首页 > 最新文献

Human gene therapy最新文献

英文 中文
Periostin Exon 17 Skipping Enhances the Efficacy of Local Adeno-Associated Viral-Microdystrophin Administration in a Fibrotic Model of Duchenne Muscular Dystrophy. 在杜氏肌营养不良纤维化模型中,Periostin外显子17跳变增强了局部腺相关病毒-微营养不良蛋白给药的效果。
IF 4 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-09-01 Epub Date: 2025-06-04 DOI: 10.1089/hum.2024.256
Jessica Trundle, Alexis Boulinguiez, Ngoc Lu-Nguyen, James March, Alberto Malerba, Linda Popplewell

Duchenne muscular dystrophy (DMD) is a severe, progressive genetic disorder primarily affecting boys, characterized by muscle degeneration due to mutations in the DMD gene encoding dystrophin, a crucial protein for muscle fiber integrity. The disease leads to significant muscle weakness and eventually to loss of ambulation. Adeno-associated viral (AAV)-microdystrophin (MD) gene therapy shows promise in preclinical and clinical settings. However, muscle fibrosis, a consequence of chronic inflammation and extracellular matrix remodeling, exacerbates disease progression and may hinder therapeutic efficacy. Periostin, a matricellular protein involved in fibrosis, is upregulated in DMD rodent models and correlates with collagen deposition. We previously developed an antisense oligonucleotide strategy to induce exon 17 skipping and so reduce periostin expression and collagen accumulation in the fibrotic D2.mdx mouse model of DMD. Here, we investigated the combined effects of periostin modulation and AAV-MD1 treatment. We found that systemic periostin splicing modulation significantly improved muscle function, assessed by forelimb grip strength and treadmill performance. Importantly, periostin exon skipping increased the MD protein expression. These findings suggest that targeting periostin in conjunction with MD therapy could represent a valid therapeutic strategy for DMD.

杜氏肌营养不良症(DMD)是一种严重的进行性遗传病,主要影响男孩,其特征是由于编码肌营养不良蛋白的DMD基因突变导致肌肉变性,肌营养不良蛋白是肌肉纤维完整性的关键蛋白质。这种疾病会导致严重的肌肉无力,最终导致无法行走。腺相关病毒(AAV)-微营养不良蛋白(MD)基因治疗在临床前和临床环境中显示出前景。然而,肌肉纤维化,慢性炎症和细胞外基质重塑的后果,加剧疾病进展,并可能阻碍治疗效果。骨膜蛋白是一种参与纤维化的基质细胞蛋白,在DMD啮齿动物模型中表达上调,并与胶原沉积相关。我们之前开发了一种反义寡核苷酸策略来诱导外显子17跳变,从而减少纤维化D2中的骨膜蛋白表达和胶原积累。mdx小鼠DMD模型。在这里,我们研究了骨膜蛋白调节和AAV-MD1治疗的联合效应。我们发现,通过前肢握力和跑步机表现来评估,系统性的骨膜蛋白剪接调节显著改善了肌肉功能。重要的是,骨膜蛋白外显子跳变增加了MD蛋白的表达。这些发现表明,靶向骨膜蛋白联合MD治疗可能是一种有效的治疗DMD的策略。
{"title":"Periostin Exon 17 Skipping Enhances the Efficacy of Local Adeno-Associated Viral-Microdystrophin Administration in a Fibrotic Model of Duchenne Muscular Dystrophy.","authors":"Jessica Trundle, Alexis Boulinguiez, Ngoc Lu-Nguyen, James March, Alberto Malerba, Linda Popplewell","doi":"10.1089/hum.2024.256","DOIUrl":"10.1089/hum.2024.256","url":null,"abstract":"<p><p>Duchenne muscular dystrophy (DMD) is a severe, progressive genetic disorder primarily affecting boys, characterized by muscle degeneration due to mutations in the DMD gene encoding dystrophin, a crucial protein for muscle fiber integrity. The disease leads to significant muscle weakness and eventually to loss of ambulation. Adeno-associated viral (AAV)-microdystrophin (MD) gene therapy shows promise in preclinical and clinical settings. However, muscle fibrosis, a consequence of chronic inflammation and extracellular matrix remodeling, exacerbates disease progression and may hinder therapeutic efficacy. Periostin, a matricellular protein involved in fibrosis, is upregulated in DMD rodent models and correlates with collagen deposition. We previously developed an antisense oligonucleotide strategy to induce exon 17 skipping and so reduce periostin expression and collagen accumulation in the fibrotic D2.<i>mdx</i> mouse model of DMD. Here, we investigated the combined effects of periostin modulation and AAV-MD1 treatment. We found that systemic periostin splicing modulation significantly improved muscle function, assessed by forelimb grip strength and treadmill performance. Importantly, periostin exon skipping increased the MD protein expression. These findings suggest that targeting periostin in conjunction with MD therapy could represent a valid therapeutic strategy for DMD.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"1257-1267"},"PeriodicalIF":4.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144215695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulatory Strategies for Accelerating the Translation of Gene Therapies to Clinical Practice: Focus on GMO Considerations. 加速基因疗法转化为临床实践的监管策略:关注转基因考虑。
IF 4 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-09-01 Epub Date: 2025-08-21 DOI: 10.1177/10430342251372063
Joaquin Delgadillo, Francisco Martin, Gloria Carmona, Josep M Canals, Paula Rio, Cristina Eguizabal, Felipe Prosper, Cristina Avendaño-Solá

Gene therapy has revolutionized modern medicine by offering innovative treatments for genetic disorders, cancers, and immune-related conditions through technologies such as viral vector delivery, genome editing, and genetically modified cell therapies. Despite significant advancements, the classification of gene therapy medicinal products (GTMPs) as genetically modified organisms (GMOs) under EU legislation imposes significant regulatory burdens, hindering early and timely patient access to such therapies. Current GMO regulations, originally designed for agricultural biotechnology, require environmental risk assessments (ERAs) and additional approvals, creating delays and increasing costs-with a particularly negative impact on early academic research. This article examines the scientific and regulatory discrepancies in classifying GTMPs as GMOs, arguing that replication-deficient vectors and non-persistent modified cells may not meet the criteria for GMOs. We highlight the negative impact of GMO requirements on clinical trial feasibility in Europe compared to the U.S., where a categorical exclusion from ERA applies to investigational medicinal products. Proposed solutions include adopting a risk-based regulatory model, harmonizing ERA processes under the revised EU Clinical Trials Regulation, and establishing exemptions for low-risk therapies. By aligning regulatory frameworks with scientific evidence, policymakers can accelerate the translation of gene therapies while maintaining safety standards, ultimately improving patient access to these transformative treatments.

