Algal blooms can threaten human health if cyanotoxins such as microcystin are produced by cyanobacteria. Regularly monitoring microcystin concentrations in recreational waters to inform management action is a tool for protecting public health; however, monitoring cyanotoxins is resource- and time-intensive. Statistical models that identify waterbodies likely to produce microcystin can help guide monitoring efforts, but variability in bloom severity and cyanotoxin production among lakes and years makes prediction challenging. We evaluated the skill of a statistical classification model developed from water quality surveys in one season with low temporal replication but broad spatial coverage to predict if microcystin is likely to be detected in a lake in subsequent years. We used summertime monitoring data from 128 lakes in Iowa (USA) sampled between 2017 and 2021 to build and evaluate a predictive model of microcystin detection as a function of lake physical and chemical attributes, watershed characteristics, zooplankton abundance, and weather. The model built from 2017 data identified pH, total nutrient concentrations, and ecogeographic variables as the best predictors of microcystin detection in this population of lakes. We then applied the 2017 classification model to data collected in subsequent years and found that model skill declined but remained effective at predicting microcystin detection (area under the curve, AUC ≥ 0.7). We assessed if classification skill could be improved by assimilating the previous years’ monitoring data into the model, but model skill was only minimally enhanced. Overall, the classification model remained reliable under varying climatic conditions. Finally, we tested if early season observations could be combined with a trained model to provide early warning for late summer microcystin detection, but model skill was low in all years and below the AUC threshold for two years. The results of these modeling exercises support the application of correlative analyses built on single-season sampling data to monitoring decision-making, but similar investigations are needed in other regions to build further evidence for this approach in management application.
Clay-algae flocculation is a promising method to remove harmful algal blooms (HABs) in aquatic ecosystems. Many HAB-generating species, such as Microcystis aeruginosa (M. aeruginosa), a common species in lakes, produce toxins and harm the environment, human health, and the economy. Natural clays, such as bentonite and kaolinite, and modification of these clays have been applied to mitigate HABs by forming large aggregates and settling down. In this study, we aim to examine the impact of laponite, a commercially available smectite clay that is synthetic, transparent, compatible with human tissues, and degradable, on removing HABs. We compare the cell removal efficiencies (RE) of laponite, two natural clays, and their polyaluminum chloride (PAC)-modified versions through clay-algae flocculation experiments. Our results show that the optimum concentrations of laponite, bentonite, kaolinite, PAC-modified bentonite, and PAC-modified kaolinite to remove 80 % of the M. aeruginosa cells from the water column are 0.05 g/L, 2 g/L, 4 g/L, 2 g/L and 0.3 g/L respectively. Therefore, to achieve the same cell removal efficiency, the amount of laponite needed is 40 to 80 times less than bentonite and kaolinite, and 6 times less than PAC-modified kaolinite. We demonstrate that the superior performance of laponite clay is because of its smaller particle size, which increases the encounter rate between cells and clay particles. Furthermore, experiments using water samples from Powderhorn Lake confirmed laponite's effectiveness in mitigating HABs. Our price analysis also suggests that this commercially-available clay, laponite, can be used in the field at a relatively low cost.
Microbial blooms have been reported in the First Generation Magnox Storage Pond at the Sellafield Nuclear Facility. The pond is kept alkaline with NaOH to minimise fuel rod corrosion, however alkali-tolerant microbial blooms dominated by the cyanobacterium Pseudanabaena catenata are able to thrive in this hostile environment. This study assessed the impact of alternative alkali-dosing regimens (KOH versus NaOH treatment) on biomass accumulation, using a P. catenata dominated mixed culture, which is representative of the pond environment. Optical density was reduced by 40–67 % with KOH treatment over the 3-month chemostat experiment. Microbial community analysis and proteomics demonstrated that the KOH-dependent inhibition of cell growth was mostly specific to P. catenata. The addition of KOH to nuclear storage ponds may therefore help control growth of this pioneer photosynthetic organism due to its sensitivity to potassium, while maintaining the high pH needed to inhibit the corrosion of stored nuclear fuel.
