{"title":"The ASAP Framework: A New Tool for Regulatory Agencies to Facilitate Adoption of Pandemic Approaches.","authors":"Brenda J Huneycutt, Virginia Acha","doi":"10.1089/hs.2023.0023","DOIUrl":"https://doi.org/10.1089/hs.2023.0023","url":null,"abstract":"","PeriodicalId":12955,"journal":{"name":"Health Security","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140697209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ananya Iyengar, Steve Hanon, Richard Bruns, Paula Olsiewski, G. Gronvall
In this case study, we describe a well-resourced private school in New York City that implemented COVID-19 mitigation measures based on public health expert guidance and the lessons learned from this process. Avenues opened in New York City in 2012 and has since expanded, becoming Avenues: The World School, with campuses in São Paulo, Brazil; Shenzhen, China; the Silicon Valley, California; and online. It offers education at 16 grade levels: 2 early learning years, followed by a prekindergarten through grade 12. We describe the mitigation measures that Avenues implemented on its New York campus. We compare COVID-19 case prevalence at the school with COVID-19 case positivity in New York City, as reported by the New York State Department of Health. We also compare the school's indoor air quality to ambient indoor air quality measures reported in the literature. The school's mitigation measures successfully reduced the prevalence of COVID-19 among its students, staff, and faculty. The school also established a consistently high level of indoor air quality safety through various ventilation mechanisms, designed to reduce common indoor air pollutants. The school received positive parent and community feedback on the policies and procedures it established, with many parents commenting on the high level of trust and quality of communication established by the school. The successful reopening provides useful data for school closure and reopening standards to prepare for future pandemic and epidemic events.
{"title":"COVID-19 Mitigation in a K-12 School Setting: A Case Study of Avenues: The World School in New York City.","authors":"Ananya Iyengar, Steve Hanon, Richard Bruns, Paula Olsiewski, G. Gronvall","doi":"10.1089/hs.2023.0060","DOIUrl":"https://doi.org/10.1089/hs.2023.0060","url":null,"abstract":"In this case study, we describe a well-resourced private school in New York City that implemented COVID-19 mitigation measures based on public health expert guidance and the lessons learned from this process. Avenues opened in New York City in 2012 and has since expanded, becoming Avenues: The World School, with campuses in São Paulo, Brazil; Shenzhen, China; the Silicon Valley, California; and online. It offers education at 16 grade levels: 2 early learning years, followed by a prekindergarten through grade 12. We describe the mitigation measures that Avenues implemented on its New York campus. We compare COVID-19 case prevalence at the school with COVID-19 case positivity in New York City, as reported by the New York State Department of Health. We also compare the school's indoor air quality to ambient indoor air quality measures reported in the literature. The school's mitigation measures successfully reduced the prevalence of COVID-19 among its students, staff, and faculty. The school also established a consistently high level of indoor air quality safety through various ventilation mechanisms, designed to reduce common indoor air pollutants. The school received positive parent and community feedback on the policies and procedures it established, with many parents commenting on the high level of trust and quality of communication established by the school. The successful reopening provides useful data for school closure and reopening standards to prepare for future pandemic and epidemic events.","PeriodicalId":12955,"journal":{"name":"Health Security","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140695517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Public Health Surveillance During Operations Allies Refuge and Allies Welcome - US European Command Headquarters, August-October 2021.","authors":"Megan B Martin, Koya C Allen, Jennifer A Steele","doi":"10.1089/hs.2023.0119","DOIUrl":"https://doi.org/10.1089/hs.2023.0119","url":null,"abstract":"","PeriodicalId":12955,"journal":{"name":"Health Security","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140709622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David R Gillum, Antony Schwartz, Randy A Albrecht, Rebecca L Moritz
