首页 > 最新文献

Harmful Algae最新文献

英文 中文
Response of heterocyst differentiation of Dolichospermum to different forms of nitrogen deficiency Dolichospermum 的异囊分化对不同形式缺氮的反应
IF 5.5 1区 生物学 Q1 MARINE & FRESHWATER BIOLOGY Pub Date : 2024-11-01 DOI: 10.1016/j.hal.2024.102742
Zichen Liu , Fazhi Xie , Liya Wang , Li Yu , Xiaoli Shi , Zhen Yang , Min Zhang
In recent years, initiatives aimed at mitigating eutrophication have successfully reduced nitrogen and phosphorus concentrations in numerous lakes across China. Notably, the management of total nitrogen levels has prompted a shift in the dominant genera responsible for harmful algal blooms. Among these, Dolichospermum, a typical diazotrophic cyanobacterium, exhibits the ability to differentiate heterocysts for atmospheric N2 fixation under nitrogen-limited conditions. However, the underlying mechanisms driving heterocyst differentiation in response to the absence of specific nitrogen compounds remain poorly understood. This study analyzed the driving factors influencing heterocyst frequency using field data from Lake Chaohu collected between January and June 2022. Furthermore, an experiment was conducted utilizing NH4Cl, NaNO3 and urea as nitrogen sources, with specific nitrogen deficiencies created to investigate the response mechanisms of Dolichospermum under these conditions. The results indicated significant monthly variations in heterocyst frequency in Lake Chaohu, which were associated with the interaction of multiple driving factors. Nutrient changes emerged as the most intuitive driving factor, with heterocyst frequency showing a significant negative correlation with total nitrogen and dissolved total nitrogen levels. Experimental results demonstrated that the absence of NO3N promoted both the biomass and heterocyst frequency of Dolichospermum. When NH4N was limited, the proliferation of Dolichospermum was inhibited, leading to an extended period of heterocyst development. Although a lack of urea eventually increased heterocyst frequency in Dolichospermum, there was no significant increase in biomass. The concentrations of the three nitrogen sources exhibited a negative correlation with heterocyst differentiation, with the effects of NO3N and urea deficiency on heterocyst differentiation being significantly stronger than those of NH4N. Moreover, heterocyst differentiation frequency was positively correlated with photosynthetic efficiency, which indicated that the acquisition and distribution of photosynthetic energy between heterocysts and vegetative cells also influence the differentiation process of heterocysts to some extent. The findings highlight the differing responses of heterocyst differentiation to various forms of nitrogen, emphasizing the importance of prioritizing NH4N removal in nutrient control. However, further research is needed to determine the key threshold concentrations of different nitrogen sources that trigger heterocyst differentiation.
近年来,旨在缓解富营养化的措施已成功降低了中国许多湖泊的氮磷浓度。值得注意的是,对总氮水平的管理促使造成有害藻华的优势种属发生了变化。其中,Dolichospermum 是一种典型的重氮蓝藻,具有在氮限制条件下分化出异囊进行大气 N2 固定的能力。然而,人们对驱动异囊分化以应对特定氮化合物缺失的内在机制仍然知之甚少。本研究利用 2022 年 1 月至 6 月期间收集的巢湖实地数据,分析了影响异囊频率的驱动因素。此外,还利用 NH4Cl、NaNO3 和尿素作为氮源,进行了特定缺氮条件下的实验,以研究在这些条件下多壳菌的响应机制。结果表明,巢湖中异囊频率的月度变化很大,这与多种驱动因素的相互作用有关。养分变化是最直观的驱动因素,异囊频率与总氮和溶解总氮水平呈显著负相关。实验结果表明,NO3N 的缺失会促进 Dolichospermum 的生物量和异囊频率。当限制 NH4N 时,Dolichospermum 的增殖受到抑制,导致异囊发育期延长。虽然缺乏尿素最终会增加多利西伯菌的异囊频率,但生物量并没有显著增加。三种氮源的浓度与异囊分化呈负相关,NO3N 和尿素缺乏对异囊分化的影响明显强于 NH4N。此外,异囊分化频率与光合效率呈正相关,这表明异囊和无性细胞之间光合能量的获取和分配也在一定程度上影响着异囊的分化过程。研究结果突显了异囊分化对各种形式氮的不同反应,强调了在养分控制中优先去除 NH4N 的重要性。不过,还需要进一步研究,以确定引发异囊分化的不同氮源的关键阈值浓度。
{"title":"Response of heterocyst differentiation of Dolichospermum to different forms of nitrogen deficiency","authors":"Zichen Liu ,&nbsp;Fazhi Xie ,&nbsp;Liya Wang ,&nbsp;Li Yu ,&nbsp;Xiaoli Shi ,&nbsp;Zhen Yang ,&nbsp;Min Zhang","doi":"10.1016/j.hal.2024.102742","DOIUrl":"10.1016/j.hal.2024.102742","url":null,"abstract":"<div><div>In recent years, initiatives aimed at mitigating eutrophication have successfully reduced nitrogen and phosphorus concentrations in numerous lakes across China. Notably, the management of total nitrogen levels has prompted a shift in the dominant genera responsible for harmful algal blooms. Among these, <em>Dolichospermum</em>, a typical diazotrophic cyanobacterium, exhibits the ability to differentiate heterocysts for atmospheric N<sub>2</sub> fixation under nitrogen-limited conditions. However, the underlying mechanisms driving heterocyst differentiation in response to the absence of specific nitrogen compounds remain poorly understood. This study analyzed the driving factors influencing heterocyst frequency using field data from Lake Chaohu collected between January and June 2022. Furthermore, an experiment was conducted utilizing NH<sub>4</sub>Cl, NaNO<sub>3</sub> and urea as nitrogen sources, with specific nitrogen deficiencies created to investigate the response mechanisms of <em>Dolichospermum</em> under these conditions. The results indicated significant monthly variations in heterocyst frequency in Lake Chaohu, which were associated with the interaction of multiple driving factors. Nutrient changes emerged as the most intuitive driving factor, with heterocyst frequency showing a significant negative correlation with total nitrogen and dissolved total nitrogen levels. Experimental results demonstrated that the absence of NO<sub>3</sub><img>N promoted both the biomass and heterocyst frequency of <em>Dolichospermum</em>. When NH<sub>4<img></sub>N was limited, the proliferation of <em>Dolichospermum</em> was inhibited, leading to an extended period of heterocyst development. Although a lack of urea eventually increased heterocyst frequency in <em>Dolichospermum</em>, there was no significant increase in biomass. The concentrations of the three nitrogen sources exhibited a negative correlation with heterocyst differentiation, with the effects of NO<sub>3</sub><img>N and urea deficiency on heterocyst differentiation being significantly stronger than those of NH<sub>4</sub><img>N. Moreover, heterocyst differentiation frequency was positively correlated with photosynthetic efficiency, which indicated that the acquisition and distribution of photosynthetic energy between heterocysts and vegetative cells also influence the differentiation process of heterocysts to some extent. The findings highlight the differing responses of heterocyst differentiation to various forms of nitrogen, emphasizing the importance of prioritizing NH<sub>4</sub><img>N removal in nutrient control. However, further research is needed to determine the key threshold concentrations of different nitrogen sources that trigger heterocyst differentiation.</div></div>","PeriodicalId":12897,"journal":{"name":"Harmful Algae","volume":"139 ","pages":"Article 102742"},"PeriodicalIF":5.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of novel microcystins in algal extracts by a liquid chromatography–high-resolution mass spectrometry data analysis pipeline 利用液相色谱-高分辨质谱数据分析管道鉴定藻类提取物中的新型微囊藻毒素
IF 5.5 1区 生物学 Q1 MARINE & FRESHWATER BIOLOGY Pub Date : 2024-11-01 DOI: 10.1016/j.hal.2024.102739
Kirsten A. Cottrill , Christopher O. Miles , Logan C. Krajewski , Brady R. Cunningham , William Bragg , Noelani R. Boise , Kristin D. Victry , David S. Wunschel , Karen L. Wahl , Elizabeth I. Hamelin

Background

Microcystins are an emergent public health problem. These toxins are secondary metabolites of harmful cyanobacterial blooms, with blooms becoming more prevalent with eutrophication of water. Exposure to microcystins can result in sickness, liver damage, and even death. Over 300 microcystins have been identified to date, with differences in toxicity based on the specific amino acid composition. Because of this diversity in microcystins, as well as the likelihood of detecting as yet undiscovered microcystins, it is vital to establish a methodological workflow to identify any microcystin in a complex sample, regardless of the availability of a reference standard. Additionally, ascribing varying levels of confidence to these identifications is critical to effectively communicate discoveries.