基因疗法通过病毒载体传递、基因组编辑、基因修饰细胞疗法等技术,为遗传疾病、癌症、免疫相关疾病提供了创新的治疗方法,给现代医学带来了革命性的变化。尽管取得了重大进展,但根据欧盟立法,将基因治疗药物产品(gtmp)分类为转基因生物(GMOs)带来了重大的监管负担,阻碍了患者早期和及时获得此类治疗。目前的转基因法规最初是为农业生物技术设计的,需要环境风险评估(ERAs)和额外的批准,这造成了延误和成本的增加,对早期的学术研究产生了特别负面的影响。本文探讨了将gtmp分类为转基因生物的科学和监管差异,认为复制缺陷载体和非持久性修饰细胞可能不符合转基因生物的标准。我们强调了与美国相比,欧洲转基因生物要求对临床试验可行性的负面影响,在美国,ERA的分类排除适用于临床试验药品。建议的解决方案包括采用基于风险的监管模式,在修订后的欧盟临床试验条例下协调ERA流程,并为低风险疗法建立豁免。通过使监管框架与科学证据保持一致,政策制定者可以在保持安全标准的同时加速基因疗法的转化,最终改善患者获得这些变革性治疗的机会。
{"title":"Regulatory Strategies for Accelerating the Translation of Gene Therapies to Clinical Practice: Focus on GMO Considerations.","authors":"Joaquin Delgadillo, Francisco Martin, Gloria Carmona, Josep M Canals, Paula Rio, Cristina Eguizabal, Felipe Prosper, Cristina Avendaño-Solá","doi":"10.1177/10430342251372063","DOIUrl":"10.1177/10430342251372063","url":null,"abstract":"<p><p>Gene therapy has revolutionized modern medicine by offering innovative treatments for genetic disorders, cancers, and immune-related conditions through technologies such as viral vector delivery, genome editing, and genetically modified cell therapies. Despite significant advancements, the classification of gene therapy medicinal products (GTMPs) as genetically modified organisms (GMOs) under EU legislation imposes significant regulatory burdens, hindering early and timely patient access to such therapies. Current GMO regulations, originally designed for agricultural biotechnology, require environmental risk assessments (ERAs) and additional approvals, creating delays and increasing costs-with a particularly negative impact on early academic research. This article examines the scientific and regulatory discrepancies in classifying GTMPs as GMOs, arguing that replication-deficient vectors and non-persistent modified cells may not meet the criteria for GMOs. We highlight the negative impact of GMO requirements on clinical trial feasibility in Europe compared to the U.S., where a categorical exclusion from ERA applies to investigational medicinal products. Proposed solutions include adopting a risk-based regulatory model, harmonizing ERA processes under the revised EU Clinical Trials Regulation, and establishing exemptions for low-risk therapies. By aligning regulatory frameworks with scientific evidence, policymakers can accelerate the translation of gene therapies while maintaining safety standards, ultimately improving patient access to these transformative treatments.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"1154-1158"},"PeriodicalIF":4.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144951996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toxicity and Biodistribution of the Oncolytic Virus VCN-01 Following Intracranial Injection in Syrian Hamsters. 叙利亚仓鼠颅内注射溶瘤病毒VCN-01的毒性和生物分布
IF 4 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-09-01 Epub Date: 2025-08-29 DOI: 10.1177/10430342251372091
Daniel Palacios-Alonso, Miriam Bazan-Peregrino, Marta Zalacain, Lucía Marrodán, Ana Mato-Berciano, Jaime Gállego Pérez-Larraya, Iker Ausejo-Mauleon, Ana Patiño-García, Lilian Zavala-Romero, Manel Cascalló, Ramon Alemany, Marisol González-Huarriz, Marta M Alonso

Among solid pediatric tumors, brain tumors are the leading cause of cancer-related mortality. While survival rates have improved for certain pediatric brain tumor subtypes, the overall prognosis remains poor. Consequently, there is an urgent need for novel therapies that are not only effective but also less toxic. Oncolytic viruses have emerged as promising therapeutic agents due to their ability to selectively replicate in tumor cells while sparing healthy tissue and their potential to induce systemic antitumor immune responses. VCN-01 is a replication-competent oncolytic adenovirus whose efficacy has been demonstrated in clinical trials after systemic administration in combination with chemotherapy. Evidence of antitumor activity has also been obtained after intracranial administration in preclinical models of various brain tumors, including high-grade gliomas. However, before progressing to clinical trials for those indications, it is essential to assess the safety of its intracranial administration. In this study, we evaluated the toxicity and biodistribution of VCN-01 following intracranial injection in a Syrian hamster model. Two viral doses were tested: 1.5 × 109 and 1.5 × 1010 viral particles (vp)/animal, corresponding to 5 and 50 times the starting clinical dose (1010 vp/patient), respectively. Our toxicity analysis revealed a favorable safety profile, with no adverse effects observed following administration. Biodistribution studies demonstrated that VCN-01 primarily remained confined to the brain, with only minimal presence detected in peripheral tissues. The neutralizing antibody response against the virus was stronger in females than in males, correlating with a lower detection of vp in females compared with males. In conclusion, these findings support the safety of intracranial administration of VCN-01 and provide a strong rationale for its further development as a therapeutic option for patients with brain tumors.