{"title":"Seven Opportunities for Effective Biosafety and Biosecurity Governance.","authors":"David R Gillum, Antony Schwartz, Randy A Albrecht, Rebecca L Moritz","doi":"10.1089/hs.2023.0189","DOIUrl":"https://doi.org/10.1089/hs.2023.0189","url":null,"abstract":"","PeriodicalId":12955,"journal":{"name":"Health Security","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140709404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Introduction to the Special Feature, Part 2: Enabling and Implementing Threat Agnostic Approaches to Biodefense and Public Health.","authors":"Mary J Lancaster, A. Adalja, K. L. Warmbrod","doi":"10.1089/hs.2024.0026","DOIUrl":"https://doi.org/10.1089/hs.2024.0026","url":null,"abstract":"","PeriodicalId":12955,"journal":{"name":"Health Security","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140796417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diane L Downie, Preetika Rao, Corinne David-Ferdon, Sean Courtney, Justin S Lee, Claire Quiner, Pia D M MacDonald, Keegan Barnes, Shelby Fisher, Joanne L Andreadis, Jasmine Chaitram, Matthew R Mauldin, R. Salerno, Jarad Schiffer, Adi V Gundlapalli
The surveillance and identification of emerging, reemerging, and unknown infectious disease pathogens is essential to national public health preparedness and relies on fluidity, coordination, and interconnectivity between public and private pathogen surveillance systems and networks. Developing a national sentinel surveillance network with existing resources and infrastructure could increase efficiency, accelerate the identification of emerging public health threats, and support coordinated intervention strategies that reduce morbidity and mortality. However, implementing and sustaining programs to detect emerging and reemerging pathogens in humans using advanced molecular methods, such as metagenomic sequencing, requires making large investments in testing equipment and developing networks of clinicians, laboratory scientists, and bioinformaticians. In this study, we sought to gain an understanding of how federal government agencies currently support such pathogen agnostic testing of human specimens in the United States. We conducted a landscape analysis of federal agency websites for publicly accessible information on the availability and type of pathogen agnostic testing and details on flow of clinical specimens and data. The website analysis was supplemented by an expert review of results with representatives from the federal agencies. Operating divisions within the US Department of Health and Human Services and the US Department of Veterans Affairs have developed and sustained extensive clinical and research networks to obtain patient specimens and perform metagenomic sequencing. Metagenomic facilities supported by US agencies were not equally geographically distributed across the United States. Although many entities have work dedicated to metagenomics and/or support emerging infectious disease surveillance specimen collection, there was minimal formal collaboration across agencies.
{"title":"Surveillance for Emerging and Reemerging Pathogens Using Pathogen Agnostic Metagenomic Sequencing in the United States: A Critical Role for Federal Government Agencies","authors":"Diane L Downie, Preetika Rao, Corinne David-Ferdon, Sean Courtney, Justin S Lee, Claire Quiner, Pia D M MacDonald, Keegan Barnes, Shelby Fisher, Joanne L Andreadis, Jasmine Chaitram, Matthew R Mauldin, R. Salerno, Jarad Schiffer, Adi V Gundlapalli","doi":"10.1089/hs.2023.0099","DOIUrl":"https://doi.org/10.1089/hs.2023.0099","url":null,"abstract":"The surveillance and identification of emerging, reemerging, and unknown infectious disease pathogens is essential to national public health preparedness and relies on fluidity, coordination, and interconnectivity between public and private pathogen surveillance systems and networks. Developing a national sentinel surveillance network with existing resources and infrastructure could increase efficiency, accelerate the identification of emerging public health threats, and support coordinated intervention strategies that reduce morbidity and mortality. However, implementing and sustaining programs to detect emerging and reemerging pathogens in humans using advanced molecular methods, such as metagenomic sequencing, requires making large investments in testing equipment and developing networks of clinicians, laboratory scientists, and bioinformaticians. In this study, we sought to gain an understanding of how federal government agencies currently support such pathogen agnostic testing of human specimens in the United States. We conducted a landscape analysis of federal agency websites for publicly accessible information on the availability and type of pathogen agnostic testing and details on flow of clinical specimens and data. The website analysis was supplemented by an expert review of results with representatives from the federal agencies. Operating divisions within the US Department of Health and Human Services and the US Department of Veterans Affairs have developed and sustained extensive clinical and research networks to obtain patient specimens and perform metagenomic sequencing. Metagenomic facilities supported by US agencies were not equally geographically distributed across the United States. Although many entities have work dedicated to metagenomics and/or support emerging infectious disease surveillance specimen collection, there was minimal formal collaboration across agencies.","PeriodicalId":12955,"journal":{"name":"Health Security","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140760447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diane L Downie, Preetika Rao, Corinne David-Ferdon, Sean Courtney, Justin S Lee, Shannon Kugley, Pia D M MacDonald, Keegan Barnes, Shelby Fisher, Joanne L Andreadis, Jasmine Chaitram, Matthew R Mauldin, R. Salerno, Jarad Schiffer, Adi V Gundlapalli
