material at operating temperatures allow for the use of elastic plastic fracture mechanics (EPFM) methods which provides significantly improved flaw tolerance results. This paper compares results from analyses using LEFM and the EPFM methods for the AP1000 reactor vessel nozzle inner radii region and demonstrates tolerance for large flaws within these regions in order to support a basis for elimination of volumetric inspection during in-service and pre-service examination for the AP1000 design.
{"title":"Reactor Vessel Nozzle Inner Radius Fracture Analyses Using Elastic-Plastic Fracture Mechanics","authors":"S. Marlette","doi":"10.1115/PVP2018-85130","DOIUrl":"https://doi.org/10.1115/PVP2018-85130","url":null,"abstract":"The American Society of Mechanical Engineers (ASME) published Section XI Code Case N-648-1 [1] in order to provide alternative examinations of reactor vessel nozzle inner radii. The Code Case was created because ultrasonic examination of the inner radius regions of reactor vessels nozzles is not practical within the operating fleet and the likelihood of flaws developing within these locations is extremely low. Justification for using alternative visual examinations was provided in a paper published at the 2001 Pressure Vessel and Piping (PVP) Technology Conference [2]. This 2001 PVP paper used linear elastic fracture mechanics (LEFM) to demonstrate tolerance for flaws significantly larger than would be detected using nondestructive examination techniques.\u0000 However, the Code Case [1] and PVP paper [2] were only applicable to operating plants in the United States. Thus, there was a need to provide a similar fracture analysis considering the AP1000® design to support elimination of volumetric examinations of the nozzle inner radius regions. It was also important to consider improvements in facture mechanics techniques that have been recently published in the ASME Code. The ductile behavior of the material at operating temperatures allow for the use of elastic plastic fracture mechanics (EPFM) methods which provides significantly improved flaw tolerance results. This paper compares results from analyses using LEFM and the EPFM methods for the AP1000 reactor vessel nozzle inner radii region and demonstrates tolerance for large flaws within these regions in order to support a basis for elimination of volumetric inspection during in-service and pre-service examination for the AP1000 design.","PeriodicalId":128383,"journal":{"name":"Volume 1A: Codes and Standards","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114514028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, the combination rule for circumferential multiple-cracked pipe assessment is investigated using finite element damage analysis. The FE damage analysis based on the stress-modified fracture strain model is validated against limited fracture test data of two circumferential surface cracked pipes. Then systematic parametric study is performed using FE damage analysis for symmetrical surface cracked pipes. Failure bending stresses are calculated using the combination rule and the net-section collapse load approach for single crack provided in ASME BPV Code. It is found that predicted failure bending stress using the combination rule might be non-conservative when the distance between two cracks is short. To overcome the problem, a new combination criterion based on crack dimensions is proposed and compared with numerical data.
{"title":"Proposal of New Combination Criterion for Pipe With Circumferential Multiple Cracks Based on Ductile Failure Simulation","authors":"M. Lee, K. Hasegawa, Yun‐Jae Kim","doi":"10.1115/PVP2018-84822","DOIUrl":"https://doi.org/10.1115/PVP2018-84822","url":null,"abstract":"In this paper, the combination rule for circumferential multiple-cracked pipe assessment is investigated using finite element damage analysis. The FE damage analysis based on the stress-modified fracture strain model is validated against limited fracture test data of two circumferential surface cracked pipes. Then systematic parametric study is performed using FE damage analysis for symmetrical surface cracked pipes. Failure bending stresses are calculated using the combination rule and the net-section collapse load approach for single crack provided in ASME BPV Code. It is found that predicted failure bending stress using the combination rule might be non-conservative when the distance between two cracks is short. To overcome the problem, a new combination criterion based on crack dimensions is proposed and compared with numerical data.","PeriodicalId":128383,"journal":{"name":"Volume 1A: Codes and Standards","volume":"98 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134581114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A recent comprehensive investigation into residual stress distributions in narrow gap welds in pressure vessels and pipe components are presented in this paper, covering component wall thickness from 1” (25.4mm) to 10” (254mm), component radius to wall thickness ratio from 2 to 100, and linear welding heating input from low (300 J/mm) to high (18000 J/mm). By means of a residual stress decomposition technique, two key parameters that govern through-thickness residual stress distributions in terms of their membrane and bending content have been identified. One is component radius to wall thickness ratio (r/t) and the other is a characteristic heat input density (Q̂) having a unit of J/mm3. With these two parameters, a unified functional form for representing through-thickness residual stress profile in narrow gap welds is proposed for supporting fitness for service assessment, e.g., using f API 579-RP. Its validity is further confirmed by full-blown thermomechanical finite element residual stress analyses for a number of selected narrow gap weld cases.
