Pub Date : 2025-03-01Epub Date: 2025-02-18DOI: 10.1089/hum.2024.170
William T Gibson, Tess C Lengyell, Andrea J Korecki, Sanne M Janssen, Bethany A Adair, Daniel Gamu, Matthew C Lorincz, Elizabeth M Simpson
Weaver syndrome is a rare neurodevelopmental disorder that encompasses macrocephaly, tall stature, obesity, brain anomalies, intellectual disability, and increased susceptibility to cancer. This dominant monogenic disorder is caused by germline variants in enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), a key epigenetic writer. Unfortunately, there are no effective treatments for Weaver syndrome. However, preclinical results support the potential for therapeutic gains, despite the prenatal onset. Thus, for the first time, we tested whether CRISPR/Cas9 gene-editing strategies may be able to "correct" a Weaver syndrome variant at the DNA level. We initiated these preclinical studies by humanizing the region surrounding the most-common recurring patient-variant location in mouse embryonic stem cells (ESCs). Humanization ensures that DNA-binding strategies will be directly translatable to human cells and patients. We then introduced into ESCs the humanized region, but now carrying the Weaver syndrome EZH2 variant c.2035C>T p.Arg684Cys, and characterized the enzymatic properties of this missense variant. Our data showed a significant and dramatic reduction in EZH2-enzymatic activity, supporting previous cell-free studies of this variant as well as in vitro and in vivo mouse work by other teams. Intriguingly, this most-common variant does not create a complete loss-of-function, but rather is a hypomorphic allele. Together with prior reports describing hypomorphic effects of missense EZH2 variants, these results demonstrate that the etiology of Weaver syndrome does not require complete loss of EZH2 enzymatic activity. Toward therapy, we tested four CRISPR gene-editing strategies. We demonstrated that Streptococcus pyogenes Cas9 (SpCas9) showed the highest variant correction (70.5%), but unfortunately also the highest alteration of the nonvariant allele (21.1-26.2%), an important consideration for gene-editing treatment of a dominant syndrome. However, Staphylococcus aureus Cas9 (SaCas9) gave a variant correction (52.5%) that was not significantly different than SpCas9, and encouragingly the lowest alteration of the nonvariant allele (2.0%). Thus, the therapeutic strategy using the small SaCas9 enzyme, a size that allows flexibility in therapeutic delivery, was the most optimal for targeting the Weaver syndrome EZH2 variant c.2035C>T p.Arg684Cys.
{"title":"Minimally Humanized <i>Ezh2</i> Exon-18 Mouse Cell Lines Validate Preclinical CRISPR/Cas9 Approach to Treat Weaver Syndrome.","authors":"William T Gibson, Tess C Lengyell, Andrea J Korecki, Sanne M Janssen, Bethany A Adair, Daniel Gamu, Matthew C Lorincz, Elizabeth M Simpson","doi":"10.1089/hum.2024.170","DOIUrl":"10.1089/hum.2024.170","url":null,"abstract":"<p><p>Weaver syndrome is a rare neurodevelopmental disorder that encompasses macrocephaly, tall stature, obesity, brain anomalies, intellectual disability, and increased susceptibility to cancer. This dominant monogenic disorder is caused by germline variants in enhancer of zeste 2 polycomb repressive complex 2 subunit (<i>EZH2</i>), a key epigenetic writer. Unfortunately, there are no effective treatments for Weaver syndrome. However, preclinical results support the potential for therapeutic gains, despite the prenatal onset. Thus, for the first time, we tested whether CRISPR/Cas9 gene-editing strategies may be able to \"correct\" a Weaver syndrome variant at the DNA level. We initiated these