Methods

A liquid-chromatography–high-resolution mass spectrometry method was utilized to identify microcystins present in cyanobacterial extracts from a strain of Microcystis aeruginosa and an Aphanizomenon sp. First, microcystin congeners with available standards were identified in the cyanobacterial extract. These known-unknown microcystins were considered to have the highest confidence identifications due to availability of accurate masses, retention times, and library spectra for comparison. Utilizing the spectra of these microcystins, relatively high-abundance diagnostic product-ions were identified and employed to screen the data for additional candidate microcystins. Microcystins without a standard that had an exact mass matching a microcystin published in CyanoMetDB were considered semi-known-unknown microcystins. The remaining microcystins were considered unknown-unknown microcystins. The identities of the microcystins determined herein were additionally supported by product-ion analysis, thiol reactivity, esterification reactions, neutral loss analysis, and literature contextualization.

Results

In total, utilizing the systematic workflow presented herein, 23 microcystins were identified in the M. aeruginosa culture, including two not published previously: [d-Asp3]MC-LCit and the incompletely identified MC-L(C7H11NO3).
背景微囊藻毒素是一个新出现的公共卫生问题。这些毒素是有害蓝藻藻华的次级代谢产物,随着水体富营养化,藻华变得越来越普遍。接触微囊藻毒素会导致疾病、肝损伤甚至死亡。迄今已发现 300 多种微囊藻毒素,其毒性因特定的氨基酸组成而异。由于微囊藻毒素种类繁多,而且有可能检测到尚未发现的微囊藻毒素,因此,无论是否有参考标准,都必须建立一套方法工作流程,以鉴定复杂样本中的任何微囊藻毒素。首先,在蓝藻提取物中鉴定出具有可用标准的微囊藻毒素同系物。这些已知-未知的微囊藻毒素被认为是可信度最高的鉴定物,因为它们有准确的质量、保留时间和库谱可作比较。利用这些微囊藻毒素的光谱,确定了相对高丰度的诊断产物离子,并利用这些数据筛选出其他候选微囊藻毒素。没有与 CyanoMetDB 中公布的微囊藻毒素质量完全匹配的标准微囊藻毒素被视为半未知微囊藻毒素。其余的微囊藻毒素被视为未知微囊藻毒素。本文确定的微囊藻毒素的身份还得到了产物离子分析、硫醇反应性、酯化反应、中性损失分析和文献背景分析的支持。结果利用本文介绍的系统工作流程,总共在铜绿微囊藻培养物中鉴定出 23 种微囊藻毒素,其中包括两种以前未发表的微囊藻毒素:[d-Asp3]MC-LCit 和未完全鉴定的 MC-L(C7H11NO3)。
{"title":"Identification of novel microcystins in algal extracts by a liquid chromatography–high-resolution mass spectrometry data analysis pipeline","authors":"Kirsten A. Cottrill ,&nbsp;Christopher O. Miles ,&nbsp;Logan C. Krajewski ,&nbsp;Brady R. Cunningham ,&nbsp;William Bragg ,&nbsp;Noelani R. Boise ,&nbsp;Kristin D. Victry ,&nbsp;David S. Wunschel ,&nbsp;Karen L. Wahl ,&nbsp;Elizabeth I. Hamelin","doi":"10.1016/j.hal.2024.102739","DOIUrl":"10.1016/j.hal.2024.102739","url":null,"abstract":"<div><h3>Background</h3><div>Microcystins are an emergent public health problem. These toxins are secondary metabolites of harmful cyanobacterial blooms, with blooms becoming more prevalent with eutrophication of water. Exposure to microcystins can result in sickness, liver damage, and even death. Over 300 microcystins have been identified to date, with differences in toxicity based on the specific amino acid composition. Because of this diversity in microcystins, as well as the likelihood of detecting as yet undiscovered microcystins, it is vital to establish a methodological workflow to identify any microcystin in a complex sample, regardless of the availability of a reference standard. Additionally, ascribing varying levels of confidence to these identifications is critical to effectively communicate discoveries.</div></div><div><h3>Methods</h3><div>A liquid-chromatography–high-resolution mass spectrometry method was utilized to identify microcystins present in cyanobacterial extracts from a strain of <em>Microcystis aeruginosa</em> and an <em>Aphanizomenon</em> sp. First, microcystin congeners with available standards were identified in the cyanobacterial extract. These known-unknown microcystins were considered to have the highest confidence identifications due to availability of accurate masses, retention times, and library spectra for comparison. Utilizing the spectra of these microcystins, relatively high-abundance diagnostic product-ions were identified and employed to screen the data for additional candidate microcystins. Microcystins without a standard that had an exact mass matching a microcystin published in CyanoMetDB were considered semi-known-unknown microcystins. The remaining microcystins were considered unknown-unknown microcystins. The identities of the microcystins determined herein were additionally supported by product-ion analysis, thiol reactivity, esterification reactions, neutral loss analysis, and literature contextualization.</div></div><div><h3>Results</h3><div>In total, utilizing the systematic workflow presented herein, 23 microcystins were identified in the <em>M. aeruginosa</em> culture, including two not published previously: [<span>d</span>-Asp<sup>3</sup>]MC-LCit and the incompletely identified MC-L(C<sub>7</sub>H<sub>11</sub>NO<sub>3</sub>).</div></div>","PeriodicalId":12897,"journal":{"name":"Harmful Algae","volume":"139 ","pages":"Article 102739"},"PeriodicalIF":5.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Connectivity of toxigenic Pseudo-nitzschia species assemblages between the Northeast U.S. continental shelf and an adjacent estuary 美国东北部大陆架与邻近河口之间的毒源伪尼茨藻物种群的连通性
IF 5.5 1区 生物学 Q1 MARINE & FRESHWATER BIOLOGY Pub Date : 2024-11-01 DOI: 10.1016/j.hal.2024.102738
Katherine M. Roche , Isabella N. Church , Alexa R. Sterling , Tatiana A. Rynearson , Matthew J. Bertin , Andrew M. Kim , Riley D. Kirk , Bethany D. Jenkins