本文介绍了最近对压力容器和管道部件窄间隙焊缝残余应力分布的综合研究,涵盖了组件壁厚从1 " (25.4mm)到10 " (254mm),组件半径与壁厚比从2到100,线性焊接加热输入从低(300 J/mm)到高(18000 J/mm)。通过残馀应力分解技术,确定了影响残馀应力分布的两个关键参数,即薄膜和弯曲量。一个是构件半径与壁厚比(r/t),另一个是特征热输入密度(Q /),单位为J/mm3。有了这两个参数,提出了一个统一的函数形式来表示窄间隙焊缝的全厚度残余应力分布,以支持服务评估的适应度,例如使用f API 579-RP。对选定的一些窄间隙焊缝进行了全面的热力有限元残余应力分析,进一步证实了该方法的有效性。
{"title":"A Residual Stress Profile Estimation Method for Narrow Groove Girth Welds","authors":"S. Song, P. Dong","doi":"10.1115/PVP2018-84858","DOIUrl":"https://doi.org/10.1115/PVP2018-84858","url":null,"abstract":"A recent comprehensive investigation into residual stress distributions in narrow gap welds in pressure vessels and pipe components are presented in this paper, covering component wall thickness from 1” (25.4mm) to 10” (254mm), component radius to wall thickness ratio from 2 to 100, and linear welding heating input from low (300 J/mm) to high (18000 J/mm). By means of a residual stress decomposition technique, two key parameters that govern through-thickness residual stress distributions in terms of their membrane and bending content have been identified. One is component radius to wall thickness ratio (r/t) and the other is a characteristic heat input density (Q̂) having a unit of J/mm3. With these two parameters, a unified functional form for representing through-thickness residual stress profile in narrow gap welds is proposed for supporting fitness for service assessment, e.g., using f API 579-RP. Its validity is further confirmed by full-blown thermomechanical finite element residual stress analyses for a number of selected narrow gap weld cases.","PeriodicalId":128383,"journal":{"name":"Volume 1A: Codes and Standards","volume":"306 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131674782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Udyawar, C. Tomes, Alexandria M. Carolan, S. Marlette, V ThomasL.Meikle, W. Bamford
One of the goals of ASME Section XI is to ensure that systems and components remain in safe operation throughout the service life, which can include plant license extensions and renewals. This goal is maintained through requirements on periodic inspections and operating plant criteria as contained in Section XI IWB-2500 and IWB-3700, respectively. Operating plant fatigue concerns can be caused from operating conditions or specific transients not considered in the original design transients. ASME Section XI IWB-3740, Operating Plant Fatigue Assessments, provides guidance on analytical evaluation procedures that can be used when the calculated fatigue usage exceeds the fatigue usage limit defined in the original Construction Code. One of the options provided in Section XI Appendix L is through the use of a flaw tolerance analysis. The flaw tolerance evaluation involves postulation of a flaw and predicting its future growth, and thereby establishing the period of service for which it would remain acceptable to the structural integrity requirements of Section XI. The flaw tolerance approach has the advantage of not requiring knowledge of the cyclic service history, tracking future cycles, or installing systems to monitor transients and cycles. Furthermore, the flaw tolerance can also justify an inservice inspection period of 10 years, which would match a plant’s typical Section XI in-service inspection interval. The goal of this paper is to demonstrate a flaw tolerance evaluation based on ASME Section XI Appendix L for several auxiliary piping systems for a typical PWR (Pressurized Water Reactor) nuclear power plant. The flaw tolerance evaluation considers the applicable piping geometry, materials, loadings, crack growth mechanism, such as fatigue crack growth, and the inspection detection capabilities. The purpose of the Section XI Appendix L evaluation is to demonstrate that a reactor coolant piping system continues to maintain its structural integrity and ensures safe operation of the plant.