preclinical studies by humanizing the region surrounding the most-common recurring patient-variant location in mouse embryonic stem cells (ESCs). Humanization ensures that DNA-binding strategies will be directly translatable to human cells and patients. We then introduced into ESCs the humanized region, but now carrying the Weaver syndrome <i>EZH2</i> variant c.2035C>T p.Arg684Cys, and characterized the enzymatic properties of this missense variant. Our data showed a significant and dramatic reduction in EZH2-enzymatic activity, supporting previous cell-free studies of this variant as well as <i>in vitro</i> and <i>in vivo</i> mouse work by other teams. Intriguingly, this most-common variant does not create a complete loss-of-function, but rather is a hypomorphic allele. Together with prior reports describing hypomorphic effects of missense <i>EZH2</i> variants, these results demonstrate that the etiology of Weaver syndrome does not require complete loss of EZH2 enzymatic activity. Toward therapy, we tested four CRISPR gene-editing strategies. We demonstrated that <i>Streptococcus pyogenes</i> Cas9 (<i>Sp</i>Cas9) showed the highest variant correction (70.5%), but unfortunately also the highest alteration of the nonvariant allele (21.1-26.2%), an important consideration for gene-editing treatment of a dominant syndrome. However, <i>Staphylococcus aureus</i> Cas9 (<i>Sa</i>Cas9) gave a variant correction (52.5%) that was not significantly different than <i>Sp</i>Cas9, and encouragingly the lowest alteration of the nonvariant allele (2.0%). Thus, the therapeutic strategy using the small <i>Sa</i>Cas9 enzyme, a size that allows flexibility in therapeutic delivery, was the most optimal for targeting the Weaver syndrome <i>EZH2</i> variant c.2035C>T p.Arg684Cys.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"618-627"},"PeriodicalIF":3.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143448947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2025-02-20DOI: 10.1089/hum.2024.121
Saqlain Suleman, Mohammad S Khalifa, Serena Fawaz, Sharmin Alhaque, Yaghoub Chinea, Michael Themis
Lentivirus (LV) vectors offer permanent delivery of therapeutic genes to the host through an RNA intermediate genome. They are one of the most commonly used vectors for clinical gene therapy of inherited disorders such as immune deficiencies and cancer immunotherapy. One of the most difficult challenges facing their widespread application to patients is the large-scale production of highly pure vector stocks. To improve vector production and downstream purification, there has been a recent investment in the United Kingdom to establish good manufacturing process (GMP)-licensed centers for manufacture and quality control. Other requirements for these vectors include their target cell specificity and tropism, how to regulate gene expression of the therapeutic payload and their potential side effects. Comprehensive detail on the full nucleic acid content of LV is unknown, even though they have entered clinical trials. With potential adverse effects in mind, it is important to identify these contents to assess their safety and purity. In this study, we used highly sensitive PacBio long-distance, next-generation sequencing of reverse-transcribed vector component RNA to investigate the nucleic acid composition of recombinant HIV-1 particles generated by human 293T packaging cells. In this article, we describe our findings of nucleic acids other than the recombinant vector genome that exist, which could potentially be delivered during gene transfer, and suggest that removal of these unwanted components be considered before clinical LV application.