Pseudo-nitzschia harmful algal blooms have recently caused elevated domoic acid in coastal environments of the Northeast United States. In 2017, the toxigenic species P. australis was observed in Narragansett Bay, Rhode Island, a temperate estuarine ecosystem, for the first time since 2009 when DNA monitoring for Pseudo-nitzschia species began. This highly toxic species likely contributed to toxin-related shellfish harvest closures and is hypothesized to have been introduced by an offshore source. Little is known about offshore Pseudo-nitzschia spp. populations in the Northeast Continental Shelf marine ecosystem or how often toxigenic species enter Narragansett Bay through physical processes. Here, we collected filtered biomass samples from multiple time series sites within Narragansett Bay and along the Northeast U.S. Shelf Long-Term Ecological Research transect in winter and summer to investigate the frequency and seasonality of potential Pseudo-nitzschia spp. inflow from the continental shelf to the estuary. Species were taxonomically identified using DNA sequencing of the ITS1 region and domoic acid concentrations were quantified by liquid chromatography with tandem mass spectrometry and multiple reaction monitoring. During six years of sampling, Pseudo-nitzschia species assemblages were more similar between Narragansett Bay and the Northeast shelf in winter than summer, suggesting greater ecosystem connectivity in winter. These winter assemblages were often accompanied by higher domoic acid. Several Pseudo-nitzschia species co-occurred most often with domoic acid and were likely responsible for toxin production in this region, including P. pungens var. pungens, P. multiseries, P. calliantha, P. plurisecta, P. australis, and P. fraudulenta. Domoic acid was detected during periods of relatively low macronutrient concentrations in both seasons, warmer sea surface temperatures in winter, and colder temperatures in summer within this dataset. This study represents some of the first domoic acid measurements on the offshore Northeast U.S. Continental Shelf, a region that supplies water to other coastal environments and could seed future harmful algal blooms. The elevated domoic acid and frequency of hypothesized inflow of toxigenic Pseudo-nitzschia spp. from the Northeast continental shelf to Narragansett Bay in winter indicate the need to monitor coastal and offshore environments for toxins and harmful algal bloom taxa during colder months.
近来,假氮藻有害藻华导致美国东北部沿海环境中的多摩酸升高。2017 年,在罗德岛纳拉甘西特湾(一个温带河口生态系统)观察到了致毒物种 P. australis,这是自 2009 年开始对 Pseudo-nitzschia 物种进行 DNA 监测以来的第一次。这种剧毒物种很可能导致了与毒素有关的贝类休渔,据推测是由近海来源引入的。人们对东北大陆架海洋生态系统中的近海假nitzschia属种群或毒素物种通过物理过程进入纳拉甘西特湾的频率知之甚少。在此,我们从纳拉甘西特湾内的多个时间序列站点以及美国东北大陆架长期生态研究横断面沿线收集了冬夏两季的过滤生物量样本,以调查可能从大陆架流入河口的伪黑藻的频率和季节性。利用 ITS1 区域的 DNA 测序对物种进行了分类鉴定,并利用液相色谱-串联质谱法和多反应监测对多摩酸浓度进行了定量。在六年的取样过程中,纳拉甘西特湾和东北大陆架之间的假尼茨藻物种组合在冬季比夏季更为相似,这表明冬季生态系统的连通性更强。这些冬季物种群通常伴有较高的多摩酸。有几个假尼茨藻物种最常与多摩酸同时出现,可能是该地区毒素产生的原因,包括 P. pungens var. pungens、P. multiseries、P. calliantha、P. plurisecta、P. australis 和 P. fraudulenta。在该数据集中,在两个季节宏量营养素浓度相对较低、冬季海面温度较高和夏季温度较低的时期,都能检测到多甲酸。这项研究是首次在美国东北部大陆架近海测量多藻酸;该地区为其他沿海环境提供水源,并可能在未来引发有害藻华。多藻酸(domoic acid)的升高,以及假定的毒素性假尼茨藻(Pseudo-nitzschia spp.)在冬季从东北大陆架流入纳拉甘西特湾的频率,表明有必要在寒冷的月份里监测沿海和近海环境中的毒素和有害藻华类群。
{"title":"Connectivity of toxigenic Pseudo-nitzschia species assemblages between the Northeast U.S. continental shelf and an adjacent estuary","authors":"Katherine M. Roche ,&nbsp;Isabella N. Church ,&nbsp;Alexa R. Sterling ,&nbsp;Tatiana A. Rynearson ,&nbsp;Matthew J. Bertin ,&nbsp;Andrew M. Kim ,&nbsp;Riley D. Kirk ,&nbsp;Bethany D. Jenkins","doi":"10.1016/j.hal.2024.102738","DOIUrl":"10.1016/j.hal.2024.102738","url":null,"abstract":"<div><div><em>Pseudo-nitzschia</em> harmful algal blooms have recently caused elevated domoic acid in coastal environments of the Northeast United States. In 2017, the toxigenic species <em>P. australis</em> was observed in Narragansett Bay, Rhode Island, a temperate estuarine ecosystem, for the first time since 2009 when DNA monitoring for <em>Pseudo-nitzschia</em> species began. This highly toxic species likely contributed to toxin-related shellfish harvest closures and is hypothesized to have been introduced by an offshore source. Little is known about offshore <em>Pseudo-nitzschia</em> spp. populations in the Northeast Continental Shelf marine ecosystem or how often toxigenic species enter Narragansett Bay through physical processes. Here, we collected filtered biomass samples from multiple time series sites within Narragansett Bay and along the Northeast U.S. Shelf Long-Term Ecological Research transect in winter and summer to investigate the frequency and seasonality of potential <em>Pseudo-nitzschia</em> spp. inflow from the continental shelf to the estuary. Species were taxonomically identified using DNA sequencing of the ITS1 region and domoic acid concentrations were quantified by liquid chromatography with tandem mass spectrometry and multiple reaction monitoring. During six years of sampling, <em>Pseudo-nitzschia</em> species assemblages were more similar between Narragansett Bay and the Northeast shelf in winter than summer, suggesting greater ecosystem connectivity in winter. These winter assemblages were often accompanied by higher domoic acid. Several <em>Pseudo-nitzschia</em> species co-occurred most often with domoic acid and were likely responsible for toxin production in this region, including <em>P. pungens</em> var<em>. pungens, P. multiseries, P. calliantha, P. plurisecta, P. australis</em>, and <em>P. fraudulenta</em>. Domoic acid was detected during periods of relatively low macronutrient concentrations in both seasons, warmer sea surface temperatures in winter, and colder temperatures in summer within this dataset. This study represents some of the first domoic acid measurements on the offshore Northeast U.S. Continental Shelf, a region that supplies water to other coastal environments and could seed future harmful algal blooms. The elevated domoic acid and frequency of hypothesized inflow of toxigenic <em>Pseudo-nitzschia</em> spp. from the Northeast continental shelf to Narragansett Bay in winter indicate the need to monitor coastal and offshore environments for toxins and harmful algal bloom taxa during colder months.</div></div>","PeriodicalId":12897,"journal":{"name":"Harmful Algae","volume":"139 ","pages":"Article 102738"},"PeriodicalIF":5.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Light-driven differences in bacterial networks and organic matter decomposition: Insights from an analysis of the harmful cyanobacterium Microcystis aeruginosa PCC 7806 细菌网络和有机物分解中的光驱动差异:分析有害蓝藻微囊藻 PCC 7806 的启示
IF 5.5 1区 生物学 Q1 MARINE & FRESHWATER BIOLOGY Pub Date : 2024-11-01 DOI: 10.1016/j.hal.2024.102740
Yang Liu , Xiding Wang , Xudong Liu , Fangru Nan , Jie Wang , Qi Liu , Junping Lv , Jia Feng , Shulian Xie
