Pub Date : 2024-06-01Epub Date: 2023-10-04DOI: 10.1089/hum.2023.079
Zi-Wei Yang, Jing-Jing Ji, Yu Jiang, Ya Wu, Jia-Qi Guo, Gen-Shan Ma, Yu-Yu Yao
Objective: Studies have found that high expression of human Kallistatin (HKS) in adipose tissue can improve obesity and its associated comorbidities, but the underlying mechanism of specific regulation is unclear. Methods: An obesity model was built by injecting 8-week-old C57BL/6 mice (n = 6 mice per group) with (Ad.Null and (Ad.HKS adenovirus into epididymal adipose tissue and fed with a high-fat diet (HFD). Insulin resistance-related proteins, AKT and IRS1, were detected in the liver, subcutaneous fat, and skeletal muscle by western blotting after one month of HFD. Epididymal adipose tissue was isolated after 24 h for culture, and exosomes were extracted by differential centrifugation. Enzyme-linked immunosorbent assay detected the expression of HKS protein in serum and exosomes. To examine the role of exosomes in AML12 insulin resistance, we used epididymal adipose tissue-derived exosomes or transfected (Ad.HKS into mature 3T3L1-derived exosomes to interfere with palmitic acid (PA)-induced mouse AML12 insulin resistance model. GW4869 was used to inhibit exosome biogenesis and release. Results: Our results showed that HFD-induced mice with high expression of HKS in epididymal adipose tissue had slower weight gain, lower serum triglycerides, reduced free fatty acids, and improved liver insulin resistance compared with the (Ad.Null group. We also demonstrated that HKS was enriched in epididymal adipose tissue-derived exosomes and released through the exosome pathway. In PA-induced AML12 cells, insulin resistance was alleviated after incubation of the HKS-related exosome; this effect was reversed with GW4869. Conclusion: High expression of HKS in epididymal adipose tissue could lead to its exocrine secretion in the form of exosomes and improve liver insulin resistance by promoting the phosphorylation of AKT. Production of high HKS vesicles might be a possible way to alleviate insulin resistance associated with obesity.
{"title":"Kallistatin Improves High-Fat-Induced Insulin Resistance via Epididymal Adipose Tissue-Derived Exosomes.","authors":"Zi-Wei Yang, Jing-Jing Ji, Yu Jiang, Ya Wu, Jia-Qi Guo, Gen-Shan Ma, Yu-Yu Yao","doi":"10.1089/hum.2023.079","DOIUrl":"10.1089/hum.2023.079","url":null,"abstract":"<p><p><b><i>Objective:</i></b> Studies have found that high expression of human Kallistatin (HKS) in adipose tissue can improve obesity and its associated comorbidities, but the underlying mechanism of specific regulation is unclear. <b><i>Methods:</i></b> An obesity model was built by injecting 8-week-old C57BL/6 mice (<i>n</i> = 6 mice per group) with (Ad.Null and (Ad.HKS adenovirus into epididymal adipose tissue and fed with a high-fat diet (HFD). Insulin resistance-related proteins, AKT and IRS1, were detected in the liver, subcutaneous fat, and skeletal muscle by western blotting after one month of HFD. Epididymal adipose tissue was isolated after 24 h for culture, and exosomes were extracted by differential centrifugation. Enzyme-linked immunosorbent assay detected the expression of HKS protein in serum and exosomes. To examine the role of exosomes in AML12 insulin resistance, we used epididymal adipose tissue-derived exosomes or transfected (Ad.HKS into mature 3T3L1-derived exosomes to interfere with palmitic acid (PA)-induced mouse AML12 insulin resistance model. GW4869 was used to inhibit exosome biogenesis and release. <b><i>Results:</i></b> Our results showed that HFD-induced mice with high expression of HKS in epididymal adipose tissue had slower weight gain, lower serum triglycerides, reduced free fatty acids, and improved liver insulin resistance compared with the (Ad.Null group. We also demonstrated that HKS was enriched in epididymal adipose tissue-derived exosomes and released through the exosome pathway. In PA-induced AML12 cells, insulin resistance was alleviated after incubation of the HKS-related exosome; this effect was reversed with GW4869. <b><i>Conclusion:</i></b> High expression of HKS in epididymal adipose tissue could lead to its exocrine secretion in the form of exosomes and improve liver insulin resistance by promoting the phosphorylation of AKT. Production of high HKS vesicles might be a possible way to alleviate insulin resistance associated with obesity.