{"title":"Analysis of HIV-1-Based Lentiviral Vector Particle Composition by PacBio Long-Read Nucleic Acid Sequencing.","authors":"Saqlain Suleman, Mohammad S Khalifa, Serena Fawaz, Sharmin Alhaque, Yaghoub Chinea, Michael Themis","doi":"10.1089/hum.2024.121","DOIUrl":"10.1089/hum.2024.121","url":null,"abstract":"<p><p>Lentivirus (LV) vectors offer permanent delivery of therapeutic genes to the host through an RNA intermediate genome. They are one of the most commonly used vectors for clinical gene therapy of inherited disorders such as immune deficiencies and cancer immunotherapy. One of the most difficult challenges facing their widespread application to patients is the large-scale production of highly pure vector stocks. To improve vector production and downstream purification, there has been a recent investment in the United Kingdom to establish good manufacturing process (GMP)-licensed centers for manufacture and quality control. Other requirements for these vectors include their target cell specificity and tropism, how to regulate gene expression of the therapeutic payload and their potential side effects. Comprehensive detail on the full nucleic acid content of LV is unknown, even though they have entered clinical trials. With potential adverse effects in mind, it is important to identify these contents to assess their safety and purity. In this study, we used highly sensitive PacBio long-distance, next-generation sequencing of reverse-transcribed vector component RNA to investigate the nucleic acid composition of recombinant HIV-1 particles generated by human 293T packaging cells. In this article, we describe our findings of nucleic acids other than the recombinant vector genome that exist, which could potentially be delivered during gene transfer, and suggest that removal of these unwanted components be considered before clinical LV application.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"628-636"},"PeriodicalIF":3.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143457795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2025-01-24DOI: 10.1089/hum.2024.126
Leonard Hüttermann, Lena C Schröder, Prithviraj M V Shetty, Timo Jonker, Susanne S Hille, Anca Kliesow Remes, Andrea Matzen, Arie R Boender, Dirk Grimm, Derk Frank, Gerard J J Boink, Thomas Eschenhagen, Dennis Schade, Oliver J Müller
Adeno-associated viral (AAV) vectors are increasingly used for preclinical and clinical cardiac gene therapy approaches. However, gene transfer to cardiomyocytes poses a challenge due to differences between AAV serotypes in terms of expression efficiency in vitro and in vivo. For example, AAV9 vectors work well in rodent heart muscle cells in vivo but not in cultivated neonatal rat ventricular cardiomyocytes (NRVCMs), necessitating the use of AAV6 vectors for in vitro studies. Therefore, we aimed to develop an AAV that could efficiently express genes in NRVCMs, human engineered heart tissue (hEHT), and mammalian hearts. The production of AAV6 vectors results in lower yields compared with AAV9. Hence, we used random AAV9 peptide libraries and selected variants on NRVCMs at the vector genome and RNA levels in parallel. The enriched library variants were characterized using high-throughput analysis of barcoded variants, followed by individual validation of the most promising candidates. Interestingly, we found striking differences in NRVCM transduction and gene expression patterns of the AAV capsid variants depending on the selection strategy. AAV variants selected based on the vector genome level enabled the highest transduction but were outperformed by AAVs selected on the RNA level in terms of expression efficiency. In addition, we identified a new AAV9 capsid variant that not only allowed significantly higher gene expression in NRVCMs compared with AAV6 but also enabled similar gene expression in murine hearts as AAV9 wild-type vectors after being intravenously injected into mice. Moreover, the novel variant facilitated significantly higher gene expression in hEHT compared with AAV9. Therefore, this AAV variant could streamline preclinical gene therapy studies of myocardial diseases by eliminating the need for using different AAVs for NRVCMs, hEHT, and mice.
