首页 > 最新文献

Health and Quality of Life Outcomes最新文献

英文 中文
Validation of the Chronic Illness Adjustment Scale in Turkish patients with chronic disease. 土耳其慢性疾病患者慢性疾病调整量表的验证。
IF 3.4 2区 医学 Q1 HEALTH CARE SCIENCES & SERVICES Pub Date : 2025-12-17 DOI: 10.1186/s12955-025-02465-w
Gülcan Bahçecioğlu Turan, Zülfünaz Özer, Bahar Çiftçi
{"title":"Validation of the Chronic Illness Adjustment Scale in Turkish patients with chronic disease.","authors":"Gülcan Bahçecioğlu Turan, Zülfünaz Özer, Bahar Çiftçi","doi":"10.1186/s12955-025-02465-w","DOIUrl":"https://doi.org/10.1186/s12955-025-02465-w","url":null,"abstract":"","PeriodicalId":12980,"journal":{"name":"Health and Quality of Life Outcomes","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145774441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rasch analysis of the self-reported PedsQL™ 4.0 Generic Core Scales by Australian children. 澳大利亚儿童自述PedsQL™4.0通用核心量表的Rasch分析。
IF 3.4 2区 医学 Q1 HEALTH CARE SCIENCES & SERVICES Pub Date : 2025-12-15 DOI: 10.1186/s12955-025-02441-4
Joseph Kwon, Rakhee Raghunandan, Son Hong Nghiem, Kirsten Howard, Emily Lancsar, Elisabeth Huynh, Martin Howell, Stavros Petrou, Sarah Smith
{"title":"Rasch analysis of the self-reported PedsQL™ 4.0 Generic Core Scales by Australian children.","authors":"Joseph Kwon, Rakhee Raghunandan, Son Hong Nghiem, Kirsten Howard, Emily Lancsar, Elisabeth Huynh, Martin Howell, Stavros Petrou, Sarah Smith","doi":"10.1186/s12955-025-02441-4","DOIUrl":"10.1186/s12955-025-02441-4","url":null,"abstract":"","PeriodicalId":12980,"journal":{"name":"Health and Quality of Life Outcomes","volume":"23 1","pages":"120"},"PeriodicalIF":3.4,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12706910/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145762735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oral health-related quality of life and its determinants among the Saudi adult population: a cross-sectional analytical study. 沙特成年人口口腔健康相关生活质量及其决定因素:一项横断面分析研究
IF 3.4 2区 医学 Q1 HEALTH CARE SCIENCES & SERVICES Pub Date : 2025-12-13 DOI: 10.1186/s12955-025-02462-z
Azhar Iqbal, Farooq Ahmad Chaudhary, Saud Hamdan Almaeen, Muhsen Alnasser, Nadeem Baig, Yasir Dilshad Siddiqui, Osama Khattak, Mohammed Mustafa, Mohmed Isaqali Karobari
{"title":"Oral health-related quality of life and its determinants among the Saudi adult population: a cross-sectional analytical study.","authors":"Azhar Iqbal, Farooq Ahmad Chaudhary, Saud Hamdan Almaeen, Muhsen Alnasser, Nadeem Baig, Yasir Dilshad Siddiqui, Osama Khattak, Mohammed Mustafa, Mohmed Isaqali Karobari","doi":"10.1186/s12955-025-02462-z","DOIUrl":"https://doi.org/10.1186/s12955-025-02462-z","url":null,"abstract":"","PeriodicalId":12980,"journal":{"name":"Health and Quality of Life Outcomes","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145751794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Recovering Quality of Life - Utility Index (ReQoL-UI): the Hong Kong valuation study. “恢复生活质素-效用指数”:香港的估价研究。
IF 3.4 2区 医学 Q1 HEALTH CARE SCIENCES & SERVICES Pub Date : 2025-12-12 DOI: 10.1186/s12955-025-02464-x
Richard Huan Xu, Chenxi Yang, Thao Thai, Eliza Laiyi Wong, Shamay S M Ng, Richard Norman
{"title":"The Recovering Quality of Life - Utility Index (ReQoL-UI): the Hong Kong valuation study.","authors":"Richard Huan Xu, Chenxi Yang, Thao Thai, Eliza Laiyi Wong, Shamay S M Ng, Richard Norman","doi":"10.1186/s12955-025-02464-x","DOIUrl":"https://doi.org/10.1186/s12955-025-02464-x","url":null,"abstract":"","PeriodicalId":12980,"journal":{"name":"Health and Quality of Life Outcomes","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145742216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring valuation of a modified EQ-5D-Y-3L adapted for 2-4 year olds: a think-aloud study. 探索适用于2-4岁儿童的改进EQ-5D-Y-3L的评估:一项有声思考研究。
IF 3.4 2区 医学 Q1 HEALTH CARE SCIENCES & SERVICES Pub Date : 2025-12-06 DOI: 10.1186/s12955-025-02456-x
Alexander van Heusden, Renee Jones, Alice Yu, Brendan Mulhern, Kim Dalziel, Nancy Devlin
{"title":"Exploring valuation of a modified EQ-5D-Y-3L adapted for 2-4 year olds: a think-aloud study.","authors":"Alexander van Heusden, Renee Jones, Alice Yu, Brendan Mulhern, Kim Dalziel, Nancy Devlin","doi":"10.1186/s12955-025-02456-x","DOIUrl":"https://doi.org/10.1186/s12955-025-02456-x","url":null,"abstract":"","PeriodicalId":12980,"journal":{"name":"Health and Quality of Life Outcomes","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145695782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-motor symptoms as critical predictors of quality of life in Parkinson's disease: a machine learning approach. 非运动症状作为帕金森病生活质量的关键预测指标:一种机器学习方法
IF 3.4 2区 医学 Q1 HEALTH CARE SCIENCES & SERVICES Pub Date : 2025-12-06 DOI: 10.1186/s12955-025-02451-2
Daniel Magano, António S Barros, João Massano, Laila Alsuwaidi, Tiago Taveira-Gomes