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"388-400"},"PeriodicalIF":3.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9942957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-06-11DOI: 10.1089/hum.2023.169
Xi Qin, Qikun Yu, Xiang Li, Wei Jiang, Xinchang Shi, Wenxiu Hou, Da Zhang, Zhenzhen Cai, Hua Bi, Wenhong Fan, Youxue Ding, Yichen Yang, Biao Dong, Long Chen, Dehua Huo, Cong Wang, Yong Zhou, Dening Pei, Miao Ye, Chenggang Liang
Currently, adeno-associated virus (AAV) is one of the primary gene delivery vectors in gene therapy, facilitating long-term in vivo gene expression. Despite being imperative, it is incredibly challenging to precisely assess AAV particle distribution according to the sedimentation coefficient and identify impurities related to capsid structures. This study performed the systematic methodological validation of quantifying the AAV empty and full capsid ratio. This includes specificity, accuracy, precision, linearity, and parameter variables involving the sedimentation velocity analytical ultracentrifugation (SV-AUC) method. Specifically, SV-AUC differentiated among the empty, partial, full, and high sedimentation coefficient substance (HSCS) AAV particles while evaluating their sedimentation heterogeneity. The intermediate precision analysis of HE (high percentage of empty capsid) and HF (high percentage of full capsid) samples revealed that the specific species percentage, such as empty or full, was more significant than 50%. Moreover, the relative standard deviation (RSD) could be within 5%. Even for empty or partially less than 15%, the RSD could be within 10%. The accuracy recovery rates of empty capsid were between 103.9% and 108.7% across three different mixtures. When the measured percentage of specific species was more significant than 14%, the recovery rate was between 77.9% and 106.6%. Linearity analysis revealed an excellent linear correlation between the empty, partial, and full in the HE samples. The AAV samples with as low as 7.4 × 1011 cp/mL AAV could be accurately quantified with SV-AUC. The parameter variable analyses revealed that variations in cell alignment significantly affected the overall results. Still, the detection wavelength of 235 nm slightly influenced the empty, partial, and full percentages. Minor detection wavelength changes showed no impact on the sedimentation coefficient of these species. However, the temperature affected the measured sedimentation coefficient. These results validated the SV-AUC method to quantify AAV. This study provides solutions to AAV empty and full capsid ratio quantification challenges and the subsequent basis for calibrating the AAV empty capsid system suitability substance. Because of the AAV structure and potential variability complexity in detection, we jointly calibrated empty capsid system suitability substance with three laboratories to accurately detect the quantitative AAV empty and full capsid ratio. The empty capsid system suitability substance could be used as an external reference to measure the performance of the instrument. The results could be compared with multiple QC (quality control) laboratories based on the AAV vector and calibration accuracy. This is crucial for AUC to be used for QC release and promote gene therapy research worldwide.