To better identify emerging or reemerging pathogens in patients with difficult-to-diagnose infections, it is important to improve access to advanced molecular testing methods. This is particularly relevant for cases where conventional microbiologic testing has been unable to detect the pathogen and the patient's specimens test negative. To assess the availability and utility of such testing for human clinical specimens, a literature review of published biomedical literature was conducted. From a corpus of more than 4,000 articles, a set of 34 reports was reviewed in detail for data on where the testing was being performed, types of clinical specimens tested, pathogen agnostic techniques and methods used, and results in terms of potential pathogens identified. This review assessed the frequency of advanced molecular testing, such as metagenomic next generation sequencing that has been applied to clinical specimens for supporting clinicians in caring for difficult-to-diagnose patients. Specimen types tested were from cerebrospinal fluid, respiratory secretions, and other body tissues and fluids. Publications included case reports and series, and there were several that involved clinical trials, surveillance studies, research programs, or outbreak situations. Testing identified both known human pathogens (sometimes in new sites) and previously unknown human pathogens. During this review, there were no apparent coordinated efforts identified to develop regional or national reports on emerging or reemerging pathogens. Therefore, development of a coordinated sentinel surveillance system that applies advanced molecular methods to clinical specimens which are negative by conventional microbiological diagnostic testing would provide a foundation for systematic characterization of emerging and underdiagnosed pathogens and contribute to national biodefense strategy goals.
{"title":"Literature Review of Pathogen Agnostic Molecular Testing of Clinical Specimens From Difficult-to-Diagnose Patients: Implications for Public Health","authors":"Diane L Downie, Preetika Rao, Corinne David-Ferdon, Sean Courtney, Justin S Lee, Shannon Kugley, Pia D M MacDonald, Keegan Barnes, Shelby Fisher, Joanne L Andreadis, Jasmine Chaitram, Matthew R Mauldin, R. Salerno, Jarad Schiffer, Adi V Gundlapalli","doi":"10.1089/hs.2023.0100","DOIUrl":"https://doi.org/10.1089/hs.2023.0100","url":null,"abstract":"To better identify emerging or reemerging pathogens in patients with difficult-to-diagnose infections, it is important to improve access to advanced molecular testing methods. This is particularly relevant for cases where conventional microbiologic testing has been unable to detect the pathogen and the patient's specimens test negative. To assess the availability and utility of such testing for human clinical specimens, a literature review of published biomedical literature was conducted. From a corpus of more than 4,000 articles, a set of 34 reports was reviewed in detail for data on where the testing was being performed, types of clinical specimens tested, pathogen agnostic techniques and methods used, and results in terms of potential pathogens identified. This review assessed the frequency of advanced molecular testing, such as metagenomic next generation sequencing that has been applied to clinical specimens for supporting clinicians in caring for difficult-to-diagnose patients. Specimen types tested were from cerebrospinal fluid, respiratory secretions, and other body tissues and fluids. Publications included case reports and series, and there were several that involved clinical trials, surveillance studies, research programs, or outbreak situations. Testing identified both known human pathogens (sometimes in new sites) and previously unknown human pathogens. During this review, there were no apparent coordinated efforts identified to develop regional or national reports on emerging or reemerging pathogens. Therefore, development of a coordinated sentinel surveillance system that applies advanced molecular methods to clinical specimens which are negative by conventional microbiological diagnostic testing would provide a foundation for systematic characterization of emerging and underdiagnosed pathogens and contribute to national biodefense strategy goals.","PeriodicalId":12955,"journal":{"name":"Health Security","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140775917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In 