Background: Parkinson's disease (PD) considerably impacts health-related quality of life (HRQoL) through motor and non-motor symptoms. The Parkinson's Disease Questionnaire-39 (PDQ-39) is the most widely used tool to assess HRQoL, encompassing eight dimensions and a Summary Index providing an overall score. Despite advances in machine learning (ML) for predicting disease symptoms and progression, its application to predict HRQoL across these dimensions remains underexplored.

Methods: This study uses complete-case data for 478 of 861 patients from PRISM, a cross-sectional observational survey conducted in six European countries in 2018-2019. Participants were adults with PD recruited through advocacy groups and clinical centers who completed online assessments, providing data on demographics, medication, comorbidities, and disease characteristics (Tolosa et al., 2021). ML models were trained to predict PDQ-39 dimensions and Summary Index scores (0-100; higher = worse HRQoL). Features were preselected using the Boruta algorithm on the training data. Model selection was based on the lowest mean RMSE from 100 bootstrap resamples on the training set. Selected models were then retrained using 1000 bootstrap resamples for robust performance estimation. Final performance was evaluated on a held-out 20% validation set using R², MAE, and RMSE. Feature importance was assessed using permutation importance with MAE loss (100 permutations) on the held-out validation set. Factor Analysis of Mixed Data (FAMD) was used to explore patterns between non-motor symptoms and PDQ-39.

Results: Selected models: xgbTree (Summary Index; Activities of Daily Living) and gaussprPoly (all other PDQ-39 dimensions). On the validation set, Summary Index/ Cognitions showed the strongest performance with R² = 0.56/0.53, MAE = 9.60/12.39, RMSE = 12.66/16.20. Permutation feature importance ranked the Non-Motor Symptoms Questionnaire score (sum of 30 non-motor symptoms, range 0-30) as the most important predictor across all models. FAMD showed clustering of Social Support, Bodily Discomfort, and Stigma dimensions with Anxiety.