{"title":"Methodological Validation of Sedimentation Velocity Analytical Ultracentrifugation Method for Adeno-Associated Virus and Collaborative Calibration of System Suitability Substance.","authors":"Xi Qin, Qikun Yu, Xiang Li, Wei Jiang, Xinchang Shi, Wenxiu Hou, Da Zhang, Zhenzhen Cai, Hua Bi, Wenhong Fan, Youxue Ding, Yichen Yang, Biao Dong, Long Chen, Dehua Huo, Cong Wang, Yong Zhou, Dening Pei, Miao Ye, Chenggang Liang","doi":"10.1089/hum.2023.169","DOIUrl":"10.1089/hum.2023.169","url":null,"abstract":"<p><p>Currently, adeno-associated virus (AAV) is one of the primary gene delivery vectors in gene therapy, facilitating long-term <i>in vivo</i> gene expression. Despite being imperative, it is incredibly challenging to precisely assess AAV particle distribution according to the sedimentation coefficient and identify impurities related to capsid structures. This study performed the systematic methodological validation of quantifying the AAV empty and full capsid ratio. This includes specificity, accuracy, precision, linearity, and parameter variables involving the sedimentation velocity analytical ultracentrifugation (SV-AUC) method. Specifically, SV-AUC differentiated among the empty, partial, full, and high sedimentation coefficient substance (HSCS) AAV particles while evaluating their sedimentation heterogeneity. The intermediate precision analysis of HE (high percentage of empty capsid) and HF (high percentage of full capsid) samples revealed that the specific species percentage, such as empty or full, was more significant than 50%. Moreover, the relative standard deviation (RSD) could be within 5%. Even for empty or partially less than 15%, the RSD could be within 10%. The accuracy recovery rates of empty capsid were between 103.9% and 108.7% across three different mixtures. When the measured percentage of specific species was more significant than 14%, the recovery rate was between 77.9% and 106.6%. Linearity analysis revealed an excellent linear correlation between the empty, partial, and full in the HE samples. The AAV samples with as low as 7.4 × 10<sup>11</sup> cp/mL AAV could be accurately quantified with SV-AUC. The parameter variable analyses revealed that variations in cell alignment significantly affected the overall results. Still, the detection wavelength of 235 nm slightly influenced the empty, partial, and full percentages. Minor detection wavelength changes showed no impact on the sedimentation coefficient of these species. However, the temperature affected the measured sedimentation coefficient. These results validated the SV-AUC method to quantify AAV. This study provides solutions to AAV empty and full capsid ratio quantification challenges and the subsequent basis for calibrating the AAV empty capsid system suitability substance. Because of the AAV structure and potential variability complexity in detection, we jointly calibrated empty capsid system suitability substance with three laboratories to accurately detect the quantitative AAV empty and full capsid ratio. The empty capsid system suitability substance could be used as an external reference to measure the performance of the instrument. The results could be compared with multiple QC (quality control) laboratories based on the AAV vector and calibration accuracy. This is crucial for AUC to be used for QC release and promote gene therapy research worldwide.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"401-411"},"PeriodicalIF":3.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140890556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1089/hum.2024.28412.bfs
Alex Philippidis
{"title":"Verve Pauses Enrollment in Base Editing Trial after Adverse Events.","authors":"Alex Philippidis","doi":"10.1089/hum.2024.28412.bfs","DOIUrl":"10.1089/hum.2024.28412.bfs","url":null,"abstract":"","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":"35 9-10","pages":"313-316"},"PeriodicalIF":3.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-04-19DOI: 10.1089/hum.2023.225
Rebecca Xicluna, Allan Avenel, Céline Vandamme, Marie Devaux, Nicolas Jaulin, Célia Couzinié, Johanne Le Duff, Alicia Charrier, Mickaël Guilbaud, Oumeya Adjali, Gwladys Gernoux
Recombinant adeno-associated virus (rAAV) vectors appear, more than ever, to be efficient viral vectors for in vivo gene transfer as illustrated by the approvals of 7 drugs across Europe and the United States. Nevertheless, preexisting immunity to AAV capsid in humans remains one of the major limits for a successful clinical translation. Whereas a preexisting humoral response to AAV capsid is well documented, the prevalence of preexisting capsid-specific T cell responses still needs to be studied and characterized. In this study, we investigated the prevalence of AAV-specific circulating T cells toward AAV2, 4, 5, 8, 9, and rh10 in a large cohort of healthy donors using the standard IFNγ ELISpot assay. We observed the highest prevalence of preexisting cellular immunity to AAV9 serotype followed by AAV8, AAV4, AAV2, AAVrh10, and AAV5 independently of the donors' serological status. An in-depth analysis of T cell responses toward the 2 most prevalent serotypes 8 and 9 shows that IFNγ secretion is mainly mediated by CD8 T cells for both serotypes. A polyfunctional analysis reveals different cytokine profiles between AAV8 and AAV9. Surprisingly, no IL-2 secretion was mediated by anti-AAV9 immune cells suggesting that these cells may rather be exhausted or terminally differentiated than cytotoxic T cells. Altogether, these results suggest that preexisting immunity to AAV may vary depending on the serotype and support the necessity of using multiparametric monitoring methods to better characterize anticapsid cellular immunity and foresee its impact in rAAV-mediated clinical trials.