{"title":"ASME Section XI Appendix L Flaw Tolerance Evaluation of Pressurized Water Reactor Piping Systems to Support Second License Renewal (80-Years Operation)","authors":"A. Udyawar, C. Tomes, Alexandria M. Carolan, S. Marlette, V ThomasL.Meikle, W. Bamford","doi":"10.1115/PVP2018-84346","DOIUrl":"https://doi.org/10.1115/PVP2018-84346","url":null,"abstract":"One of the goals of ASME Section XI is to ensure that systems and components remain in safe operation throughout the service life, which can include plant license extensions and renewals. This goal is maintained through requirements on periodic inspections and operating plant criteria as contained in Section XI IWB-2500 and IWB-3700, respectively. Operating plant fatigue concerns can be caused from operating conditions or specific transients not considered in the original design transients. ASME Section XI IWB-3740, Operating Plant Fatigue Assessments, provides guidance on analytical evaluation procedures that can be used when the calculated fatigue usage exceeds the fatigue usage limit defined in the original Construction Code. One of the options provided in Section XI Appendix L is through the use of a flaw tolerance analysis.\u0000 The flaw tolerance evaluation involves postulation of a flaw and predicting its future growth, and thereby establishing the period of service for which it would remain acceptable to the structural integrity requirements of Section XI. The flaw tolerance approach has the advantage of not requiring knowledge of the cyclic service history, tracking future cycles, or installing systems to monitor transients and cycles. Furthermore, the flaw tolerance can also justify an inservice inspection period of 10 years, which would match a plant’s typical Section XI in-service inspection interval. The goal of this paper is to demonstrate a flaw tolerance evaluation based on ASME Section XI Appendix L for several auxiliary piping systems for a typical PWR (Pressurized Water Reactor) nuclear power plant. The flaw tolerance evaluation considers the applicable piping geometry, materials, loadings, crack growth mechanism, such as fatigue crack growth, and the inspection detection capabilities. The purpose of the Section XI Appendix L evaluation is to demonstrate that a reactor coolant piping system continues to maintain its structural integrity and ensures safe operation of the plant.","PeriodicalId":128383,"journal":{"name":"Volume 1A: Codes and Standards","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127618769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Hasegawa, Yinsheng Li, Yun‐Jae Kim, V. Lacroix, B. Strnadel
When discrete multiple flaws are in the same plane, and they are close to each other, it can be determined whether they are combined or standalone in accordance with combination rules provided by fitness-for-service (FFS) codes, such as ASME, JSME, BS7910, FKM, WES2805, etc. However, specific criteria of the rules are different amongst these FFS codes. On the other hand, plastic collapse bending stresses for stainless steel pipes with circumferential twin flaws were obtained by experiments and the prediction procedure for collapse stresses for pipes with twin flaws were developed analytically. Using the experimental data and the analytical procedure, plastic collapse stresses for pipes with twin flaws are compared with the stresses in compliance with the combination criteria. It is shown that the calculated plastic collapse stresses based on the combination criteria are significantly different from the experimental and analytical stresses.