Conclusions: Our findings demonstrate the critical role of non-motor symptoms in predicting HRQoL in patients with PD. While ML models effectively predict overall HRQoL and cognitive aspects, achieving comparable performance on other dimensions may require additional variables to reduce error. These insights emphasize comprehensive treatment strategies addressing both motor and non-motor symptoms.

背景:帕金森病(PD)通过运动和非运动症状显著影响健康相关生活质量(HRQoL)。帕金森病问卷-39 (PDQ-39)是最广泛使用的评估HRQoL的工具,包括八个维度和一个提供总分的总结指数。尽管机器学习(ML)在预测疾病症状和进展方面取得了进展,但其在这些维度上预测HRQoL的应用仍未得到充分探索。方法:本研究使用了2018-2019年在六个欧洲国家进行的横断面观察性调查PRISM中861例患者中的478例的完整病例数据。参与者是通过倡导团体和临床中心招募的PD成年患者,他们完成了在线评估,提供了人口统计学、药物、合并症和疾病特征的数据(Tolosa等人,2021)。ML模型被训练来预测PDQ-39维度和总结指数得分(0-100,越高= HRQoL越差)。使用Boruta算法对训练数据进行特征预选。模型选择基于训练集上100个bootstrap样本的最低平均RMSE。然后使用1000个bootstrap样本对选定的模型进行再训练,以进行鲁棒性性能估计。使用R²、MAE和RMSE在一个保留的20%验证集上评估最终性能。特征重要性评估使用排列重要性与MAE损失(100个排列)在持有验证集中。采用混合数据因子分析(FAMD)探讨非运动症状与PDQ-39之间的关系。结果:选择的模型:xgbTree (Summary Index; Activities of Daily Living)和gaussprPoly(所有其他PDQ-39维度)。在验证集上,Summary Index/ cognies表现最强,R²= 0.56/0.53,MAE = 9.60/12.39, RMSE = 12.66/16.20。排列特征重要性将非运动症状问卷得分(30个非运动症状的总和,范围0-30)列为所有模型中最重要的预测因子。FAMD显示社会支持、身体不适和耻感维度与焦虑呈聚类关系。结论:我们的研究结果表明,非运动症状在预测PD患者HRQoL中的关键作用。虽然ML模型有效地预测了整体HRQoL和认知方面,但要在其他维度上获得可比的性能,可能需要额外的变量来减少误差。这些见解强调针对运动和非运动症状的综合治疗策略。
{"title":"Non-motor symptoms as critical predictors of quality of life in Parkinson's disease: a machine learning approach.","authors":"Daniel Magano, António S Barros, João Massano, Laila Alsuwaidi, Tiago Taveira-Gomes","doi":"10.1186/s12955-025-02451-2","DOIUrl":"https://doi.org/10.1186/s12955-025-02451-2","url":null,"abstract":"<p><strong>Background: </strong>Parkinson's disease (PD) considerably impacts health-related quality of life (HRQoL) through motor and non-motor symptoms. The Parkinson's Disease Questionnaire-39 (PDQ-39) is the most widely used tool to assess HRQoL, encompassing eight dimensions and a Summary Index providing an overall score. Despite advances in machine learning (ML) for predicting disease symptoms and progression, its application to predict HRQoL across these dimensions remains underexplored.</p><p><strong>Methods: </strong>This study uses complete-case data for 478 of 861 patients from PRISM, a cross-sectional observational survey conducted in six European countries in 2018-2019. Participants were adults with PD recruited through advocacy groups and clinical centers who completed online assessments, providing data on demographics, medication, comorbidities, and disease characteristics (Tolosa et al., 2021). ML models were trained to predict PDQ-39 dimensions and Summary Index scores (0-100; higher = worse HRQoL). Features were preselected using the Boruta algorithm on the training data. Model selection was based on the lowest mean RMSE from 100 bootstrap resamples on the training set. Selected models were then retrained using 1000 bootstrap resamples for robust performance estimation. Final performance was evaluated on a held-out 20% validation set using R², MAE, and RMSE. Feature importance was assessed using permutation importance with MAE loss (100 permutations) on the held-out validation set. Factor Analysis of Mixed Data (FAMD) was used to explore patterns between non-motor symptoms and PDQ-39.</p><p><strong>Results: </strong>Selected models: xgbTree (Summary Index; Activities of Daily Living) and gaussprPoly (all other PDQ-39 dimensions). On the validation set, Summary Index/ Cognitions showed the strongest performance with R² = 0.56/0.53, MAE = 9.60/12.39, RMSE = 12.66/16.20. Permutation feature importance ranked the Non-Motor Symptoms Questionnaire score (sum of 30 non-motor symptoms, range 0-30) as the most important predictor across all models. FAMD showed clustering of Social Support, Bodily Discomfort, and Stigma dimensions with Anxiety.</p><p><strong>Conclusions: </strong>Our findings demonstrate the critical role of non-motor symptoms in predicting HRQoL in patients with PD. While ML models effectively predict overall HRQoL and cognitive aspects, achieving comparable performance on other dimensions may require additional variables to reduce error. These insights emphasize comprehensive treatment strategies addressing both motor and non-motor symptoms.</p>","PeriodicalId":12980,"journal":{"name":"Health and Quality of Life Outcomes","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145695835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of measurement properties of the Health Assessment Questionnaire-Disability Index (HAQ-DI) among gout patients in China. 中国痛风患者健康评估问卷-残疾指数(HAQ-DI)测量特性评价
IF 3.4 2区 医学 Q1 HEALTH CARE SCIENCES & SERVICES Pub Date : 2025-12-03 DOI: 10.1186/s12955-025-02461-0
Nuoming Xu, Tianqi Hong, Chang Luo, Shitong Xie, Jing Wu
{"title":"Evaluation of measurement properties of the Health Assessment Questionnaire-Disability Index (HAQ-DI) among gout patients in China.","authors":"Nuoming Xu, Tianqi Hong, Chang Luo, Shitong Xie, Jing Wu","doi":"10.1186/s12955-025-02461-0","DOIUrl":"10.1186/s12955-025-02461-0","url":null,"abstract":"","PeriodicalId":12980,"journal":{"name":"Health and Quality of Life Outcomes","volume":" ","pages":"4"},"PeriodicalIF":3.4,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12781824/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145661008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Network analysis of multidimensional symptom experience among postoperative esophageal cancer survivors. 食管癌术后幸存者多维症状体验的网络分析。
IF 3.4 2区 医学 Q1 HEALTH CARE SCIENCES & SERVICES Pub Date : 2025-12-03 DOI: 10.1186/s12955-025-02459-8
Yanfei Wang, Yingtao Meng, Xiaotong Li, Fang Zhang, Wenya Su, Ruixue Han, Junyi Peng, Miao Zhang, Shengfen Li, Ge Wang, Meimei Shang