{"title":"Prevalence Study of Cellular Capsid-Specific Immune Responses to AAV2, 4, 5, 8, 9, and rh10 in Healthy Donors.","authors":"Rebecca Xicluna, Allan Avenel, Céline Vandamme, Marie Devaux, Nicolas Jaulin, Célia Couzinié, Johanne Le Duff, Alicia Charrier, Mickaël Guilbaud, Oumeya Adjali, Gwladys Gernoux","doi":"10.1089/hum.2023.225","DOIUrl":"10.1089/hum.2023.225","url":null,"abstract":"<p><p>Recombinant adeno-associated virus (rAAV) vectors appear, more than ever, to be efficient viral vectors for <i>in vivo</i> gene transfer as illustrated by the approvals of 7 drugs across Europe and the United States. Nevertheless, preexisting immunity to AAV capsid in humans remains one of the major limits for a successful clinical translation. Whereas a preexisting humoral response to AAV capsid is well documented, the prevalence of preexisting capsid-specific T cell responses still needs to be studied and characterized. In this study, we investigated the prevalence of AAV-specific circulating T cells toward AAV2, 4, 5, 8, 9, and rh10 in a large cohort of healthy donors using the standard IFNγ ELISpot assay. We observed the highest prevalence of preexisting cellular immunity to AAV9 serotype followed by AAV8, AAV4, AAV2, AAVrh10, and AAV5 independently of the donors' serological status. An in-depth analysis of T cell responses toward the 2 most prevalent serotypes 8 and 9 shows that IFNγ secretion is mainly mediated by CD8 T cells for both serotypes. A polyfunctional analysis reveals different cytokine profiles between AAV8 and AAV9. Surprisingly, no IL-2 secretion was mediated by anti-AAV9 immune cells suggesting that these cells may rather be exhausted or terminally differentiated than cytotoxic T cells. Altogether, these results suggest that preexisting immunity to AAV may vary depending on the serotype and support the necessity of using multiparametric monitoring methods to better characterize anticapsid cellular immunity and foresee its impact in rAAV-mediated clinical trials.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"355-364"},"PeriodicalIF":3.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140854809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-04-08DOI: 10.1089/hum.2024.022
Chujiao Lin, Matthew B Greenblatt, Guangping Gao, Jae-Hyuck Shim
Adeno-associated viral (AAV) vectors have emerged as crucial tools in advancing gene therapy for skeletal diseases, offering the potential for sustained expression with low postinfection immunogenicity and pathogenicity. Preclinical studies support both the therapeutic efficacy and safety of these vectors, illustrating the promise of AAV-mediated gene therapy. Emerging technologies and innovations in AAV-mediated gene therapy strategies, such as gene addition, gene replacement, gene silencing, and gene editing, offer new approaches to clinical application. Recently, the increasing preclinical applications of AAV to rare skeletal diseases, such as fibrodysplasia ossificans progressiva (FOP) and osteogenesis imperfecta (OI), and prevalent bone diseases, such as osteoporosis, bone fracture, critical-sized bone defects, and osteoarthritis, have been reported. Despite existing limitations in clinical use, such as high cost and safety, the AAV-mediated gene transfer platform is a promising approach to deliver therapeutic gene(s) to the skeleton to treat skeletal disorders, including those otherwise intractable by other therapeutic approaches. This review provides a comprehensive overview of the therapeutic advancements, challenges, limitations, and solutions within AAV-based gene therapy for prevalent and rare skeletal diseases.