Dinophysis, a mixotrophic dinoflagellate that is known to prey on the ciliate Mesodinium rubrum, and retain its chloroplasts, is responsible for diarrhetic shellfish poisoning (DSP) in humans and has been identified on all U.S. coasts. Monocultures of Dinophysis have been used to investigate the growth of Dinophysis species in response to variations in environmental conditions, however, little is known about the roles of system stability (turbulence) and mixotrophy in the growth and toxicity of Dinophysis species in the U.S.. To begin to address this gap in knowledge, culturing experiments were conducted with three species (four strains) of Dinophysis, that included predator-prey co-incubation (Dinophysis spp.+ M. rubrum) and prey-only (M. rubrum) flasks. Cultures were investigated for effects of low or high turbulence on Dinophysis spp. growth, feeding, and amounts of intra- and extracellular toxins: okadaic acid and derivatives (diarrhetic shellfish toxins, DSTs) and pectenotoxins (PTXs). Turbulence did not have a measurable effect on the rates of ingestion of M. rubrum prey by Dinophysis spp. for any of the four strains, however, effects on growth and particulate and dissolved toxins were observed. High turbulence (ε = 10−2 m2s−3) significantly slowed growth of both D. acuminata and D. ovum relative to still controls, but significantly stimulated growth of the D. caudata strain. Increasing turbulence also resulted in significantly higher intracellular toxin content in D. acuminata cultures (DSTs and PTXs), but significantly reduced intracellular toxin content (PTXs) in those of D. caudata. An increase in turbulence appeared to promote toxin leakage, as D. ovum had significantly more extracellular DSTs found in the medium under high turbulence when compared to the still control. Overall, significant responses to turbulence were observed, whereby the three strains from the “Dinophysis acuminata complex” displayed a stress response to turbulence, i.e., decreasing growth, increasing intracellular toxin content and/or increasing toxin leakage, while the D. caudata strain had an opposite response, appearing stimulated by, or more tolerant of, high turbulence.
Microplastics are well known as contaminants in marine environments. With the development of biofilms, most microplastics will eventually sink and deposit in benthic environment. However, little research has been done on benthic toxic dinoflagellates, and the effects of microplastics on benthic dinoflagellates are unknown. Prorocentrum lima is a cosmopolitan toxic benthic dinoflagellate, which can produce a range of polyether metabolites, such as diarrhetic shellfish poisoning (DSP) toxins. In order to explore the impact of microplastics on marine benthic dinoflagellates, in this paper, we studied the effects of polystyrene (PS) on the growth and toxin production of P. lima. The molecular response of P. lima to microplastic stress was analyzed by transcriptomics. We selected 100 nm, 10 μm and 100 μm PS, and set three concentrations of 1 mg L−1, 10 mg L−1 and 100 mg L−1. The results showed that PS exposure had limited effects on cell growth, but increased the OA and extracellular polysaccharide content at high concentrations. After exposure to PS MPs, genes associated with DSP toxins synthesis, carbohydrate synthesis and energy metabolism, such as glycolysis, TCA cycle and pyruvate metabolism, were significantly up-regulated. We speculated that after exposure to microplastics, P. lima may increase the synthesis of DSP toxins and extracellular polysaccharides, improve the level of energy metabolism and gene expression of ABC transporter, thereby protecting algal cells from damage. Our findings provide new insights into the effects of microplastics on toxic benthic dinoflagellates.