Background: Postoperative symptom burden is considerable and markedly undermines the quality of life of esophageal cancer (EC) survivors. This study aimed to examine symptom clusters and the interrelationships among symptoms in postoperative EC survivors, with the goal of identifying core symptoms.

Methods: A cross-sectional study was conducted using the European Cancer Life Questionnaire and the EC-Specific Supplementary Questionnaire. EC survivors were recruited in Shandong between February 2023 and February 2024. Principal component analysis (PCA) was utilized to identify symptom clusters, while Gaussian graphical network models were used to estimate the network structure.

Results: A total of 460 EC survivors were included in the study, revealing three distinct symptom clusters: the reflux-dysphagia cluster, the respiratory-related symptom cluster, and the recovery-fatigue cluster. The final network model demonstrated interconnections among these symptoms. "Fatigue" (FA) exhibited the highest strength centrality, identifying it as the most prominent core symptom in the network. "Emotional functioning" (EF), "Fatigue" (FA), and "cognitive functioning" (CF) ranked highest in terms of bridge strengths. Additionally, the model showed excellent network stability.

Conclusions: EC survivors experienced significant postoperative symptom burden, with symptom network analysis revealing the complex interrelations among postoperative symptoms. This approach also identified core symptoms that play a crucial role in the network. Fatigue emerged as the most influential core symptom, highlighting the significance of targeted interventions to mitigate negative symptom interactions and improve quality of life.