{"title":"Development of AAV-Mediated Gene Therapy Approaches to Treat Skeletal Diseases.","authors":"Chujiao Lin, Matthew B Greenblatt, Guangping Gao, Jae-Hyuck Shim","doi":"10.1089/hum.2024.022","DOIUrl":"10.1089/hum.2024.022","url":null,"abstract":"<p><p>Adeno-associated viral (AAV) vectors have emerged as crucial tools in advancing gene therapy for skeletal diseases, offering the potential for sustained expression with low postinfection immunogenicity and pathogenicity. Preclinical studies support both the therapeutic efficacy and safety of these vectors, illustrating the promise of AAV-mediated gene therapy. Emerging technologies and innovations in AAV-mediated gene therapy strategies, such as gene addition, gene replacement, gene silencing, and gene editing, offer new approaches to clinical application. Recently, the increasing preclinical applications of AAV to rare skeletal diseases, such as fibrodysplasia ossificans progressiva (FOP) and osteogenesis imperfecta (OI), and prevalent bone diseases, such as osteoporosis, bone fracture, critical-sized bone defects, and osteoarthritis, have been reported. Despite existing limitations in clinical use, such as high cost and safety, the AAV-mediated gene transfer platform is a promising approach to deliver therapeutic gene(s) to the skeleton to treat skeletal disorders, including those otherwise intractable by other therapeutic approaches. This review provides a comprehensive overview of the therapeutic advancements, challenges, limitations, and solutions within AAV-based gene therapy for prevalent and rare skeletal diseases.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"317-328"},"PeriodicalIF":3.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302315/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140293395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2023-08-30DOI: 10.1089/hum.2023.002
Oriana Mandolfo, Aiyin Liao, Esha Singh, Claire O'leary, Rebecca J Holley, Brian W Bigger
Mucopolysaccharidosis type II (MPSII) is a rare pediatric X-linked lysosomal storage disease, caused by heterogeneous mutations in the iduronate-2-sulfatase (IDS) gene, which result in accumulation of heparan sulfate (HS) and dermatan sulfate within cells. This leads to severe skeletal abnormalities, hepatosplenomegaly, and cognitive deterioration. The progressive nature of the disease is a huge obstacle to achieve full neurological correction. Although current therapies can only treat somatic symptoms, a lentivirus-based hematopoietic stem cell gene therapy (HSCGT) approach has recently achieved improved central nervous system (CNS) neuropathology in the MPSII mouse model following transplant at 2 months of age. In this study, we evaluate neuropathology progression in 2-, 4- and 9-month-old MPSII mice, and using the same HSCGT strategy, we investigated somatic and neurological disease attenuation following treatment at 4 months of age. Our results showed gradual accumulation of HS between 2 and 4 months of age, but full manifestation of microgliosis/astrogliosis as early as 2 months. Late HSCGT fully reversed the somatic symptoms, thus achieving the same degree of peripheral correction as early therapy. However, late treatment resulted in slightly decreased efficacy in the CNS, with poorer brain enzymatic activity, together with reduced normalization of HS oversulfation. Overall, our findings confirm significant lysosomal burden and neuropathology in 2-month-old MPSII mice. Peripheral disease is readily reversible by LV.IDS-HSCGT regardless of age of transplant, suggesting a viable treatment for somatic disease. However, in the brain, higher IDS enzyme levels are achievable with early HSCGT treatment, and later transplant seems to be less effective, supporting the view that the earlier patients are diagnosed and treated, the better the therapy outcome.