{"title":"Directed Evolution of AAV9 for Efficient Gene Expression in Cardiomyocytes <i>In Vitro</i> and <i>In Vivo</i>.","authors":"Leonard Hüttermann, Lena C Schröder, Prithviraj M V Shetty, Timo Jonker, Susanne S Hille, Anca Kliesow Remes, Andrea Matzen, Arie R Boender, Dirk Grimm, Derk Frank, Gerard J J Boink, Thomas Eschenhagen, Dennis Schade, Oliver J Müller","doi":"10.1089/hum.2024.126","DOIUrl":"10.1089/hum.2024.126","url":null,"abstract":"<p><p>Adeno-associated viral (AAV) vectors are increasingly used for preclinical and clinical cardiac gene therapy approaches. However, gene transfer to cardiomyocytes poses a challenge due to differences between AAV serotypes in terms of expression efficiency <i>in vitro</i> and <i>in vivo</i>. For example, AAV9 vectors work well in rodent heart muscle cells <i>in vivo</i> but not in cultivated neonatal rat ventricular cardiomyocytes (NRVCMs), necessitating the use of AAV6 vectors for <i>in vitro</i> studies. Therefore, we aimed to develop an AAV that could efficiently express genes in NRVCMs, human engineered heart tissue (hEHT), and mammalian hearts. The production of AAV6 vectors results in lower yields compared with AAV9. Hence, we used random AAV9 peptide libraries and selected variants on NRVCMs at the vector genome and RNA levels in parallel. The enriched library variants were characterized using high-throughput analysis of barcoded variants, followed by individual validation of the most promising candidates. Interestingly, we found striking differences in NRVCM transduction and gene expression patterns of the AAV capsid variants depending on the selection strategy. AAV variants selected based on the vector genome level enabled the highest transduction but were outperformed by AAVs selected on the RNA level in terms of expression efficiency. In addition, we identified a new AAV9 capsid variant that not only allowed significantly higher gene expression in NRVCMs compared with AAV6 but also enabled similar gene expression in murine hearts as AAV9 wild-type vectors after being intravenously injected into mice. Moreover, the novel variant facilitated significantly higher gene expression in hEHT compared with AAV9. Therefore, this AAV variant could streamline preclinical gene therapy studies of myocardial diseases by eliminating the need for using different AAVs for NRVCMs, hEHT, and mice.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"101-115"},"PeriodicalIF":3.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2025-01-16DOI: 10.1089/hum.2024.156
Genevieve A Laforet
Complement-mediated thrombotic microangiopathy (TMA) in the form of atypical hemolytic uremic syndrome (aHUS) has emerged as an immune complication of systemic adeno-associated virus (AAV) gene transfer that was unforeseen based on nonclinical studies. Understanding this phenomenon in the clinical setting has been limited by incomplete data and a lack of uniform diagnostic and reporting criteria. While apparently rare based on available information, AAV-associated TMA/aHUS can pose a substantial risk to patients including one published fatality. Reported cases were originally limited to pediatric Duchenne muscular dystrophy patients receiving micro- or mini-dystrophin transgenes via AAV9 but have subsequently been reported in both pediatric and adult patients across a range of disorders, transgenes, promoters, and AAV capsid types. This article provides an introduction to the complement system, TMA and aHUS, and anticomplement therapies, then presents clinical reviews of AAV-associated TMA/aHUS cases that have been reported publicly. Finally, exploration of risk factors and current and future mitigation approaches are discussed.
{"title":"Thrombotic Microangiopathy Associated with Systemic Adeno-Associated Virus Gene Transfer: Review of Reported Cases.","authors":"Genevieve A Laforet","doi":"10.1089/hum.2024.156","DOIUrl":"10.1089/hum.2024.156","url":null,"abstract":"<p><p>Complement-mediated thrombotic microangiopathy (TMA) in the form of atypical hemolytic uremic syndrome (aHUS) has emerged as an immune complication of systemic adeno-associated virus (AAV) gene transfer that was unforeseen based on nonclinical studies. Understanding this phenomenon in the clinical setting has been limited by incomplete data and a lack of uniform diagnostic and reporting criteria. While apparently rare based on available information, AAV-associated TMA/aHUS can pose a substantial risk to patients including one published fatality. Reported cases were originally limited to pediatric Duchenne muscular dystrophy patients receiving micro- or mini-dystrophin transgenes via AAV9 but have subsequently been reported in both pediatric and adult patients across a range of disorders, transgenes, promoters, and AAV capsid types. This article provides an introduction to the complement system, TMA and aHUS, and anticomplement therapies, then presents clinical reviews of AAV-associated TMA/aHUS cases that have been reported publicly. Finally, exploration of risk factors and current and future mitigation approaches are discussed.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"64-76"},"PeriodicalIF":3.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143004525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2025-01-06DOI: 10.1089/hum.2024.63331.oab