背景:食管癌(EC)术后症状负担是相当大的,并且显著地影响了食管癌(EC)幸存者的生活质量。本研究旨在检查EC术后幸存者的症状群和症状之间的相互关系,目的是确定核心症状。方法:采用欧洲癌症生活问卷和ec特异性补充问卷进行横断面研究。2023年2月至2024年2月在山东招募EC幸存者。采用主成分分析(PCA)识别症状聚类,采用高斯图网络模型估计网络结构。结果:共有460名EC幸存者被纳入研究,显示出三种不同的症状群:反流性吞咽困难群、呼吸相关症状群和恢复疲劳群。最后的网络模型展示了这些症状之间的相互联系。“疲劳”(FA)表现出最高的强度中心性,被认为是网络中最突出的核心症状。“情绪功能”(EF)、“疲劳”(FA)和“认知功能”(CF)在桥梁强度方面排名最高。此外,该模型具有良好的网络稳定性。结论:EC患者术后症状负担明显,症状网络分析揭示了术后症状之间复杂的相互关系。这种方法还确定了在网络中起关键作用的核心症状。疲劳成为最具影响力的核心症状,突出了有针对性的干预措施对减轻负面症状相互作用和改善生活质量的重要性。
{"title":"Network analysis of multidimensional symptom experience among postoperative esophageal cancer survivors.","authors":"Yanfei Wang, Yingtao Meng, Xiaotong Li, Fang Zhang, Wenya Su, Ruixue Han, Junyi Peng, Miao Zhang, Shengfen Li, Ge Wang, Meimei Shang","doi":"10.1186/s12955-025-02459-8","DOIUrl":"10.1186/s12955-025-02459-8","url":null,"abstract":"<p><strong>Background: </strong>Postoperative symptom burden is considerable and markedly undermines the quality of life of esophageal cancer (EC) survivors. This study aimed to examine symptom clusters and the interrelationships among symptoms in postoperative EC survivors, with the goal of identifying core symptoms.</p><p><strong>Methods: </strong>A cross-sectional study was conducted using the European Cancer Life Questionnaire and the EC-Specific Supplementary Questionnaire. EC survivors were recruited in Shandong between February 2023 and February 2024. Principal component analysis (PCA) was utilized to identify symptom clusters, while Gaussian graphical network models were used to estimate the network structure.</p><p><strong>Results: </strong>A total of 460 EC survivors were included in the study, revealing three distinct symptom clusters: the reflux-dysphagia cluster, the respiratory-related symptom cluster, and the recovery-fatigue cluster. The final network model demonstrated interconnections among these symptoms. \"Fatigue\" (FA) exhibited the highest strength centrality, identifying it as the most prominent core symptom in the network. \"Emotional functioning\" (EF), \"Fatigue\" (FA), and \"cognitive functioning\" (CF) ranked highest in terms of bridge strengths. Additionally, the model showed excellent network stability.</p><p><strong>Conclusions: </strong>EC survivors experienced significant postoperative symptom burden, with symptom network analysis revealing the complex interrelations among postoperative symptoms. This approach also identified core symptoms that play a crucial role in the network. Fatigue emerged as the most influential core symptom, highlighting the significance of targeted interventions to mitigate negative symptom interactions and improve quality of life.</p>","PeriodicalId":12980,"journal":{"name":"Health and Quality of Life Outcomes","volume":" ","pages":"5"},"PeriodicalIF":3.4,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12781769/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145661086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using machine learning to predict patient-reported symptom clusters in prostate cancer patients receiving radiotherapy. 使用机器学习预测接受放射治疗的前列腺癌患者报告的症状群。