当离散的多个缺陷在同一平面内且彼此靠近时,可根据FFS (fitness- to -service)规范(如ASME、JSME、BS7910、FKM、WES2805等)提供的组合规则判断它们是组合还是独立。但是,这些田间FFS规范的具体标准有所不同。另一方面,通过实验得到了带周向双裂纹的不锈钢管的塑性崩溃弯曲应力,并对带双裂纹的不锈钢管的崩溃应力预测方法进行了分析。利用实验数据和分析方法,将双缺陷管道的塑性破坏应力与符合组合准则的应力进行了比较。计算结果表明,基于组合准则计算的塑性破坏应力与试验和分析应力存在显著差异。
{"title":"Plastic Collapse Stresses for Pipes With Circumferential Twin Flaws Using Combination Rules","authors":"K. Hasegawa, Yinsheng Li, Yun‐Jae Kim, V. Lacroix, B. Strnadel","doi":"10.1115/PVP2018-84019","DOIUrl":"https://doi.org/10.1115/PVP2018-84019","url":null,"abstract":"When discrete multiple flaws are in the same plane, and they are close to each other, it can be determined whether they are combined or standalone in accordance with combination rules provided by fitness-for-service (FFS) codes, such as ASME, JSME, BS7910, FKM, WES2805, etc. However, specific criteria of the rules are different amongst these FFS codes.\u0000 On the other hand, plastic collapse bending stresses for stainless steel pipes with circumferential twin flaws were obtained by experiments and the prediction procedure for collapse stresses for pipes with twin flaws were developed analytically. Using the experimental data and the analytical procedure, plastic collapse stresses for pipes with twin flaws are compared with the stresses in compliance with the combination criteria. It is shown that the calculated plastic collapse stresses based on the combination criteria are significantly different from the experimental and analytical stresses.","PeriodicalId":128383,"journal":{"name":"Volume 1A: Codes and Standards","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125685085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Steven X. Xu, G. Thorwald, P. L. Delliou, R. Cipolla
Article A-3000 of Appendix A in ASME Section XI provides methods to calculate stress intensity factors that are used in Section XI linear elastic fracture mechanics based flaw evaluation procedures. The ASME Section XI Working Group on Flaw Evaluation has been in the process of rewriting Article A-3000 of Appendix A. The rewrite of Article A-3000 includes implementation of closed-form equations for stress intensity factor influence coefficients for cylinder geometries. Closed-form relations for stress influence coefficients G0 and G1 for axial flaws on the outside surface in cylinders were recently developed and implemented into the 2017 Edition of ASME Section XI Appendix A. The closed-form equations were implemented with one restriction on the application related to very long flaws. This restriction was taken as an interim approach to addressing a technical concern from the US NRC staff. NRC staff had technical concern on the large percentage fitting errors for the G1 influence coefficients at surface point for some very long flaws. An action was assigned within the ASME Section XI Working Group on Flaw Evaluation to investigate the accuracy of surface point G values for very long flaws. The intent of the investigation is to provide technical justification for using the closed-form equations with no restriction and to identify any issues in the source data or during the fitting process. This paper describes current results from this ongoing investigation.
{"title":"Investigation of Calculating Stress Intensity Factor at Surface Point and its Inclusion in Engineering Standards","authors":"Steven X. Xu, G. Thorwald, P. L. Delliou, R. Cipolla","doi":"10.1115/PVP2018-85093","DOIUrl":"https://doi.org/10.1115/PVP2018-85093","url":null,"abstract":"Article A-3000 of Appendix A in ASME Section XI provides methods to calculate stress intensity factors that are used in Section XI linear elastic fracture mechanics based flaw evaluation procedures. The ASME Section XI Working Group on Flaw Evaluation has been in the process of rewriting Article A-3000 of Appendix A. The rewrite of Article A-3000 includes implementation of closed-form equations for stress intensity factor influence coefficients for cylinder geometries.\u0000 Closed-form relations for stress influence coefficients G0 and G1 for axial flaws on the outside surface in cylinders were recently developed and implemented into the 2017 Edition of ASME Section XI Appendix A. The closed-form equations were implemented with one restriction on the application related to very long flaws. This restriction was taken as an interim approach to addressing a technical concern from the US NRC staff. NRC staff had technical concern on the large percentage fitting errors for the G1 influence coefficients at surface point for some very long flaws. An action was assigned within the ASME Section XI Working Group on Flaw Evaluation to investigate the accuracy of surface point G values for very long flaws. The intent of the investigation is to provide technical justification for using the closed-form equations with no restriction and to identify any issues in the source data or during the fitting process. This paper describes current results from this ongoing investigation.","PeriodicalId":128383,"journal":{"name":"Volume 1A: Codes and Standards","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132376006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kiminobu Hojo, T. Hirota, N. Ogawa, K. Yoshimoto, Yasuto Nagoshi, S. Kawabata
Fracture toughness from a CT specimen is used as a material constant for fracture evaluation, but it has a large constraint, which provides too conservative evaluation results. In ductile to brittle transition temperature (DBTT) region ferritic steel which is material of RPV has a large scatter and it becomes important to know the accurate scatter of an irradiated material because of less margin of RPV’s integrity after a long term operation. In this paper to establish a more precise fracture evaluation method in DBTT region for an irradiated RPV with a postulated surface flaw, fracture analysis procedures considering constraint effect, the Beremin model and damage mechanics model and a coupled model of these models were applied to the specimens with different constraints, which were 1/2TCT specimens and flat plate specimens with a semicircular flaw under tensile load. For evaluation of pure cleavage fracture of flat plate specimens, a Beremin model with plastic strain effect was applied with incorporation of plastic strain effect. Further, for ductile fracture, the local strain criterion of ASME Section VIII was applied to the specimens with different geometries and its applicability was discussed.