Freshwater systems are critical yet often underestimated components of global carbon cycling, functioning both as carbon sinks and sources. Cyanobacteria play a key role in this cycle by capturing atmospheric carbon dioxide through photosynthesis. The captured carbon is either released back into the atmosphere or sequestered in sediments following organismal decay. This study examines the pivotal role of cyanobacteria, specifically Microcystis aeruginosa PCC 7806, in the biogeochemical cycling of carbon in freshwater ecosystems, with a focus on how light influences the degradation of cyanobacteria-derived organic matter. Using a combination of 16S rDNA sequencing and excitation-emission matrix coupled with parallel factor (EEM-PARAFAC) analysis, we conducted a 50-day experiment to investigate the dynamics of dissolved organic matter (DOM) and lysate organic matter (LOM) derived from M. aeruginosa PCC 7806 under light and dark conditions. Our results demonstrate that light significantly impacts bacterial community composition, gene functionality, and the decomposition of organic matter. The findings emphasize the crucial role of light in facilitating microbial adaptation, stabilizing microbial networks and driving organic substrate transformation. These insights underscore the influence of light on microbial community dynamics and organic matter degradation, revealing shifts in microbial populations under varying light conditions. This suggests a strong link between photochemical processes and microbial activity, with significant ecological implications.
淡水系统是全球碳循环的重要组成部分,但往往被低估,它既是碳汇,也是碳源。蓝藻通过光合作用捕获大气中的二氧化碳,在这一循环中发挥着关键作用。捕获的碳要么被释放回大气中,要么在生物体衰变后被封存在沉积物中。本研究探讨了蓝藻(特别是铜绿微囊藻 PCC 7806)在淡水生态系统碳的生物地球化学循环中的关键作用,重点是光如何影响蓝藻衍生有机物的降解。利用 16S rDNA 测序和激发-发射矩阵耦合并行因子(EEM-PARAFAC)分析相结合的方法,我们进行了一项为期 50 天的实验,研究在光照和黑暗条件下铜绿微囊藻 PCC 7806 产生的溶解有机物(DOM)和裂解有机物(LOM)的动态变化。我们的研究结果表明,光照对细菌群落组成、基因功能和有机物分解有重大影响。这些发现强调了光在促进微生物适应、稳定微生物网络和推动有机基质转化方面的关键作用。这些见解强调了光对微生物群落动态和有机物降解的影响,揭示了不同光照条件下微生物种群的变化。这表明光化学过程与微生物活动之间存在密切联系,具有重要的生态影响。
{"title":"Light-driven differences in bacterial networks and organic matter decomposition: Insights from an analysis of the harmful cyanobacterium Microcystis aeruginosa PCC 7806","authors":"Yang Liu ,&nbsp;Xiding Wang ,&nbsp;Xudong Liu ,&nbsp;Fangru Nan ,&nbsp;Jie Wang ,&nbsp;Qi Liu ,&nbsp;Junping Lv ,&nbsp;Jia Feng ,&nbsp;Shulian Xie","doi":"10.1016/j.hal.2024.102740","DOIUrl":"10.1016/j.hal.2024.102740","url":null,"abstract":"<div><div>Freshwater systems are critical yet often underestimated components of global carbon cycling, functioning both as carbon sinks and sources. Cyanobacteria play a key role in this cycle by capturing atmospheric carbon dioxide through photosynthesis. The captured carbon is either released back into the atmosphere or sequestered in sediments following organismal decay. This study examines the pivotal role of cyanobacteria, specifically <em>Microcystis aeruginosa</em> PCC 7806, in the biogeochemical cycling of carbon in freshwater ecosystems, with a focus on how light influences the degradation of cyanobacteria-derived organic matter. Using a combination of 16S rDNA sequencing and excitation-emission matrix coupled with parallel factor (EEM-PARAFAC) analysis, we conducted a 50-day experiment to investigate the dynamics of dissolved organic matter (DOM) and lysate organic matter (LOM) derived from <em>M. aeruginosa</em> PCC 7806 under light and dark conditions. Our results demonstrate that light significantly impacts bacterial community composition, gene functionality, and the decomposition of organic matter. The findings emphasize the crucial role of light in facilitating microbial adaptation, stabilizing microbial networks and driving organic substrate transformation. These insights underscore the influence of light on microbial community dynamics and organic matter degradation, revealing shifts in microbial populations under varying light conditions. This suggests a strong link between photochemical processes and microbial activity, with significant ecological implications.</div></div>","PeriodicalId":12897,"journal":{"name":"Harmful Algae","volume":"139 ","pages":"Article 102740"},"PeriodicalIF":5.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of mixotrophy on cell cycle phase duration and correlation of karlotoxin synthesis with light and G1 phase in Karlodinium veneficum 混合营养对细胞周期阶段持续时间的影响以及卡洛托品合成与光照和 G1 阶段的相关性
IF 5.5 1区 生物学 Q1 MARINE & FRESHWATER BIOLOGY Pub Date : 2024-10-30 DOI: 10.1016/j.hal.2024.102741
Erik L.J.E. Broemsen , Jens Wira , Allen R. Place , Matthew W. Parrow
Karlodinium veneficum forms fish killing blooms in estuaries worldwide. The toxicity of these blooms is variable and thought to be connected to bloom stage and in situ growth rates. Methods for measuring in situ growth rates rely on the assumption that cell cycle progression is phased to the diel photocycle, which is true for phototrophically-growing K. veneficum cultures where G1 phase occurs during light and S and G2 + M phases occur during darkness. However, K. veneficum is a facultative mixotroph that also phagocytizes microalgal prey, and the effects of this mixotrophy on its cell cycle synchrony are unknown. Furthermore, toxicity in laboratory cultures is inversely related to growth rate and is light dependent, suggesting synchrony between the cell cycle (G1 phase) and karlotoxin synthesis. To test this, the cell cycle phase distribution and cellular toxin content for phototrophic and mixotrophic cultures of K. veneficum were monitored hourly for a full diel cycle. The results demonstrated that mixotrophic cultures maintained a synchronized cell cycle, despite increased growth rates. The faster growth rates were attributed to a shortened duration of G1 phase in mixotrophic cultures compared to phototrophic cultures (30.8 ± 9.2 h vs 69.4 ± 21.5 h, respectively). Meanwhile, toxin production was observed only during light hours, consistent with synthesis initiating with the photorespiratory byproduct glycolate. Cellular toxin content had a significant positive correlation with the percentage of G1 phase cells and a significant negative correlation with the percentage of S phase cells. These results indicate a clear role in mixotrophy increasing growth rates of K. veneficum and of the diel photocycle in synchronizing the cell and karlotoxin synthetic cycles.