Harmful Algal Blooms (HABs) are increasing in temperate areas, and the growth rates of benthic harmful dinoflagellates may be favoured in the context of global climate change. Benthic dinoflagellates, including species belonging to the Ostreopsis Schmidt genus, are known to develop on the surface of macroalgae and different macroalgal morphotypes and communities could host higher or lower cell abundances. The physical structure of the macroalgal substrate at the small scale (cm, microhabitat scale) and the structural complexity of the macroalgal community at the medium scale (few m, mesohabitat scale) could play a relevant role in bloom facilitation: the hypothesis that Ostreopsis species could be associated with macroalgal turfs and shrubs, structurally less complex communities than canopy-forming macroalgae, is especially under discussion and, if confirmed, could link bloom occurrence to regime shifts in temperate ecosystems. The present study, performed in two locations of the Ligurian Sea (Rochambeau, France and Vernazzola, Italy) aimed at understanding marine vegetation's role at the micro and mesohabitat scales in controlling the distribution and abundance of Ostreopsis. The abundance of the microalgal cells was quantified at different spatial scales, from cm to a few m, on different macroalgal species and communities, including artificial substrates, to tease apart the micro and mesohabitat effects. The results obtained show a high spatio-temporal variability, potentially hiding habitat-related patterns. The substrate's preferences diminish when cell abundances are very high, as in the case of Rochambeau, while in presence of moderate cell abundances as in Vernazzola or the first phases of blooms, it is possible to appreciate differences in abundances among substrates (in our study, Dictyota fasciola (Roth) Lamouroux supporting higher abundances). Our results open new research topics such as the study of blooms at a larger scale (macrohabitat) and testing different sampling methods to standardise the cells' abundances independently on the substrate.
Harmful algal bloom (HAB) toxins consumed by marine predators through fish prey can be lethal but studies on the resulting population consequences are lacking. Over the past approximately 20 years there have been large regional declines in some harbour seal populations around Scotland. Analyses of excreta (faeces and urine from live and dead seals and faecal samples from seal haulout sites) suggest widespread exposure to toxins through the ingestion of contaminated prey. A risk assessment model, incorporating concentrations of the two major HAB toxins found in seal prey around Scotland (domoic acid (DA), and saxitoxins (STX)), the seasonal persistence of the toxins in the fish and the foraging patterns of harbour seals were used to estimate the proportion of adults and juveniles likely to have ingested doses above various estimated toxicity thresholds. The results were highly dependent on toxin type, persistence, and foraging regime as well as age class, all of which affected the proportion of exposed animals exceeding toxicity thresholds. In this preliminary model STX exposure was unlikely to result in mortalities. Modelled DA exposure resulted in doses above an estimated lethal threshold of 1900 µg/kg body mass affecting up to 3.8 % of exposed juveniles and 5.3 % of exposed adults. Given the uncertainty in the model parameters and the limitations of the data these conclusions should be treated with caution, but they indicate that DA remains a potential factor involved in the regional declines of harbour seals. Similar risks may be experienced by other top predators, including small cetaceans and seabirds that feed on similar prey in Scottish waters.
Ostreopsis spp. blooms have been occurring in the last two decades in the Mediterranean Sea in association with a variety of biotic and abiotic substrata (macroalgae, seagrasses, benthic invertebrates, sand, pebbles and rocks). Cells proliferate attached to the surfaces through mucilaginous trichocysts, which lump together microalgal cells, and can also be found in the plankton and on floating aggregates: such tychoplanktonic behavior makes the quantitative assessment of blooms more difficult than planktonic or benthic ones. Different techniques have been so far applied for quantifying cell abundances of benthic microalgae for research, monitoring and risk assessment purposes. In this context, the Benthic Dinoflagellates Integrator (BEDI), a non-destructive quantification method for benthic dinoflagellate abundances, was developed and tested within the EU ENPI-CBCMED project M3-HABs. This device allows mechanical detachment of cells without collecting the benthic substrate, providing an integrated assessment of both epiphytic and planktonic cells, i.e. of the number of cells potentially made available in the water volume from “resuspension” which could have harmful effects on other organisms (including humans).
The present study confirms the effectiveness of the BEDI sampling device across different environments across the Mediterranean Sea and constitutes the first large-scale study of Ostreopsis spp. blooms magnitude in function of different macro- and meso‑habitat features across the basin.