在儿童实体肿瘤中,脑肿瘤是癌症相关死亡的主要原因。虽然某些儿童脑肿瘤亚型的存活率有所提高,但总体预后仍然很差。因此,迫切需要一种不仅有效而且毒性更小的新疗法。溶瘤病毒已成为一种很有前景的治疗药物,因为它们能够选择性地在肿瘤细胞中复制,同时保留健康组织,并且它们具有诱导全身抗肿瘤免疫反应的潜力。VCN-01是一种具有复制能力的溶瘤腺病毒,在与化疗联合全身给药后,其疗效已在临床试验中得到证实。在各种脑肿瘤(包括高级别胶质瘤)的临床前模型中,经颅内给药后也获得了抗肿瘤活性的证据。然而,在进行这些适应症的临床试验之前,有必要评估其颅内给药的安全性。在这项研究中,我们评估了VCN-01在叙利亚仓鼠模型中颅内注射后的毒性和生物分布。试验两种病毒剂量:1.5 × 109和1.5 × 1010病毒颗粒(vp)/只动物,分别对应临床起始剂量(1010 vp/例)的5倍和50倍。我们的毒性分析显示了良好的安全性,在给药后没有观察到不良反应。生物分布研究表明,VCN-01主要局限于大脑,仅在外周组织中检测到少量存在。对病毒的中和抗体反应在女性中比在男性中更强,这与女性中vp的检出率比男性低有关。总之,这些发现支持颅内给药VCN-01的安全性,并为其进一步发展作为脑肿瘤患者的治疗选择提供了强有力的理论依据。
{"title":"Toxicity and Biodistribution of the Oncolytic Virus VCN-01 Following Intracranial Injection in Syrian Hamsters.","authors":"Daniel Palacios-Alonso, Miriam Bazan-Peregrino, Marta Zalacain, Lucía Marrodán, Ana Mato-Berciano, Jaime Gállego Pérez-Larraya, Iker Ausejo-Mauleon, Ana Patiño-García, Lilian Zavala-Romero, Manel Cascalló, Ramon Alemany, Marisol González-Huarriz, Marta M Alonso","doi":"10.1177/10430342251372091","DOIUrl":"10.1177/10430342251372091","url":null,"abstract":"<p><p>Among solid pediatric tumors, brain tumors are the leading cause of cancer-related mortality. While survival rates have improved for certain pediatric brain tumor subtypes, the overall prognosis remains poor. Consequently, there is an urgent need for novel therapies that are not only effective but also less toxic. Oncolytic viruses have emerged as promising therapeutic agents due to their ability to selectively replicate in tumor cells while sparing healthy tissue and their potential to induce systemic antitumor immune responses. VCN-01 is a replication-competent oncolytic adenovirus whose efficacy has been demonstrated in clinical trials after systemic administration in combination with chemotherapy. Evidence of antitumor activity has also been obtained after intracranial administration in preclinical models of various brain tumors, including high-grade gliomas. However, before progressing to clinical trials for those indications, it is essential to assess the safety of its intracranial administration. In this study, we evaluated the toxicity and biodistribution of VCN-01 following intracranial injection in a Syrian hamster model. Two viral doses were tested: 1.5 × 10<sup>9</sup> and 1.5 × 10<sup>10</sup> viral particles (vp)/animal, corresponding to 5 and 50 times the starting clinical dose (10<sup>10</sup> vp/patient), respectively. Our toxicity analysis revealed a favorable safety profile, with no adverse effects observed following administration. Biodistribution studies demonstrated that VCN-01 primarily remained confined to the brain, with only minimal presence detected in peripheral tissues. The neutralizing antibody response against the virus was stronger in females than in males, correlating with a lower detection of vp in females compared with males. In conclusion, these findings support the safety of intracranial administration of VCN-01 and provide a strong rationale for its further development as a therapeutic option for patients with brain tumors.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"1237-1247"},"PeriodicalIF":4.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144952050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Risk and Benefit Assessment of Gene Therapy with Lentiviral Vectors and Hematopoietic Stem Cells: The Skysona Case. 慢病毒载体和造血干细胞基因治疗的风险和效益评估:Skysona病例。
IF 4 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-09-01 DOI: 10.1177/10430342251372474
Pilar Puig-Serra, Ana Hinckley-Boned, María Tristán-Manzano, Paula Rio, Raul Torres-Ruiz, Sandra Rodriguez-Perales, Francisco Martín

Seven cases of hematological malignancy reported in recipients of Skysona™ (elivaldogene autotemcel) have reignited long-standing concerns about insertional mutagenesis in lentiviral vector (LV)-based gene therapy. Here, we dissect the molecular and clinical evidence underlying these events, place them in the broader context of over 300 patients treated with LV-modified hematopoietic stem and progenitor cells (HSPCs), and review the real-world safety record of LV-engineered chimeric antigen receptor T cells. We show that cancers associated with Skysona are mechanistically linked to the use of a potent viral MNDU3 promoter probably combined with intensive conditioning and growth-factor support, whereas LV products employing weak or physiological promoters continue to display an excellent safety profile. With event rates <0.6/100 patient-years, lower than those after autologous HSCT, the therapeutic index of approved LV-HSPC advanced therapy medicinal products remains favorable. Ongoing optimization of vector design, conditioning, and long-term surveillance, together with emerging genome-editing platforms, is expected to further mitigate residual risk.