Karlodinium veneficum 会在世界各地的河口形成杀死鱼类的藻华。这些水华的毒性各不相同,据认为与水华阶段和原位生长率有关。测量原位生长率的方法依赖于这样一种假设,即细胞周期的进展是按照昼夜光周期分阶段进行的,这对于光营养生长的 K. veneficum 培养物来说是正确的,即 G1 期发生在光照期间,S 期和 G2 + M 期发生在黑暗期间。然而,K. veneficum 是一种兼性混养生物,也会吞噬微藻猎物,这种混养对其细胞周期同步性的影响尚不清楚。此外,实验室培养物中的毒性与生长速度成反比,而且与光照有关,这表明细胞周期(G1 期)与卡洛托霉素合成之间存在同步性。为了验证这一点,我们在一个完整的昼夜周期内,每小时监测一次K. veneficum光营养型和混养型培养物的细胞周期阶段分布和细胞毒素含量。结果表明,尽管生长速度加快,但混养培养物仍能保持同步的细胞周期。与光营养培养物相比,混养培养物的 G1 期持续时间缩短(分别为 30.8 ± 9.2 小时与 69.4 ± 21.5 小时),因此生长速度加快。同时,只有在光照时间内才能观察到毒素的产生,这与光呼吸副产物乙醇酸开始合成是一致的。细胞毒素含量与 G1 期细胞的百分比呈显著正相关,与 S 期细胞的百分比呈显著负相关。这些结果表明,混合营养体在提高 K. veneficum 的生长率方面起着明显的作用,而昼夜光周期在使细胞和卡洛毒素合成周期同步方面也起着明显的作用。
{"title":"Influence of mixotrophy on cell cycle phase duration and correlation of karlotoxin synthesis with light and G1 phase in Karlodinium veneficum","authors":"Erik L.J.E. Broemsen ,&nbsp;Jens Wira ,&nbsp;Allen R. Place ,&nbsp;Matthew W. Parrow","doi":"10.1016/j.hal.2024.102741","DOIUrl":"10.1016/j.hal.2024.102741","url":null,"abstract":"<div><div><em>Karlodinium veneficum</em> forms fish killing blooms in estuaries worldwide. The toxicity of these blooms is variable and thought to be connected to bloom stage and <em>in situ</em> growth rates. Methods for measuring <em>in situ</em> growth rates rely on the assumption that cell cycle progression is phased to the diel photocycle, which is true for phototrophically-growing <em>K. veneficum</em> cultures where G1 phase occurs during light and S and G2 + <em>M</em> phases occur during darkness. However, <em>K. veneficum</em> is a facultative mixotroph that also phagocytizes microalgal prey, and the effects of this mixotrophy on its cell cycle synchrony are unknown. Furthermore, toxicity in laboratory cultures is inversely related to growth rate and is light dependent, suggesting synchrony between the cell cycle (G1 phase) and karlotoxin synthesis. To test this, the cell cycle phase distribution and cellular toxin content for phototrophic and mixotrophic cultures of <em>K. veneficum</em> were monitored hourly for a full diel cycle. The results demonstrated that mixotrophic cultures maintained a synchronized cell cycle, despite increased growth rates. The faster growth rates were attributed to a shortened duration of G1 phase in mixotrophic cultures compared to phototrophic cultures (30.8 ± 9.2 h vs 69.4 ± 21.5 h, respectively). Meanwhile, toxin production was observed only during light hours, consistent with synthesis initiating with the photorespiratory byproduct glycolate. Cellular toxin content had a significant positive correlation with the percentage of G1 phase cells and a significant negative correlation with the percentage of S phase cells. These results indicate a clear role in mixotrophy increasing growth rates of <em>K. veneficum</em> and of the diel photocycle in synchronizing the cell and karlotoxin synthetic cycles.</div></div>","PeriodicalId":12897,"journal":{"name":"Harmful Algae","volume":"140 ","pages":"Article 102741"},"PeriodicalIF":5.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of novel and known viruses associated with toxigenic and non-toxigenic bloom forming diatoms from the Northern Adriatic Sea 发现与北亚得里亚海有毒和无毒水华形成硅藻有关的新型和已知病毒
IF 5.5 1区 生物学 Q1 MARINE & FRESHWATER BIOLOGY Pub Date : 2024-10-15 DOI: 10.1016/j.hal.2024.102737
Timotej Turk Dermastia , Denis Kutnjak , Ion Gutierrez-Aguirre , Corina P.D. Brussaard , Katarina Bačnik
Algal blooms impact trophic interactions, community structure and element fluxes. Despite playing an important role in the demise of phytoplankton blooms, only few viruses infecting diatoms have been cultured. Pseudo-nitzschia is a widespread diatom genus that commonly blooms in coastal waters and contains toxin-producing species. This study describes the characterization of a novel virus infecting the toxigenic species Pseudo-nitzschia galaxiae isolated from the northern Adriatic Sea. The ssRNA virus PnGalRNAV has 29.5 nm ± 1.2 nm icosahedral virions and a genome size of 8.8 kb. It belongs to the picorna-like Marnaviridae family and shows high specificity for P. galaxiae infecting two genetically and morphologically distinct strains. We found two genetically distinct types of this virus and screening of the global virome database revealed matching sequences from the Mediterranean region and China, suggesting its global distribution. Another virus of similar shape and size infecting Pseudo-nitzschia calliantha was found, but its genome could not be determined. In addition, we have obtained and characterized a new virus that infects Chaetoceros tenuissimus. The replicase protein of this virus is very similar to the previously described ChTenDNAV type-II virus, but it has a unique genome and infection pattern. Our study is an important contribution to the collective diatom virus culture collection and will allow further investigation into how these viruses control diatom bloom termination, carbon export and toxin release in the case of Pseudo-nitzschia.