{"title":"Establishment of the Effectiveness of Early Versus Late Stem Cell Gene Therapy in Mucopolysaccharidosis II for Treating Central Versus Peripheral Disease.","authors":"Oriana Mandolfo, Aiyin Liao, Esha Singh, Claire O'leary, Rebecca J Holley, Brian W Bigger","doi":"10.1089/hum.2023.002","DOIUrl":"10.1089/hum.2023.002","url":null,"abstract":"<p><p>Mucopolysaccharidosis type II (MPSII) is a rare pediatric X-linked lysosomal storage disease, caused by heterogeneous mutations in the iduronate-2-sulfatase (<i>IDS</i>) gene, which result in accumulation of heparan sulfate (HS) and dermatan sulfate within cells. This leads to severe skeletal abnormalities, hepatosplenomegaly, and cognitive deterioration. The progressive nature of the disease is a huge obstacle to achieve full neurological correction. Although current therapies can only treat somatic symptoms, a lentivirus-based hematopoietic stem cell gene therapy (HSCGT) approach has recently achieved improved central nervous system (CNS) neuropathology in the MPSII mouse model following transplant at 2 months of age. In this study, we evaluate neuropathology progression in 2-, 4- and 9-month-old MPSII mice, and using the same HSCGT strategy, we investigated somatic and neurological disease attenuation following treatment at 4 months of age. Our results showed gradual accumulation of HS between 2 and 4 months of age, but full manifestation of microgliosis/astrogliosis as early as 2 months. Late HSCGT fully reversed the somatic symptoms, thus achieving the same degree of peripheral correction as early therapy. However, late treatment resulted in slightly decreased efficacy in the CNS, with poorer brain enzymatic activity, together with reduced normalization of HS oversulfation. Overall, our findings confirm significant lysosomal burden and neuropathology in 2-month-old MPSII mice. Peripheral disease is readily reversible by LV.IDS-HSCGT regardless of age of transplant, suggesting a viable treatment for somatic disease. However, in the brain, higher IDS enzyme levels are achievable with early HSCGT treatment, and later transplant seems to be less effective, supporting the view that the earlier patients are diagnosed and treated, the better the therapy outcome.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"243-255"},"PeriodicalIF":3.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10098781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-03-12DOI: 10.1089/hum.2023.210
Alessandro Romano, Alessandra Mortellaro
Inflammatory diseases are conditions characterized by abnormal and often excessive immune responses, leading to tissue and organ inflammation. The complexity of these disorders arises from the intricate interplay of genetic factors and immune responses, which challenges conventional therapeutic approaches. However, the field of genetic manipulation has sparked unprecedented optimism in addressing these complex disorders. This review aims to comprehensively explore the application of gene therapy and gene editing in the context of inflammatory diseases, offering solutions that range from correcting genetic defects to precise immune modulation. These therapies have exhibited remarkable potential in ameliorating symptoms, improving quality of life, and even achieving disease remission. As we delve into recent breakthroughs and therapeutic applications, we illustrate how these advancements offer novel and transformative solutions for conditions that have traditionally eluded conventional treatments. By examining successful case studies and preclinical research, we emphasize the favorable results and substantial transformative impacts that gene-based interventions have demonstrated in patients and animal models of inflammatory diseases such as chronic granulomatous disease, cryopyrin-associated syndromes, and adenosine deaminase 2 deficiency, as well as those of multifactorial origins such as arthropathies (osteoarthritis, rheumatoid arthritis) and inflammatory bowel disease. In conclusion, gene therapy and gene editing offer transformative opportunities to address the underlying causes of inflammatory diseases, ushering in a new era of precision medicine and providing hope for personalized, targeted treatments.