{"title":"Fracture Analysis of Ductile-Brittle Transition Temperature Region Considering Specimens With Different Constraints","authors":"Kiminobu Hojo, T. Hirota, N. Ogawa, K. Yoshimoto, Yasuto Nagoshi, S. Kawabata","doi":"10.1115/PVP2018-84385","DOIUrl":"https://doi.org/10.1115/PVP2018-84385","url":null,"abstract":"Fracture toughness from a CT specimen is used as a material constant for fracture evaluation, but it has a large constraint, which provides too conservative evaluation results. In ductile to brittle transition temperature (DBTT) region ferritic steel which is material of RPV has a large scatter and it becomes important to know the accurate scatter of an irradiated material because of less margin of RPV’s integrity after a long term operation. In this paper to establish a more precise fracture evaluation method in DBTT region for an irradiated RPV with a postulated surface flaw, fracture analysis procedures considering constraint effect, the Beremin model and damage mechanics model and a coupled model of these models were applied to the specimens with different constraints, which were 1/2TCT specimens and flat plate specimens with a semicircular flaw under tensile load. For evaluation of pure cleavage fracture of flat plate specimens, a Beremin model with plastic strain effect was applied with incorporation of plastic strain effect. Further, for ductile fracture, the local strain criterion of ASME Section VIII was applied to the specimens with different geometries and its applicability was discussed.","PeriodicalId":128383,"journal":{"name":"Volume 1A: Codes and Standards","volume":"256 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123095991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Lacroix, P. Dulieu, Sébastien Blasset, Ralf Tiete, Yinsheng Li, K. Hasegawa, W. Bamford, A. Udyawar
When multiple flaws are detected in pressure retaining components during inspection, the first step of evaluation consists of determining whether the flaws shall be combined into a single flaw or evaluated separately. This combination process is carried out in compliance with proximity rules given in the Fitness-for-Service (FFS) Codes. However, the specific criteria for the rules on combining multiple flaws into a single flaw are different among the FFS Codes. In this context, revised and improved criteria have been developed, to more accurately characterize the interaction between multiple subsurface flaws in operating pressure vessels. This improved approach removes some of the conservatism in the existing ASME Code approach, which was developed in the 1970s based on two flaws interacting with each other. This paper explains in detail the methodology used to derive improved flaw proximity rules through three-dimensional FEM and XFEM analyses. After the presentation of the calculations results and the improved criteria, the paper also highlights the multiple conservatisms of the methodology using several sensitivity analyses.
{"title":"Rules for Flaw Interaction for Subsurface Flaws in Operating Pressurized Vessels: Technical Basis of Code Case N-877","authors":"V. Lacroix, P. Dulieu, Sébastien Blasset, Ralf Tiete, Yinsheng Li, K. Hasegawa, W. Bamford, A. Udyawar","doi":"10.1115/PVP2018-84120","DOIUrl":"https://doi.org/10.1115/PVP2018-84120","url":null,"abstract":"When multiple flaws are detected in pressure retaining components during inspection, the first step of evaluation consists of determining whether the flaws shall be combined into a single flaw or evaluated separately. This combination process is carried out in compliance with proximity rules given in the Fitness-for-Service (FFS) Codes. However, the specific criteria for the rules on combining multiple flaws into a single flaw are different among the FFS Codes.\u0000 In this context, revised and improved criteria have been developed, to more accurately characterize the interaction between multiple subsurface flaws in operating pressure vessels. This improved approach removes some of the conservatism in the existing ASME Code approach, which was developed in the 1970s based on two flaws interacting with each other.\u0000 This paper explains in detail the methodology used to derive improved flaw proximity rules through three-dimensional FEM and XFEM analyses. After the presentation of the calculations results and the improved criteria, the paper also highlights the multiple conservatisms of the methodology using several sensitivity analyses.","PeriodicalId":128383,"journal":{"name":"Volume 1A: Codes and Standards","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122733561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fatigue testing campaigns are a common feature in the design and operation of advanced engineering systems in the aerospace and power generation sectors. The resulting data are typically of a high inherent technical and financial value. Presently, these data are typically transferred between departments and companies by way of ad-hoc solutions reliant on obsolete or proprietary technologies, including CSV files, MS Excel® files, and PDFs. In these circumstances there is significant potential for data loss, inconsistency, and error. To address these shortcomings, there is a need for a systematic means of transferring data between different digital systems. With this in mind, a series of CEN Workshops on engineering materials data have taken place with a view to developing technologies for representing and exchanging engineering materials data. Most recently, a CEN Workshop on the topic of fatigue test data has delivered data formats derived from the ISO 12106 standard for axial strain-controlled fatigue testing. This paper describes the methodology for developing the data formats and demonstrates their use in the scope of the INCEFA-PLUS project on increasing safety in nuclear power plants by covering gaps in environmental fatigue assessment.