{"title":"ESGCT 31st Annual Congress In collaboration with SITGEC Rome, Italy October 22-25, 2024 Online Only.","authors":"","doi":"10.1089/hum.2024.63331.oab","DOIUrl":"https://doi.org/10.1089/hum.2024.63331.oab","url":null,"abstract":"","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":"36 3-4","pages":"e129-e557"},"PeriodicalIF":3.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143407304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2025-01-06DOI: 10.1089/hum.2024.160
Zhe Deng, Yan-Ling Lv, Xin-Tao Wang, Long-Hui Yuan, Kai Zhao, Zeng-Min Du, Xiao Xiao
Adeno-associated virus (AAV)-associated gene therapy has been increasingly promising, in light of the drugs progressed to clinical trials or approved for medications internationally. Therefore, scalable and efficient production of recombinant AAV is pivotal for advancing gene therapy. Traditional methods, such as the triple-plasmid transfection of human embryonic kidney 293 cells in suspension culture, have been widely employed but often hampered by low unit yield. In this study, we optimized the cell culture process with high cell density up to 2 × 107 cells/mL by employing a perfusion culture system with centrifugation and medium exchange in shake flasks and perfusion device in bioreactor. Furthermore, we utilized a design of experiments strategy to systematically modulate a series of transfection-related variables including the quantity of plasmid DNA, the DNA-to-polyethylenimine ratio, incubation duration, and the impact of post-transfection feeding strategies on the yield of recombinant AAV (rAAV). Our comprehensive analysis and subsequent optimizations actualized a remarkable unit yield reaching nearly 2 × 1012 vector genomes (vg)/mL. Importantly, the resulting single-cell yield and biological activity were found to be comparable with those obtained from fed-batch cultures, underscoring the efficacy of our approach. Based on these findings, we investigated rAAV yield via high-density suspend culture in bioreactor, particularly focusing on cell aggregation and the use of perfusion technology. Intriguingly, we attempted to elevate the yield of an oversized recombinant coagulation factor VIII AAV843 vector by 3.5-fold, reaching a yield of 1 × 1012 vg/mL. Concurrently, the medium usage rate was only double that of batch feeding, thereby significantly shrinking the upstream cost of rAAV manufacture. In summary, this strategy significantly benefits large-scale AAV production for both commercial and clinical applications.
{"title":"Production of Recombinant Adeno-Associated Virus Through High-Cell-Density Transfection of HEK293 Cells Based on Fed-Perfusion Culture.","authors":"Zhe Deng, Yan-Ling Lv, Xin-Tao Wang, Long-Hui Yuan, Kai Zhao, Zeng-Min Du, Xiao Xiao","doi":"10.1089/hum.2024.160","DOIUrl":"10.1089/hum.2024.160","url":null,"abstract":"<p><p>Adeno-associated virus (AAV)-associated gene therapy has been increasingly promising, in light of the drugs progressed to clinical trials or approved for medications internationally. Therefore, scalable and efficient production of recombinant AAV is pivotal for advancing gene therapy. Traditional methods, such as the triple-plasmid transfection of human embryonic kidney 293 cells in suspension culture, have been widely employed but often hampered by low unit yield. In this study, we optimized the cell culture process with high cell density up to 2 × 10<sup>7</sup> cells/mL by employing a perfusion culture system with centrifugation and medium exchange in shake flasks and perfusion device in bioreactor. Furthermore, we utilized a design of experiments strategy to systematically modulate a series of transfection-related variables including the quantity of plasmid DNA, the DNA-to-polyethylenimine ratio, incubation duration, and the impact of post-transfection feeding strategies on the yield of recombinant AAV (rAAV). Our comprehensive analysis and subsequent optimizations actualized a remarkable unit yield reaching nearly 2 × 10<sup>12</sup> vector genomes (vg)/mL. Importantly, the resulting single-cell yield and biological activity were found to be comparable with those obtained from fed-batch cultures, underscoring the efficacy of our approach. Based on these findings, we investigated rAAV yield via high-density suspend culture in bioreactor, particularly focusing on cell aggregation and the use of perfusion technology. Intriguingly, we attempted to elevate the yield of an oversized recombinant coagulation factor VIII AAV843 vector by 3.5-fold, reaching a yield of 1 × 10<sup>12</sup> vg/mL. Concurrently, the medium usage rate was only double that of batch feeding, thereby significantly shrinking the upstream cost of rAAV manufacture. In summary, this strategy significantly benefits large-scale AAV production for both commercial and clinical applications.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":"36 3-4","pages":"116-127"},"PeriodicalIF":3.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143407309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}