{"title":"The New Frontiers of Gene Therapy and Gene Editing in Inflammatory Diseases.","authors":"Alessandro Romano, Alessandra Mortellaro","doi":"10.1089/hum.2023.210","DOIUrl":"10.1089/hum.2023.210","url":null,"abstract":"<p><p>Inflammatory diseases are conditions characterized by abnormal and often excessive immune responses, leading to tissue and organ inflammation. The complexity of these disorders arises from the intricate interplay of genetic factors and immune responses, which challenges conventional therapeutic approaches. However, the field of genetic manipulation has sparked unprecedented optimism in addressing these complex disorders. This review aims to comprehensively explore the application of gene therapy and gene editing in the context of inflammatory diseases, offering solutions that range from correcting genetic defects to precise immune modulation. These therapies have exhibited remarkable potential in ameliorating symptoms, improving quality of life, and even achieving disease remission. As we delve into recent breakthroughs and therapeutic applications, we illustrate how these advancements offer novel and transformative solutions for conditions that have traditionally eluded conventional treatments. By examining successful case studies and preclinical research, we emphasize the favorable results and substantial transformative impacts that gene-based interventions have demonstrated in patients and animal models of inflammatory diseases such as chronic granulomatous disease, cryopyrin-associated syndromes, and adenosine deaminase 2 deficiency, as well as those of multifactorial origins such as arthropathies (osteoarthritis, rheumatoid arthritis) and inflammatory bowel disease. In conclusion, gene therapy and gene editing offer transformative opportunities to address the underlying causes of inflammatory diseases, ushering in a new era of precision medicine and providing hope for personalized, targeted treatments.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"219-231"},"PeriodicalIF":3.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139697323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-02-02DOI: 10.1089/hum.2023.177
Fabio Catalano, Eva C Vlaar, Zina Dammou, Drosos Katsavelis, Tessa F Huizer, Giacomo Zundo, Marianne Hoogeveen-Westerveld, Esmeralda Oussoren, Hannerieke J M P van den Hout, Gerben Schaaf, Karin Pike-Overzet, Frank J T Staal, Ans T van der Ploeg, W W M Pim Pijnappel
Deficiency of iduronate 2-sulfatase (IDS) causes Mucopolysaccharidosis type II (MPS II), a lysosomal storage disorder characterized by systemic accumulation of glycosaminoglycans (GAGs), leading to a devastating cognitive decline and life-threatening respiratory and cardiac complications. We previously found that hematopoietic stem and progenitor cell-mediated lentiviral gene therapy (HSPC-LVGT) employing tagged IDS with insulin-like growth factor 2 (IGF2) or ApoE2, but not receptor-associated protein minimal peptide (RAP12x2), efficiently prevented brain pathology in a murine model of MPS II. In this study, we report on the effects of HSPC-LVGT on peripheral pathology and we analyzed IDS biodistribution. We found that HSPC-LVGT with all vectors completely corrected GAG accumulation and lysosomal pathology in liver, spleen, kidney, tracheal mucosa, and heart valves. Full correction of tunica media of the great heart vessels was achieved only with IDS.IGF2co gene therapy, while the other vectors provided near complete (IDS.ApoE2co) or no (IDSco and IDS.RAP12x2co) correction. In contrast, tracheal, epiphyseal, and articular cartilage remained largely uncorrected by all vectors tested. These efficacies were closely matched by IDS protein levels following HSPC-LVGT. Our results demonstrate the capability of HSPC-LVGT to correct pathology in tissues of high clinical relevance, including those of the heart and respiratory system, while challenges remain for the correction of cartilage pathology.