在Skysona™(elivaldogene autotemcell)受体中报道的7例血液恶性肿瘤再次引发了长期以来对基于慢病毒载体(LV)的基因治疗中插入性突变的担忧。在这里,我们剖析了这些事件背后的分子和临床证据,将它们置于300多名接受lv修饰的造血干细胞和祖细胞(HSPCs)治疗的患者的更广泛背景下,并回顾了lv工程嵌合抗原受体T细胞的真实安全性记录。我们发现,与Skysona相关的癌症与使用强效病毒MNDU3启动子(可能结合强化调理和生长因子支持)有机制联系,而使用弱或生理启动子的LV产品继续显示出良好的安全性。有事件率
{"title":"Risk and Benefit Assessment of Gene Therapy with Lentiviral Vectors and Hematopoietic Stem Cells: The Skysona Case.","authors":"Pilar Puig-Serra, Ana Hinckley-Boned, María Tristán-Manzano, Paula Rio, Raul Torres-Ruiz, Sandra Rodriguez-Perales, Francisco Martín","doi":"10.1177/10430342251372474","DOIUrl":"10.1177/10430342251372474","url":null,"abstract":"<p><p>Seven cases of hematological malignancy reported in recipients of Skysona™ (elivaldogene autotemcel) have reignited long-standing concerns about insertional mutagenesis in lentiviral vector (LV)-based gene therapy. Here, we dissect the molecular and clinical evidence underlying these events, place them in the broader context of over 300 patients treated with LV-modified hematopoietic stem and progenitor cells (HSPCs), and review the real-world safety record of LV-engineered chimeric antigen receptor T cells. We show that cancers associated with Skysona are mechanistically linked to the use of a potent viral MNDU3 promoter probably combined with intensive conditioning and growth-factor support, whereas LV products employing weak or physiological promoters continue to display an excellent safety profile. With event rates <0.6/100 patient-years, lower than those after autologous HSCT, the therapeutic index of approved LV-HSPC advanced therapy medicinal products remains favorable. Ongoing optimization of vector design, conditioning, and long-term surveillance, together with emerging genome-editing platforms, is expected to further mitigate residual risk.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"1159-1172"},"PeriodicalIF":4.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144952055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trojan Horse-Like Vehicles for CRISPR-Cas Delivery: Engineering Extracellular Vesicles and Virus-Like Particles for Precision Gene Editing in Cystic Fibrosis. CRISPR-Cas传递的特洛伊木马样载体:用于囊性纤维化精确基因编辑的工程细胞外囊泡和病毒样颗粒
IF 4 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-08-01 Epub Date: 2025-04-28 DOI: 10.1089/hum.2024.258
Laudonia Lidia Dipalo, Jacob Giehm Mikkelsen, Rik Gijsbers, Marianne S Carlon

The advent of genome editing has kindled the hope to cure previously uncurable, life-threatening genetic diseases. However, whether this promise can be ultimately fulfilled depends on how efficiently gene editing agents can be delivered to therapeutically relevant cells. Over time, viruses have evolved into sophisticated, versatile, and biocompatible nanomachines that can be engineered to shuttle payloads to specific cell types. Despite the advances in safety and selectivity, the long-term expression of gene editing agents sustained by viral vectors remains a cause for concern. Cell-derived vesicles (CDVs) are gaining traction as elegant alternatives. CDVs encompass extracellular vesicles (EVs), a diverse set of intrinsically biocompatible and low-immunogenic membranous nanoparticles, and virus-like particles (VLPs), bioparticles with virus-like scaffold and envelope structures, but devoid of genetic material. Both EVs and VLPs can efficiently deliver ribonucleoprotein cargo to the target cell cytoplasm, ensuring that the editing machinery is only transiently active in the cell and thereby increasing its safety. In this review, we explore the natural diversity of CDVs and their potential as delivery vectors for the clustered regularly interspaced short palindromic repeats (CRISPR) machinery. We illustrate different strategies for the optimization of CDV cargo loading and retargeting, highlighting the versatility and tunability of these vehicles. Nonetheless, the lack of robust and standardized protocols for CDV production, purification, and quality assessment still hinders their widespread adoption to further CRISPR-based therapies as advanced "living drugs." We believe that a collective, multifaceted effort is urgently needed to address these critical issues and unlock the full potential of genome-editing technologies to yield safe, easy-to-manufacture, and pharmacologically well-defined therapies. Finally, we discuss the current clinical landscape of lung-directed gene therapies for cystic fibrosis and explore how CDVs could drive significant breakthroughs in in vivo gene editing for this disease.