藻华影响营养互作、群落结构和元素通量。尽管病毒在浮游植物藻华的消亡过程中扮演着重要角色,但感染硅藻的病毒却很少被培养出来。假硅藻(Pseudo-nitzschia)是一种广泛分布的硅藻属,通常在沿海水域大量繁殖,并含有可产生毒素的物种。本研究描述了一种新型病毒的特征,该病毒感染了从亚得里亚海北部分离出来的产毒硅藻。ssRNA 病毒 PnGalRNAV 有 29.5 nm ± 1.2 nm 的二十面体病毒,基因组大小为 8.8 kb。它属于类皮卡病毒(picorna-like Marnaviridae)科,对加拉克希藻(P. galaxiae)具有高度特异性,可感染两种基因和形态上截然不同的毒株。我们发现了该病毒的两种不同基因类型,通过筛选全球病毒组数据库发现了来自地中海地区和中国的匹配序列,这表明该病毒分布于全球。我们还发现了另一种形状和大小相似的病毒,感染了假茑萝,但无法确定其基因组。此外,我们还获得并鉴定了一种感染 Chaetoceros tenuissimus 的新病毒。这种病毒的复制酶蛋白与之前描述的 ChTenDNAV II 型病毒非常相似,但它有独特的基因组和感染模式。我们的研究是对硅藻病毒集体培养收集的一个重要贡献,将有助于进一步研究这些病毒是如何控制硅藻藻华终止、碳输出和毒素释放的。
{"title":"Discovery of novel and known viruses associated with toxigenic and non-toxigenic bloom forming diatoms from the Northern Adriatic Sea","authors":"Timotej Turk Dermastia ,&nbsp;Denis Kutnjak ,&nbsp;Ion Gutierrez-Aguirre ,&nbsp;Corina P.D. Brussaard ,&nbsp;Katarina Bačnik","doi":"10.1016/j.hal.2024.102737","DOIUrl":"10.1016/j.hal.2024.102737","url":null,"abstract":"<div><div>Algal blooms impact trophic interactions, community structure and element fluxes. Despite playing an important role in the demise of phytoplankton blooms, only few viruses infecting diatoms have been cultured. <em>Pseudo-nitzschia</em> is a widespread diatom genus that commonly blooms in coastal waters and contains toxin-producing species. This study describes the characterization of a novel virus infecting the toxigenic species <em>Pseudo-nitzschia galaxiae</em> isolated from the northern Adriatic Sea. The ssRNA virus PnGalRNAV has 29.5 nm ± 1.2 nm icosahedral virions and a genome size of 8.8 kb. It belongs to the picorna-like <em>Marnaviridae</em> family and shows high specificity for <em>P. galaxiae</em> infecting two genetically and morphologically distinct strains. We found two genetically distinct types of this virus and screening of the global virome database revealed matching sequences from the Mediterranean region and China, suggesting its global distribution. Another virus of similar shape and size infecting <em>Pseudo-nitzschia calliantha</em> was found, but its genome could not be determined. In addition, we have obtained and characterized a new virus that infects <em>Chaetoceros tenuissimus</em>. The replicase protein of this virus is very similar to the previously described ChTenDNAV type-II virus, but it has a unique genome and infection pattern. Our study is an important contribution to the collective diatom virus culture collection and will allow further investigation into how these viruses control diatom bloom termination, carbon export and toxin release in the case of <em>Pseudo-nitzschia</em>.</div></div>","PeriodicalId":12897,"journal":{"name":"Harmful Algae","volume":"139 ","pages":"Article 102737"},"PeriodicalIF":5.5,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accumulation and depuration of 4,5-dihydro-KmTx2 from Karlodinium veneficum in the bivalves, Mercenaria mercenaria and Sinonovacula constricta 双壳类水蚤(Mercenaria mercenaria)和缢蛏(Sinonovacula constricta)体内4,5-二氢-KmTx2的积累和净化
IF 5.5 1区 生物学 Q1 MARINE & FRESHWATER BIOLOGY Pub Date : 2024-10-11 DOI: 10.1016/j.hal.2024.102736
Yanrong Li , Rong Chen , Zhujun Zhu , Tong Mu , Zhaoshou Ran , Jilin Xu , Chengxu Zhou , Xiaojun Yan
Bivalves (e.g., clams, oysters, mussels, scallops) are a significant part of the global diet and are harvested for their nutritional value, but as filter feeders they are susceptible to the accumulation of toxins produced by certain species of phytoplankton. Karlotoxins (KmTxs) are a class of amphidinol-like compounds with hemolytic, ichthyotoxic, and cytotoxic properties that have been associated with harmful algal blooms, and the dinoflagellate Karlodinium veneficum uses KmTxs to facilitate prey capture and deter grazing by other organisms. In this work, we examined the accumulation and depuration of 4,5-dihydro-KmTx2, a karlotoxin previously isolated from K. veneficum, in two bivalves with different life habits, i.e., Sinonovacula constricta Lamarck and Mercenaria mercenaria Linnaeus. After both bivalves received K. veneficum GM5 in their feed for a long period of 10 days, 4,5-dihydro-KmTx2 was accumulated considerably in the visceral mass, but there was almost no toxin accumulation in the muscle. The accumulation was more severe for M. mercenaria than S. constricta. The toxin was cleared almost completely from the bivalves 5 days after K. veneficum GM5 was removed from the feed. For both bivalves, the bait microalgae I. galbana slowed both the accumulation and the depuration of the toxin.