2022, the Pentagon Force Protection Agency found threat agnostic detection of novel bioaerosol threats to be "not feasible for daily operations" due to the cost of reagents used for metagenomics, cost of sequencing instruments, and cost of labor for subject matter experts to analyze bioinformatics. Similar operational difficulties might extend to many of the 280,000 buildings (totaling 2.3 billion square feet) at 5,000 secure US Department of Defense military sites, 250 Navy ships, as well as many civilian buildings. These economic barriers can still be addressed in a threat agnostic manner by dynamically pooling samples from dry filter units, called spike-triggered virtualization, whereby pooling and sequencing depth are automatically modulated based on novel biothreats in the sequencing output. By running at a high average pooling factor, the daily and annual cost per dry filter unit can be reduced by 10 to 100 times depending on the chosen trigger thresholds. Artificial intelligence can further enhance the sensitivity of spike-triggered virtualization. The risk of infection during the 12- to 24-hour window between a bioaerosol incident and its detection remains, but in some cases it can be reduced by 80% or more with high-speed indoor air cleaning exceeding 12 air changes per hour, which is similar to the rate of air cleaning in passenger airplanes in flight. That level of air changes per hour or higher is likely to be cost-prohibitive using central heating ventilation and air conditioning systems, but it can be achieved economically by using portable air filtration in rooms with typical ceiling heights (less than 10 feet) for a cost of approximately $0.50 to $1 per square foot for do-it-yourself units and $2 to $5 per square foot for high-efficiency particulate air filters.
{"title":"Pentagon Found Daily, Metagenomic Detection of Novel Bioaerosol Threats to Be Cost-Prohibitive: Can Virtualization and AI Make It Cost-Effective?","authors":"D. Srikrishna","doi":"10.1089/hs.2023.0048","DOIUrl":"https://doi.org/10.1089/hs.2023.0048","url":null,"abstract":"In 2022, the Pentagon Force Protection Agency found threat agnostic detection of novel bioaerosol threats to be \"not feasible for daily operations\" due to the cost of reagents used for metagenomics, cost of sequencing instruments, and cost of labor for subject matter experts to analyze bioinformatics. Similar operational difficulties might extend to many of the 280,000 buildings (totaling 2.3 billion square feet) at 5,000 secure US Department of Defense military sites, 250 Navy ships, as well as many civilian buildings. These economic barriers can still be addressed in a threat agnostic manner by dynamically pooling samples from dry filter units, called spike-triggered virtualization, whereby pooling and sequencing depth are automatically modulated based on novel biothreats in the sequencing output. By running at a high average pooling factor, the daily and annual cost per dry filter unit can be reduced by 10 to 100 times depending on the chosen trigger thresholds. Artificial intelligence can further enhance the sensitivity of spike-triggered virtualization. The risk of infection during the 12- to 24-hour window between a bioaerosol incident and its detection remains, but in some cases it can be reduced by 80% or more with high-speed indoor air cleaning exceeding 12 air changes per hour, which is similar to the rate of air cleaning in passenger airplanes in flight. That level of air changes per hour or higher is likely to be cost-prohibitive using central heating ventilation and air conditioning systems, but it can be achieved economically by using portable air filtration in rooms with typical ceiling heights (less than 10 feet) for a cost of approximately $0.50 to $1 per square foot for do-it-yourself units and $2 to $5 per square foot for high-efficiency particulate air filters.","PeriodicalId":12955,"journal":{"name":"Health Security","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140756983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01DOI: 10.1089/hs.2023.0085.correx
{"title":"Correction to: Health Security 2023;21(4):323-328.","authors":"","doi":"10.1089/hs.2023.0085.correx","DOIUrl":"https://doi.org/10.1089/hs.2023.0085.correx","url":null,"abstract":"","PeriodicalId":12955,"journal":{"name":"Health Security","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140778866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-02-23DOI: 10.1089/hs.2023.0103
Helene McOwen, Judith N Wasserheit, Peter Rabinowitz
{"title":"US Academic and NGO Engagement in Pandemic Preparedness and Response.","authors":"Helene McOwen, Judith N Wasserheit, Peter Rabinowitz","doi":"10.1089/hs.2023.0103","DOIUrl":"10.1089/hs.2023.0103","url":null,"abstract":"","PeriodicalId":12955,"journal":{"name":"Health Security","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139939941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}