基因组编辑的出现点燃了治愈以前无法治愈、危及生命的遗传疾病的希望。然而,这一承诺能否最终实现取决于基因编辑剂如何有效地递送到治疗相关细胞。随着时间的推移,病毒已经进化成复杂的、多功能的、生物相容性的纳米机器,可以被设计成将有效载荷运送到特定的细胞类型。尽管在安全性和选择性方面取得了进展,但由病毒载体维持的基因编辑剂的长期表达仍然令人担忧。细胞源性囊泡(cdv)作为一种优雅的替代方案正受到越来越多的关注。cdv包括细胞外囊泡(ev),一组具有内在生物相容性和低免疫原性的膜状纳米颗粒,以及病毒样颗粒(vlp),具有病毒样支架和包膜结构的生物颗粒,但缺乏遗传物质。ev和vlp都可以有效地将核糖核蛋白货物运送到靶细胞质,确保编辑机制在细胞中只是短暂活跃,从而提高其安全性。在这篇综述中,我们探讨了cdv的自然多样性及其作为聚集规则间隔短回文重复(CRISPR)机制的传递载体的潜力。我们举例说明了优化CDV货物装载和重定向的不同策略,突出了这些车辆的多功能性和可调性。尽管如此,缺乏CDV生产、纯化和质量评估的健全和标准化的方案仍然阻碍了它们作为先进的“活药”广泛采用基于crispr的治疗方法。我们认为,迫切需要一个集体的、多方面的努力来解决这些关键问题,并释放基因组编辑技术的全部潜力,以产生安全、易于制造和药理学上明确定义的治疗方法。最后,我们讨论了目前肺定向基因治疗囊性纤维化的临床前景,并探讨了cdv如何推动这种疾病的体内基因编辑取得重大突破。
{"title":"Trojan Horse-Like Vehicles for CRISPR-Cas Delivery: Engineering Extracellular Vesicles and Virus-Like Particles for Precision Gene Editing in Cystic Fibrosis.","authors":"Laudonia Lidia Dipalo, Jacob Giehm Mikkelsen, Rik Gijsbers, Marianne S Carlon","doi":"10.1089/hum.2024.258","DOIUrl":"10.1089/hum.2024.258","url":null,"abstract":"<p><p>The advent of genome editing has kindled the hope to cure previously uncurable, life-threatening genetic diseases. However, whether this promise can be ultimately fulfilled depends on how efficiently gene editing agents can be delivered to therapeutically relevant cells. Over time, viruses have evolved into sophisticated, versatile, and biocompatible nanomachines that can be engineered to shuttle payloads to specific cell types. Despite the advances in safety and selectivity, the long-term expression of gene editing agents sustained by viral vectors remains a cause for concern. Cell-derived vesicles (CDVs) are gaining traction as elegant alternatives. CDVs encompass extracellular vesicles (EVs), a diverse set of intrinsically biocompatible and low-immunogenic membranous nanoparticles, and virus-like particles (VLPs), bioparticles with virus-like scaffold and envelope structures, but devoid of genetic material. Both EVs and VLPs can efficiently deliver ribonucleoprotein cargo to the target cell cytoplasm, ensuring that the editing machinery is only transiently active in the cell and thereby increasing its safety. In this review, we explore the natural diversity of CDVs and their potential as delivery vectors for the clustered regularly interspaced short palindromic repeats (CRISPR) machinery. We illustrate different strategies for the optimization of CDV cargo loading and retargeting, highlighting the versatility and tunability of these vehicles. Nonetheless, the lack of robust and standardized protocols for CDV production, purification, and quality assessment still hinders their widespread adoption to further CRISPR-based therapies as advanced \"living drugs.\" We believe that a collective, multifaceted effort is urgently needed to address these critical issues and unlock the full potential of genome-editing technologies to yield safe, easy-to-manufacture, and pharmacologically well-defined therapies. Finally, we discuss the current clinical landscape of lung-directed gene therapies for cystic fibrosis and explore how CDVs could drive significant breakthroughs in <i>in vivo</i> gene editing for this disease.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"1021-1052"},"PeriodicalIF":4.0,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144003132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recombinant Adeno-Associated Virus Vector Mediated Gene Editing in Proliferating and Polarized Cultures of Human Airway Epithelial Cells. 重组腺相关病毒载体介导的人气道上皮细胞增殖和极化培养的基因编辑。
IF 4 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-08-01 Epub Date: 2025-05-13 DOI: 10.1089/hum.2024.260
Soo Yeun Park, Zehua Feng, Soon H Choi, Xiujuan Zhang, Yinghua Tang, Grace N Gasser, Donovan Richart, Feng Yuan, Jianming Qiu, John F Engelhardt, Ziying Yan

Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. While CRISPR-based CFTR editing approaches have shown proof-of-concept for functional rescue in primary airway basal cells, induced pluripotent stem cells, and organoid cultures derived from patients with CF, their efficacy remains suboptimal. Here, we developed the CuFiCas9(Y66S)eGFP reporter system by integrating spCas9 and a non-fluorescent Y66S eGFP mutant into CuFi-8 cells, an immortalized human airway epithelial cell line derived from a patient with CF with homozygous F508del mutations. These cells retain the basal cell phenotype in proliferating cultures and can differentiate into polarized airway epithelium at an air-liquid interface (ALI), enabling both visualized detection of gene editing and electrophysiological assessment of CFTR functional restoration. Using this system, recombinant adeno-associated virus (rAAV)-mediated homology-directed repair (HDR) was evaluated in proliferating cultures. A correction rate of 13.5 ± 0.8% was achieved in a population where 82.3 ± 5.6% of cells were productively transduced by AAV.eGFP630g2-CMVmCh, an rAAV editing vector with an mCherry reporter. Dual-editing of F508del CFTR and Y66S eGFP was explored using AAV.HR-eGFP630-F508(g03) to deliver two templates and single guide RNAs. eGFP+ (Y66S-corrected) cells and eGFP- (non-corrected) cells were sorted via fluorescence-activated cell sorting and differentiated at an ALI to assess the recovery of CFTR function. Despite a low F508 correction rate of 2.8%, ALI cultures derived from the eGFP- population exhibited 25.2% of the CFTR-specific transepithelial Cl- transport observed in CuFi-ALI cultures treated with CFTR modulators. Next-generation sequencing revealed frequent co-editing at both genomic loci, with sixfold higher F508 correction rate in the eGFP+ cells than eGFP- cells. In both populations, non-homology end joining predominated over HDR. This reporter system provides a valuable platform for optimizing editing efficiencies in proliferating airway basal cells, particularly for development of strategies to enhance HDR through modulation of DNA repair pathways.