双壳类动物(如蛤蜊、牡蛎、贻贝、扇贝)是全球食物的重要组成部分,因其营养价值而被捕捞,但作为滤食性动物,它们很容易受到某些种类浮游植物产生的毒素的累积影响。卡洛毒素(KmTxs)是一类具有溶血性、鱼毒性和细胞毒性的蚜虫醇类化合物,与有害藻类的大量繁殖有关,甲藻卡洛藻(Karlodinium veneficum)利用 KmTxs 来促进捕获猎物并阻止其他生物的捕食。在这项工作中,我们研究了 4,5-二氢-KmTx2(一种之前从 K. veneficum 分离出来的卡洛毒素)在两种具有不同生活习性的双壳贝,即拉马克双壳贝(Sinonovacula constricta Lamarck)和林尼厄斯双壳贝(Mercenaria mercenaria Linnaeus)体内的积累和净化情况。这两种双壳贝在饲料中长期摄入 K. veneficum GM5 10 天后,4,5-二氢-KmTx2 在内脏中大量积累,但在肌肉中几乎没有毒素积累。镍螯虾的毒素积累比缢蛏更为严重。从饲料中移除 K. veneficum GM5 后 5 天,毒素几乎完全从双壳类动物体内清除。对于这两种双壳类动物,饵料微藻 I. galbana 既减缓了毒素的积累,也减缓了毒素的清除。
{"title":"Accumulation and depuration of 4,5-dihydro-KmTx2 from Karlodinium veneficum in the bivalves, Mercenaria mercenaria and Sinonovacula constricta","authors":"Yanrong Li ,&nbsp;Rong Chen ,&nbsp;Zhujun Zhu ,&nbsp;Tong Mu ,&nbsp;Zhaoshou Ran ,&nbsp;Jilin Xu ,&nbsp;Chengxu Zhou ,&nbsp;Xiaojun Yan","doi":"10.1016/j.hal.2024.102736","DOIUrl":"10.1016/j.hal.2024.102736","url":null,"abstract":"<div><div>Bivalves (e.g., clams, oysters, mussels, scallops) are a significant part of the global diet and are harvested for their nutritional value, but as filter feeders they are susceptible to the accumulation of toxins produced by certain species of phytoplankton. Karlotoxins (KmTxs) are a class of amphidinol-like compounds with hemolytic, ichthyotoxic, and cytotoxic properties that have been associated with harmful algal blooms, and the dinoflagellate <em>Karlodinium veneficum</em> uses KmTxs to facilitate prey capture and deter grazing by other organisms. In this work, we examined the accumulation and depuration of 4,5-dihydro-KmTx2, a karlotoxin previously isolated from <em>K. veneficum</em>, in two bivalves with different life habits, i.e., <em>Sinonovacula constricta</em> Lamarck and <em>Mercenaria mercenaria</em> Linnaeus. After both bivalves received <em>K. veneficum</em> GM5 in their feed for a long period of 10 days, 4,5-dihydro-KmTx2 was accumulated considerably in the visceral mass, but there was almost no toxin accumulation in the muscle. The accumulation was more severe for <em>M. mercenaria</em> than <em>S. constricta</em>. The toxin was cleared almost completely from the bivalves 5 days after <em>K. veneficum</em> GM5 was removed from the feed. For both bivalves, the bait microalgae <em>I. galbana</em> slowed both the accumulation and the depuration of the toxin.</div></div>","PeriodicalId":12897,"journal":{"name":"Harmful Algae","volume":"139 ","pages":"Article 102736"},"PeriodicalIF":5.5,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ciguatera poisoning: A review of the ecology and detection methods for Gambierdiscus and Fukuyoa species 雪卡毒中毒:Gambierdiscus 和 Fukuyoa 物种的生态学和检测方法综述
IF 5.5 1区 生物学 Q1 MARINE & FRESHWATER BIOLOGY Pub Date : 2024-10-10 DOI: 10.1016/j.hal.2024.102735
Joseph C. Perkins , Kyall R. Zenger , Yang Liu , Jan M. Strugnell
Ciguatera poisoning is the most prevalent non-bacterial seafood illness globally, with an estimated 10,000 to 50,000 human cases reported annually. While most symptoms are generally mild, some cases can result in severe and long-lasting neurological and psychological damage, and in some instances, even death. The known causative agents of ciguatera poisoning are benthic toxic dinoflagellate species belonging to the genera Gambierdiscus and Fukuyoa. These species produce highly potent ciguatoxins that bioaccumulate through the marine food chain, eventually reaching humans through seafood consumption. Although Gambierdiscus and Fukuyoa species are widespread in tropical waters worldwide, the full extent of their distribution remains uncertain. This review provides a detailed examination of the ecological dynamics of these dinoflagellates and explores the diverse range of detection methods used to monitor them. These include a focus on molecular techniques for detection, alongside morphological methods, emerging technologies, and a toxin detection overview. Additionally, we offer recommendations on how the field can advance, highlighting novel solutions and next steps for improving detection and monitoring practices. By assessing the strengths and limitations of current approaches and proposing directions for future research, this review aims to support efforts in better understanding and mitigating the risk of ciguatera poisoning.
雪卡毒中毒是全球最常见的非细菌性海产品疾病,据估计每年有 10,000 至 50,000 例人类病例报告。虽然大多数症状一般比较轻微,但有些病例会导致严重和持久的神经和心理损伤,在某些情况下甚至会导致死亡。已知的雪卡毒中毒病原体是属于 Gambierdiscus 和 Fukuyoa 属的底栖有毒甲藻。这些种类产生的强效雪卡毒素通过海洋食物链进行生物累积,最终通过食用海产品到达人类体内。虽然 Gambierdiscus 和 Fukuyoa 物种广泛分布于世界各地的热带水域,但它们的分布范围仍不确定。本综述详细研究了这些甲藻的生态动态,并探讨了用于监测它们的各种检测方法。其中包括分子检测技术、形态学方法、新兴技术和毒素检测概述。此外,我们还就如何推动该领域的发展提出了建议,重点介绍了改进检测和监测实践的新型解决方案和下一步措施。通过评估当前方法的优势和局限性并提出未来研究的方向,本综述旨在为更好地了解和降低雪卡毒中毒风险提供支持。
{"title":"Ciguatera poisoning: A review of the ecology and detection methods for Gambierdiscus and Fukuyoa species","authors":"Joseph C. Perkins ,&nbsp;Kyall R. Zenger ,&nbsp;Yang Liu ,&nbsp;Jan M. Strugnell","doi":"10.1016/j.hal.2024.102735","DOIUrl":"10.1016/j.hal.2024.102735","url":null,"abstract":"<div><div>Ciguatera poisoning is the most prevalent non-bacterial seafood illness globally, with an estimated 10,000 to 50,000 human cases reported annually. While most symptoms are generally mild, some cases can result in severe and long-lasting neurological and psychological damage, and in some instances, even death. The known causative agents of ciguatera poisoning are benthic toxic dinoflagellate species belonging to the genera <em>Gambierdiscus</em> and <em>Fukuyoa</em>. These species produce highly potent ciguatoxins that bioaccumulate through the marine food chain, eventually reaching humans through seafood consumption. Although <em>Gambierdiscus</em> and <em>Fukuyoa</em> species are widespread in tropical waters worldwide, the full extent of their distribution remains uncertain. This review provides a detailed examination of the ecological dynamics of these dinoflagellates and explores the diverse range of detection methods used to monitor them. These include a focus on molecular techniques for detection, alongside morphological methods, emerging technologies, and a toxin detection overview. Additionally, we offer recommendations on how the field can advance, highlighting novel solutions and next steps for improving detection and monitoring practices. By assessing the strengths and limitations of current approaches and proposing directions for future research, this review aims to support efforts in better understanding and mitigating the risk of ciguatera poisoning.</div></div>","PeriodicalId":12897,"journal":{"name":"Harmful Algae","volume":"139 ","pages":"Article 102735"},"PeriodicalIF":5.5,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Defining algal bloom phenology in Lake Erie 伊利湖藻华物候的定义
IF 5.5 1区 生物学 Q1 MARINE & FRESHWATER BIOLOGY Pub Date : 2024-10-09 DOI: 10.1016/j.hal.2024.102731
Timothy J. Maguire , Alain Isabwe , Craig A. Stow , Casey M. Godwin
Elucidating the impact of global climate change on aquatic ecosystems, particularly through phenological shifts in primary producers, is critical for understanding ecological resilience. Here, we focus on the phenological shifts in chlorophyll as a proxy for algae biomass and primary production in aquatic ecosystems, specifically in Lake Erie as well as concentrations of the toxin microcystin. By tracking temporal changes in each, we identified key phenological phases important to estimate duration, magnitude, and intensity of harmful algal blooms (HABs). Determining which influential biotic and abiotic factors such as temperature, wind speed, nutrient availability, and climate change is most important, is a long-term management need for Lake Erie, which can be explored using our methodology. Our novel statistical framework employing Bayesian generalized additive mixed models described seasonal chlorophyll and particulate microcystin concentration from Lake Erie and our simple geometric method identified the start, peak, and end of algal blooms. This research enhances our understanding of the ecological effects of nutrient pollution on aquatic ecosystems and provides a repeatable method for determining phenological events without the need for user defined cutoffs which aids in the management and mitigation of HABs, safeguarding water quality in regions dependent on lakes for drinking water.