IF 3.4 2区 医学 Q1 HEALTH CARE SCIENCES & SERVICES Pub Date : 2025-11-29 DOI: 10.1186/s12955-025-02460-1
Elke Rammant, Emile Deman, Valérie Fonteyne, Lindsay Poppe, Renée Bultijnck, Piet Dirix, Gert De Meerleer, Karin Haustermans, Ann Van Hecke, Miguel E Aguado-Barrera, Barbara Avuzzi, David Azria, Jenny Chang-Claude, Barbara N Chiorda, Ananya Choudhury, Patricia Calvo-Crespo, Dirk De Ruysscher, Antonio Gómez-Caamaño, Philipp Heumann, Ashley M Hopkins, Kerstie Johnson, Maarten Lambrecht, Alan Mcwilliam, Bradley D Menz, Filip Poelaert, Tiziana Rancati, Kato Rans, Tim Rattay, Barry S Rosenstein, Petra Seibold, Jane Shortall, Elena Sperk, Nora Sundahl, Christopher J Talbot, Ana Vega, Peter Vermeulen, Adam Webb, Catharine M L West, Liv Veldeman, Sofie Van Hoecke
{"title":"Using machine learning to predict patient-reported symptom clusters in prostate cancer patients receiving radiotherapy.","authors":"Elke Rammant, Emile Deman, Valérie Fonteyne, Lindsay Poppe, Renée Bultijnck, Piet Dirix, Gert De Meerleer, Karin Haustermans, Ann Van Hecke, Miguel E Aguado-Barrera, Barbara Avuzzi, David Azria, Jenny Chang-Claude, Barbara N Chiorda, Ananya Choudhury, Patricia Calvo-Crespo, Dirk De Ruysscher, Antonio Gómez-Caamaño, Philipp Heumann, Ashley M Hopkins, Kerstie Johnson, Maarten Lambrecht, Alan Mcwilliam, Bradley D Menz, Filip Poelaert, Tiziana Rancati, Kato Rans, Tim Rattay, Barry S Rosenstein, Petra Seibold, Jane Shortall, Elena Sperk, Nora Sundahl, Christopher J Talbot, Ana Vega, Peter Vermeulen, Adam Webb, Catharine M L West, Liv Veldeman, Sofie Van Hoecke","doi":"10.1186/s12955-025-02460-1","DOIUrl":"10.1186/s12955-025-02460-1","url":null,"abstract":"","PeriodicalId":12980,"journal":{"name":"Health and Quality of Life Outcomes","volume":" ","pages":"3"},"PeriodicalIF":3.4,"publicationDate":"2025-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12771884/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145632718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing inequalities in health utility scores among cancer patients undergoing systemic and radiation therapy. 评估接受全身和放射治疗的癌症患者健康效用得分的不平等。
IF 3.4 2区 医学 Q1 HEALTH CARE SCIENCES & SERVICES Pub Date : 2025-11-28 DOI: 10.1186/s12955-025-02458-9
Rashidul Alam Mahumud, Padam Kanta Dahal, Md Shahjalal
{"title":"Assessing inequalities in health utility scores among cancer patients undergoing systemic and radiation therapy.","authors":"Rashidul Alam Mahumud, Padam Kanta Dahal, Md Shahjalal","doi":"10.1186/s12955-025-02458-9","DOIUrl":"10.1186/s12955-025-02458-9","url":null,"abstract":"","PeriodicalId":12980,"journal":{"name":"Health and Quality of Life Outcomes","volume":" ","pages":"1"},"PeriodicalIF":3.4,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12763955/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145632774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Health and Quality of Life Outcomes
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1