囊性纤维化(CF)是由囊性纤维化跨膜传导调节因子(CFTR)基因突变引起的。虽然基于crispr的CFTR编辑方法已经在原代气道基底细胞、诱导多能干细胞和源自CF患者的类器官培养物中显示出功能挽救的概念证明,但其疗效仍然不理想。在这里,我们通过将spCas9和非荧光Y66S eGFP突变体整合到CuFi-8细胞中,开发了CuFiCas9(Y66S)eGFP报告系统,CuFi-8细胞是一种永生的人气道上皮细胞系,来源于具有纯合子F508del突变的CF患者。这些细胞在增殖培养物中保持基底细胞表型,并能在气液界面(ALI)分化为极化气道上皮,从而实现基因编辑的可视化检测和CFTR功能恢复的电生理评估。利用该系统,在增殖培养中评估了重组腺相关病毒(rAAV)介导的同源定向修复(HDR)。校正率为13.5±0.8%,其中82.3±5.6%的细胞被AAV有效转导。eGFP630g2-CMVmCh,一种带有mCherry报告器的rAAV编辑载体。利用AAV.HR-eGFP630-F508(g03)对F508del CFTR和Y66S eGFP进行双编辑,传递两个模板和单个引导rna。通过荧光激活细胞分选对eGFP+ (y66s校正)细胞和eGFP-(未校正)细胞进行分类,并在ALI下进行分化,以评估CFTR功能的恢复情况。尽管F508校正率较低,为2.8%,但在CFTR调节剂处理的CuFi-ALI培养物中,eGFP-群体的ALI培养物显示出25.2%的CFTR特异性经上皮Cl-转运。新一代测序结果显示,在这两个基因组位点上,F508在eGFP+细胞中的校正率比eGFP-细胞高6倍。在两个种群中,非同源末端连接在HDR中占主导地位。该报告系统为优化增殖气道基底细胞的编辑效率提供了一个有价值的平台,特别是用于开发通过调节DNA修复途径增强HDR的策略。
{"title":"Recombinant Adeno-Associated Virus Vector Mediated Gene Editing in Proliferating and Polarized Cultures of Human Airway Epithelial Cells.","authors":"Soo Yeun Park, Zehua Feng, Soon H Choi, Xiujuan Zhang, Yinghua Tang, Grace N Gasser, Donovan Richart, Feng Yuan, Jianming Qiu, John F Engelhardt, Ziying Yan","doi":"10.1089/hum.2024.260","DOIUrl":"10.1089/hum.2024.260","url":null,"abstract":"<p><p>Cystic fibrosis (CF) is caused by mutations in the <i>cystic fibrosis transmembrane conductance regulator</i> (<i>CFTR</i>) gene. While CRISPR-based <i>CFTR</i> editing approaches have shown proof-of-concept for functional rescue in primary airway basal cells, induced pluripotent stem cells, and organoid cultures derived from patients with CF, their efficacy remains suboptimal. Here, we developed the CuFi<sup>Cas9(Y66S)eGFP</sup> reporter system by integrating spCas9 and a non-fluorescent Y66S eGFP mutant into CuFi-8 cells, an immortalized human airway epithelial cell line derived from a patient with CF with homozygous F508del mutations. These cells retain the basal cell phenotype in proliferating cultures and can differentiate into polarized airway epithelium at an air-liquid interface (ALI), enabling both visualized detection of gene editing and electrophysiological assessment of <i>CFTR</i> functional restoration. Using this system, recombinant adeno-associated virus (rAAV)-mediated homology-directed repair (HDR) was evaluated in proliferating cultures. A correction rate of 13.5 ± 0.8% was achieved in a population where 82.3 ± 5.6% of cells were productively transduced by AAV.eGFP630g2-CMVmCh, an rAAV editing vector with an mCherry reporter. Dual-editing of F508del <i>CFTR</i> and Y66S <i>eGFP</i> was explored using AAV.HR-eGFP630-F508(g03) to deliver two templates and single guide RNAs. eGFP<sup>+</sup> (Y66S-corrected) cells and eGFP<sup>-</sup> (non-corrected) cells were sorted via fluorescence-activated cell sorting and differentiated at an ALI to assess the recovery of CFTR function. Despite a low F508 correction rate of 2.8%, ALI cultures derived from the eGFP<sup>-</sup> population exhibited 25.2% of the CFTR-specific transepithelial Cl<sup>-</sup> transport observed in CuFi-ALI cultures treated with CFTR modulators. Next-generation sequencing revealed frequent co-editing at both genomic loci, with sixfold higher F508 correction rate in the eGFP<sup>+</sup> cells than eGFP<sup>-</sup> cells. In both populations, non-homology end joining predominated over HDR. This reporter system provides a valuable platform for optimizing editing efficiencies in proliferating airway basal cells, particularly for development of strategies to enhance HDR through modulation of DNA repair pathways.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"1067-1082"},"PeriodicalIF":4.0,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12409266/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144009310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
10-Month-Old Boy Makes History as World's First Patient Treated with Personalized CRISPR Therapy. 10个月大的男孩成为世界上第一个接受个性化CRISPR治疗的患者。
IF 4 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-08-01 Epub Date: 2025-06-23 DOI: 10.1089/hum.2025.124
Alex Philippidis
{"title":"10-Month-Old Boy Makes History as World's First Patient Treated with Personalized CRISPR Therapy.","authors":"Alex Philippidis","doi":"10.1089/hum.2025.124","DOIUrl":"10.1089/hum.2025.124","url":null,"abstract":"","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"1016-1020"},"PeriodicalIF":4.0,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144474979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intrastriatal Delivery of a Zinc Finger Protein Targeting the Mutant HTT Gene Allele Obviates Lipid Phenotypes in Brain and Plasma in Huntington's Disease Mice. 针对突变HTT基因等位基因的锌指蛋白在亨廷顿氏病小鼠的脑和血浆中消除脂质表型
IF 4 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-08-01 Epub Date: 2025-07-23 DOI: 10.1177/10430342251359955
Andrew Iwanowicz, Adel Boudi, Connor Seeley, Ellen Sapp, Rachael Miller, Sophia Liu, Kathryn Chase, Kai Shing, Ana Rita Batista, Miguel Siena-Esteves, Neil Aronin, Marian DiFiglia, Kimberly B Kegel-Gleason