{"title":"Standards-Based Technologies for Exchanging Fatigue Test Data","authors":"T. Austin, Lianshan Lin, T. Métais","doi":"10.1115/PVP2018-84610","DOIUrl":"https://doi.org/10.1115/PVP2018-84610","url":null,"abstract":"Fatigue testing campaigns are a common feature in the design and operation of advanced engineering systems in the aerospace and power generation sectors. The resulting data are typically of a high inherent technical and financial value. Presently, these data are typically transferred between departments and companies by way of ad-hoc solutions reliant on obsolete or proprietary technologies, including CSV files, MS Excel® files, and PDFs. In these circumstances there is significant potential for data loss, inconsistency, and error. To address these shortcomings, there is a need for a systematic means of transferring data between different digital systems. With this in mind, a series of CEN Workshops on engineering materials data have taken place with a view to developing technologies for representing and exchanging engineering materials data. Most recently, a CEN Workshop on the topic of fatigue test data has delivered data formats derived from the ISO 12106 standard for axial strain-controlled fatigue testing. This paper describes the methodology for developing the data formats and demonstrates their use in the scope of the INCEFA-PLUS project on increasing safety in nuclear power plants by covering gaps in environmental fatigue assessment.","PeriodicalId":128383,"journal":{"name":"Volume 1A: Codes and Standards","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124876788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thanh Long Nguyen, M. Lee, K. Hasegawa, Yun‐Jae Kim
In this study, the effect of longitudinal distance H between non-aligned twin cracks is investigated using finite element damage analysis. The FE damage analysis based on the stress-modified fracture strain model is used to calculate the failure stress of non-aligned twin cracked pipe. Parametric study on the axial distance H between non-aligned twin cracks with various crack depths and lengths were conducted and compared with predictions using the alignment rules and the net-section collapse load approach for single crack provided in ASME Code. It is shown that the trend of the predicted collapse bending stresses for the non-aligned twin cracked pipes using FE damage analysis are different from the ones using the alignment rule.
{"title":"Numerical Study on Longitudinal Distance Effect on Failure Stress of Non-Aligned Twin Cracked Pipe","authors":"Thanh Long Nguyen, M. Lee, K. Hasegawa, Yun‐Jae Kim","doi":"10.1115/PVP2018-84838","DOIUrl":"https://doi.org/10.1115/PVP2018-84838","url":null,"abstract":"In this study, the effect of longitudinal distance H between non-aligned twin cracks is investigated using finite element damage analysis. The FE damage analysis based on the stress-modified fracture strain model is used to calculate the failure stress of non-aligned twin cracked pipe. Parametric study on the axial distance H between non-aligned twin cracks with various crack depths and lengths were conducted and compared with predictions using the alignment rules and the net-section collapse load approach for single crack provided in ASME Code. It is shown that the trend of the predicted collapse bending stresses for the non-aligned twin cracked pipes using FE damage analysis are different from the ones using the alignment rule.","PeriodicalId":128383,"journal":{"name":"Volume 1A: Codes and Standards","volume":"76 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124137416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}