阐明全球气候变化对水生生态系统的影响,特别是通过初级生产者的物候变化产生的影响,对于了解生态恢复能力至关重要。在这里,我们重点研究了作为水生生态系统(特别是伊利湖)中藻类生物量和初级生产量替代物的叶绿素的物候变化以及毒素微囊藻毒素的浓度。通过跟踪叶绿素和微囊藻毒素的时间变化,我们确定了对估计有害藻华(HABs)的持续时间、规模和强度非常重要的关键物候期。确定哪些生物和非生物影响因素(如温度、风速、营养供应和气候变化)最为重要,是伊利湖的一项长期管理需求,可以利用我们的方法进行探索。我们采用贝叶斯广义加性混合模型的新型统计框架描述了伊利湖的季节性叶绿素和微粒微囊藻毒素浓度,我们的简单几何方法确定了藻华的开始、高峰和结束时间。这项研究加深了我们对营养物污染对水生生态系统生态影响的理解,并提供了一种可重复的方法来确定物候事件,而无需用户定义临界值,这有助于管理和缓解有害藻类繁殖,保护依赖湖泊提供饮用水的地区的水质。
{"title":"Defining algal bloom phenology in Lake Erie","authors":"Timothy J. Maguire ,&nbsp;Alain Isabwe ,&nbsp;Craig A. Stow ,&nbsp;Casey M. Godwin","doi":"10.1016/j.hal.2024.102731","DOIUrl":"10.1016/j.hal.2024.102731","url":null,"abstract":"<div><div>Elucidating the impact of global climate change on aquatic ecosystems, particularly through phenological shifts in primary producers, is critical for understanding ecological resilience. Here, we focus on the phenological shifts in chlorophyll as a proxy for algae biomass and primary production in aquatic ecosystems, specifically in Lake Erie as well as concentrations of the toxin microcystin. By tracking temporal changes in each, we identified key phenological phases important to estimate duration, magnitude, and intensity of harmful algal blooms (HABs). Determining which influential biotic and abiotic factors such as temperature, wind speed, nutrient availability, and climate change is most important, is a long-term management need for Lake Erie, which can be explored using our methodology. Our novel statistical framework employing Bayesian generalized additive mixed models described seasonal chlorophyll and particulate microcystin concentration from Lake Erie and our simple geometric method identified the start, peak, and end of algal blooms. This research enhances our understanding of the ecological effects of nutrient pollution on aquatic ecosystems and provides a repeatable method for determining phenological events without the need for user defined cutoffs which aids in the management and mitigation of HABs, safeguarding water quality in regions dependent on lakes for drinking water.</div></div>","PeriodicalId":12897,"journal":{"name":"Harmful Algae","volume":"139 ","pages":"Article 102731"},"PeriodicalIF":5.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predator-induced defense decreases growth rate and photoprotective capacity in a nitrogen-limited dinoflagellate, Alexandrium minutum 捕食者诱导的防御会降低限氮甲藻 Alexandrium minutum 的生长速度和光保护能力
IF 5.5 1区 生物学 Q1 MARINE & FRESHWATER BIOLOGY Pub Date : 2024-10-03 DOI: 10.1016/j.hal.2024.102734
Jingjing Zhang , Fredrik Ryderheim , Erik Selander , Urban Wünsch , Thomas Kiørboe
Some dinoflagellates produce toxic secondary metabolites that correlate with increased resistance to grazers. The allocation costs of toxin production have been repeatedly addressed, but with conflicting results. Few studies have considered the potential costs of this defense to the photosystem, even though defense toxins (e.g., karlotoxins and brevetoxins) are closely linked to the photoprotective process. Here, we used chemical cues from copepods to induce paralytic shellfish toxin (PST) production in resource-limited Alexandrium minutum and quantitatively determined the growth rate and potential trade-offs with the photosystem process. The results show that grazer-induced, more toxic A. minutum had larger cell volume, lower cell division rate, and lower pigment content under nitrogen-limited conditions than control cells. In addition, predator cues led to a lower relative abundance of photoprotective xanthophylls and a reduced de-epoxidation efficiency of the xanthophyll cycle under high light conditions, reducing the ability of the cells to resist photodamage. Decreased photoprotective capacity may reflect an overlooked defense cost of toxin production.
一些甲藻会产生有毒的次级代谢产物,从而增强对食草动物的抵抗力。毒素生产的分配成本已被反复讨论,但结果却相互矛盾。尽管防御毒素(如卡洛毒素和布里维毒素)与光保护过程密切相关,但很少有研究考虑这种防御对光合系统的潜在成本。在这里,我们利用桡足类的化学线索诱导资源有限的小亚历山大藻产生麻痹性贝类毒素(PST),并定量测定了其生长速度以及与光系统过程之间的潜在权衡。结果表明,在氮限制条件下,与对照细胞相比,捕食者诱导的毒性更强的小亚历山大体细胞体积更大,细胞分裂率更低,色素含量更低。此外,捕食者线索导致光保护黄绿素的相对丰度降低,黄绿素循环在强光条件下的去氧化效率降低,从而降低了细胞抵抗光损伤的能力。光保护能力的降低可能反映了被忽视的毒素产生的防御成本。
{"title":"Predator-induced defense decreases growth rate and photoprotective capacity in a nitrogen-limited dinoflagellate, Alexandrium minutum","authors":"Jingjing Zhang ,&nbsp;Fredrik Ryderheim ,&nbsp;Erik Selander ,&nbsp;Urban Wünsch ,&nbsp;Thomas Kiørboe","doi":"10.1016/j.hal.2024.102734","DOIUrl":"10.1016/j.hal.2024.102734","url":null,"abstract":"<div><div>Some dinoflagellates produce toxic secondary metabolites that correlate with increased resistance to grazers. The allocation costs of toxin production have been repeatedly addressed, but with conflicting results. Few studies have considered the potential costs of this defense to the photosystem, even though defense toxins (e.g., karlotoxins and brevetoxins) are closely linked to the photoprotective process. Here, we used chemical cues from copepods to induce paralytic shellfish toxin (PST) production in resource-limited <em>Alexandrium minutum</em> and quantitatively determined the growth rate and potential trade-offs with the photosystem process. The results show that grazer-induced, more toxic <em>A. minutum</em> had larger cell volume, lower cell division rate, and lower pigment content under nitrogen-limited conditions than control cells. In addition, predator cues led to a lower relative abundance of photoprotective xanthophylls and a reduced de-epoxidation efficiency of the xanthophyll cycle under high light conditions, reducing the ability of the cells to resist photodamage. Decreased photoprotective capacity may reflect an overlooked defense cost of toxin production.</div></div>","PeriodicalId":12897,"journal":{"name":"Harmful Algae","volume":"139 ","pages":"Article 102734"},"PeriodicalIF":5.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Harmful Algae
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1