Reducing the burden of mutant Huntingtin (mHTT) protein in brain cells is a strategy for treating Huntington's disease (HD). However, it is still unclear what pathological changes can be reproducibly reversed by mHTT lowering and whether these changes can be measured in peripheral biofluids. We previously found that lipid changes that occur in brain with HD progression could be prevented by attenuating HTT transcription of the mutant allele in a genetic mouse model (LacQ140) with inducible whole body lowering. Here, we tested whether intrastriatal injection of a therapeutic capable of repressing the mutant HTT allele with expanded cytosine-adenine-guanine (CAG) can provide similar protection against lipid changes in HD mice with a deletion of neo cassette (zQ175DN). Wild-type or zQ175DN mice were injected with adeno-associated virus 9 (AAV9) bearing a cDNA for a zinc finger protein (ZFP), which preferentially targets mutant HTT (ZFP-HTT) to repress transcription. Proteins from brain tissues were analyzed using western blot, capillary electrophoresis, and nitrocellulose filtration methods. Lipid analyses of brain tissue and plasma collected from the same mice were conducted by liquid chromatography and mass spectrometry (LC-MS). Somatic instability index was assessed using capillary gel electrophoresis of PCR products and was shown to be impeded by ZFP-HTT. Lowering mHTT levels by 43% for 4 months prevented loss of total lipid content including the subclasses sphingomyelin, ceramide, phosphatidylethanolamine and others of caudate-putamen in zQ175DN mice. Moreover, LC-MS analysis of plasma demonstrated total lipid increases and lipid changes in monogalactosyl monoacylglyceride and certain phosphatidylcholine species were reversed with the therapy. In summary, our data demonstrate that analyzing lipid signatures of brain tissue and peripheral biofluids are valuable approaches for evaluating potential therapies in a preclinical model of HD.

减少脑细胞中突变的亨廷顿蛋白(mHTT)的负担是治疗亨廷顿病(HD)的一种策略。然而,目前尚不清楚mHTT降低可以重现地逆转哪些病理变化,以及这些变化是否可以在外周生物体液中测量。我们之前发现,通过诱导全身降低遗传小鼠模型(LacQ140)中突变等位基因的HTT转录,可以防止HD进展中发生的脑脂质变化。在这里,我们测试了一种具有扩展胞嘧啶-腺嘌呤-鸟嘌呤(CAG)抑制突变HTT等位基因的治疗方法是否可以对neo cassette (zQ175DN)缺失的HD小鼠的脂质变化提供类似的保护。将携带锌指蛋白(ZFP) cDNA的腺相关病毒9 (AAV9)注射到野生型或zQ175DN小鼠体内,该病毒优先靶向突变型HTT (ZFP-HTT)抑制其转录。采用western blot、毛细管电泳和硝化纤维素过滤等方法分析脑组织蛋白质。采用液相色谱-质谱(LC-MS)对同一小鼠脑组织和血浆进行脂质分析。利用PCR产物的毛细管凝胶电泳评估体细胞不稳定指数,结果显示ZFP-HTT抑制了体细胞不稳定指数。连续4个月将mHTT水平降低43%,可防止zQ175DN小鼠尾壳核中总脂质含量的损失,包括鞘磷脂、神经酰胺、磷脂酰乙醇胺和其他亚类。此外,LC-MS分析显示血浆总脂质增加,单半乳糖单酰基甘油三酯和某些磷脂酰胆碱种类的脂质变化随着治疗而逆转。总之,我们的数据表明,分析脑组织和外周生物流体的脂质特征是评估HD临床前模型中潜在治疗方法的有价值的方法。
{"title":"Intrastriatal Delivery of a Zinc Finger Protein Targeting the Mutant HTT Gene Allele Obviates Lipid Phenotypes in Brain and Plasma in Huntington's Disease Mice.","authors":"Andrew Iwanowicz, Adel Boudi, Connor Seeley, Ellen Sapp, Rachael Miller, Sophia Liu, Kathryn Chase, Kai Shing, Ana Rita Batista, Miguel Siena-Esteves, Neil Aronin, Marian DiFiglia, Kimberly B Kegel-Gleason","doi":"10.1177/10430342251359955","DOIUrl":"10.1177/10430342251359955","url":null,"abstract":"<p><p>Reducing the burden of mutant Huntingtin (mHTT) protein in brain cells is a strategy for treating Huntington's disease (HD). However, it is still unclear what pathological changes can be reproducibly reversed by mHTT lowering and whether these changes can be measured in peripheral biofluids. We previously found that lipid changes that occur in brain with HD progression could be prevented by attenuating HTT transcription of the mutant allele in a genetic mouse model (LacQ140) with inducible whole body lowering. Here, we tested whether intrastriatal injection of a therapeutic capable of repressing the mutant <i>HTT</i> allele with expanded cytosine-adenine-guanine (CAG) can provide similar protection against lipid changes in HD mice with a deletion of neo cassette (zQ175DN). Wild-type or zQ175DN mice were injected with adeno-associated virus 9 (AAV9) bearing a cDNA for a zinc finger protein (ZFP), which preferentially targets mutant HTT (ZFP-HTT) to repress transcription. Proteins from brain tissues were analyzed using western blot, capillary electrophoresis, and nitrocellulose filtration methods. Lipid analyses of brain tissue and plasma collected from the same mice were conducted by liquid chromatography and mass spectrometry (LC-MS). Somatic instability index was assessed using capillary gel electrophoresis of PCR products and was shown to be impeded by ZFP-HTT. Lowering mHTT levels by 43% for 4 months prevented loss of total lipid content including the subclasses sphingomyelin, ceramide, phosphatidylethanolamine and others of caudate-putamen in zQ175DN mice. Moreover, LC-MS analysis of plasma demonstrated total lipid increases and lipid changes in monogalactosyl monoacylglyceride and certain phosphatidylcholine species were reversed with the therapy. In summary, our data demonstrate that analyzing lipid signatures of brain tissue and peripheral biofluids are valuable approaches for evaluating potential therapies in a preclinical model of HD.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"1083-1094"},"PeriodicalIF":4.0,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144707309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress Toward a Cure for All Patients with Cystic Fibrosis: An Interview with Patrick Thibodeau, PhD. 治愈所有囊性纤维化患者的进展:采访帕特里克·锡伯杜博士。
IF 4 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-08-01 Epub Date: 2025-06-09 DOI: 10.1089/hum.2025.105
{"title":"Progress Toward a Cure for All Patients with Cystic Fibrosis: An Interview with Patrick Thibodeau, PhD.","authors":"","doi":"10.1089/hum.2025.105","DOIUrl":"10.1089/hum.2025.105","url":null,"abstract":"","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"1013-1015"},"PeriodicalIF":4.0,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144257923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Cystic Fibrosis Ferret Model Enables Visualization of CFTR Expression Cells and Genetic CFTR Reactivation. 新的囊性纤维化雪貂模型使CFTR表达细胞和基因CFTR再激活可视化。
IF 4 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-08-01 Epub Date: 2025-01-10 DOI: 10.1089/hum.2024.215
Feng Yuan, Xingshen Sun, Soo Yeun Park, Yinghua Tang, Zehua Feng, Mehrnoosh Ebadi, Yaling Yi, Adriane E Thompson, Joseph D Karippaparambil, John F Engelhardt, Ziying Yan

Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). While gene therapy holds promise as a cure, the cell-type-specific heterogeneity of CFTR expression in the lung presents significant challenges. Current CF ferret models closely replicate the human disease phenotype but have limitations in studying functional complementation through cell-type-specific CFTR restoration. To address this, we developed a new transgenic ferret line, CFTRint1-eGFP(lsl), in which a Cre-recombinase (Cre)-excisable enhanced fluorescent protein (eGFP) reporter cassette is knocked in (KI) to intron 1 of the CFTR locus. Breeding this reporter line with CFTRG551D CF ferret resulted in a novel CF model, CFTRint1-eGFP(lsl)/G551D, with disease onset manageable via the administration of CFTR modulator VX770. In this study, we confirmed two key properties of the CFTRint1-eGFP(lsl)/G551D CF ferrets: (1) cell-type-specific expression of the CFTR(N-24)-eGFP fusion protein, driven by the intrinsic CFTR promoter, in polarized epithelial cultures and selected tissues, and (2) functional reversion of the KI allele via Cre-mediated excision of the reporter cassette. This model provides a valuable tool for studying the effects of targeted CFTR reactivation in a cell-type-specific manner, which is crucial for enhancing our understanding of CFTR's roles in modulating airway clearance and innate immunity, and for identifying relevant cellular targets for CF gene therapy.

囊性纤维化(CF)是由囊性纤维化跨膜传导调节因子(CFTR)突变引起的。虽然基因治疗有望治愈,但肺中CFTR表达的细胞类型特异性异质性提出了重大挑战。目前的CF雪貂模型可以很好地复制人类疾病表型,但在通过细胞类型特异性CFTR修复研究功能互补方面存在局限性。为了解决这个问题,我们开发了一种新的转基因雪貂系CFTRint1-eGFP(lsl),其中Cre-重组酶(Cre)可切除的增强荧光蛋白(eGFP)报告盒被敲入(KI) CFTR位点的内含子1。该报告系与CFTRG551D CF雪貂杂交,产生了一种新的CF模型CFTRint1-eGFP(lsl)/G551D,通过CFTR调节剂VX770可以控制疾病的发作。在这项研究中,我们证实了CFTRint1-eGFP(lsl)/G551D CF雪貂的两个关键特性:(1)CFTR(N-24)-eGFP融合蛋白在CFTR内在启动子的驱动下,在极化上皮培养物和选定组织中具有细胞类型特异性表达;(2)通过ccr介导的报告盒切除,KI等位基因功能逆转。该模型为以细胞类型特异性的方式研究CFTR靶向再激活的作用提供了有价值的工具,这对于增强我们对CFTR在调节气道清除和先天免疫中的作用的理解,以及确定CF基因治疗的相关细胞靶点至关重要。
{"title":"Novel Cystic Fibrosis Ferret Model Enables Visualization of CFTR Expression Cells and Genetic CFTR Reactivation.","authors":"Feng Yuan, Xingshen Sun, Soo Yeun Park, Yinghua Tang, Zehua Feng, Mehrnoosh Ebadi, Yaling Yi, Adriane E Thompson, Joseph D Karippaparambil, John F Engelhardt, Ziying Yan","doi":"10.1089/hum.2024.215","DOIUrl":"10.1089/hum.2024.215","url":null,"abstract":"<p><p>Cystic fibrosis (CF) is caused by mutations in the <i>cystic fibrosis transmembrane conductance regulator</i> (<i>CFTR</i>). While gene therapy holds promise as a cure, the cell-type-specific heterogeneity of <i>CFTR</i> expression in the lung presents significant challenges. Current CF ferret models closely replicate the human disease phenotype but have limitations in studying functional complementation through cell-type-specific CFTR restoration. To address this, we developed a new transgenic ferret line, <i>CFTR</i><sup>int1-eGFP(lsl)</sup>, in which a Cre-recombinase (Cre)-excisable enhanced fluorescent protein (eGFP) reporter cassette is knocked in (KI) to intron 1 of the <i>CFTR</i> locus. Breeding this reporter line with <i>CFTR</i><sup>G551D</sup> CF ferret resulted in a novel CF model, <i>CFTR</i><sup>int1-eGFP(lsl)/G551D</sup>, with disease onset manageable via the administration of CFTR modulator VX770. In this study, we confirmed two key properties of the <i>CFTR</i><sup>int1-eGFP(lsl)/G551D</sup> CF ferrets: (1) cell-type-specific expression of the CFTR(N-24)-eGFP fusion protein, driven by the intrinsic <i>CFTR</i> promoter, in polarized epithelial cultures and selected tissues, and (2) functional reversion of the KI allele via Cre-mediated excision of the reporter cassette. This model provides a valuable tool for studying the effects of targeted CFTR reactivation in a cell-type-specific manner, which is crucial for enhancing our understanding of CFTR's roles in modulating airway clearance and innate immunity, and for identifying relevant cellular targets for CF gene therapy.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"1053-1066"},"PeriodicalIF":4.0,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12419444/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142947972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Human gene therapy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1