{"title":"Lentiviral Gene Therapy for Mucopolysaccharidosis II with Tagged Iduronate 2-Sulfatase Prevents Life-Threatening Pathology in Peripheral Tissues But Fails to Correct Cartilage.","authors":"Fabio Catalano, Eva C Vlaar, Zina Dammou, Drosos Katsavelis, Tessa F Huizer, Giacomo Zundo, Marianne Hoogeveen-Westerveld, Esmeralda Oussoren, Hannerieke J M P van den Hout, Gerben Schaaf, Karin Pike-Overzet, Frank J T Staal, Ans T van der Ploeg, W W M Pim Pijnappel","doi":"10.1089/hum.2023.177","DOIUrl":"10.1089/hum.2023.177","url":null,"abstract":"<p><p>Deficiency of iduronate 2-sulfatase (IDS) causes Mucopolysaccharidosis type II (MPS II), a lysosomal storage disorder characterized by systemic accumulation of glycosaminoglycans (GAGs), leading to a devastating cognitive decline and life-threatening respiratory and cardiac complications. We previously found that hematopoietic stem and progenitor cell-mediated lentiviral gene therapy (HSPC-LVGT) employing tagged IDS with insulin-like growth factor 2 (IGF2) or ApoE2, but not receptor-associated protein minimal peptide (RAP12x2), efficiently prevented brain pathology in a murine model of MPS II. In this study, we report on the effects of HSPC-LVGT on peripheral pathology and we analyzed IDS biodistribution. We found that HSPC-LVGT with all vectors completely corrected GAG accumulation and lysosomal pathology in liver, spleen, kidney, tracheal mucosa, and heart valves. Full correction of tunica media of the great heart vessels was achieved only with <i>IDS.IGF2co</i> gene therapy, while the other vectors provided near complete (<i>IDS.ApoE2co</i>) or no (<i>IDSco</i> and <i>IDS.RAP12x2co</i>) correction. In contrast, tracheal, epiphyseal, and articular cartilage remained largely uncorrected by all vectors tested. These efficacies were closely matched by IDS protein levels following HSPC-LVGT. Our results demonstrate the capability of HSPC-LVGT to correct pathology in tissues of high clinical relevance, including those of the heart and respiratory system, while challenges remain for the correction of cartilage pathology.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"256-268"},"PeriodicalIF":3.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11044872/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138798823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-01-30DOI: 10.1089/hum.2023.193
Michelle Mendiola Pla, Dawn E Bowles
Ex vivo machine perfusion (EVMP) is rapidly growing in utility during solid organ transplantation. This form of organ preservation is transforming how organs are allocated and expanding the definition of what is considered a suitable organ for transplantation in comparison with traditional static cold storage. All major organs (heart, lung, liver, kidney) have been influenced by this advanced method of organ preservation. This technology also serves as an unprecedented platform for effective administration of advanced therapeutics, including gene therapies, during organ transplantation to optimize and recondition organs ex vivo in an isolated manner. Applying gene therapy interventions through EVMP introduces different considerations and challenges that are unique from gene therapies designed for systemic administration. Considerations involving vector (choice, dose, toxicity), perfusate composition, and perfusion circuit components should be evaluated when developing a gene therapy to administer in this setting. This review explores these aspects and discusses clinical applications in transplantation where gene therapy interventions can be developed relevant to heart, lung, liver, and kidney donor grafts.
{"title":"<i>Ex Vivo</i> Gene Therapy in Organ Transplantation: Considerations and Clinical Translation.","authors":"Michelle Mendiola Pla, Dawn E Bowles","doi":"10.1089/hum.2023.193","DOIUrl":"10.1089/hum.2023.193","url":null,"abstract":"<p><p><i>Ex vivo</i> machine perfusion (EVMP) is rapidly growing in utility during solid organ transplantation. This form of organ preservation is transforming how organs are allocated and expanding the definition of what is considered a suitable organ for transplantation in comparison with traditional static cold storage. All major organs (heart, lung, liver, kidney) have been influenced by this advanced method of organ preservation. This technology also serves as an unprecedented platform for effective administration of advanced therapeutics, including gene therapies, during organ transplantation to optimize and recondition organs <i>ex vivo</i> in an isolated manner. Applying gene therapy interventions through EVMP introduces different considerations and challenges that are unique from gene therapies designed for systemic administration. Considerations involving vector (choice, dose, toxicity), perfusate composition, and perfusion circuit components should be evaluated when developing a gene therapy to administer in this setting. This review explores these aspects and discusses clinical applications in transplantation where gene therapy interventions can be developed relevant to heart, lung, liver, and kidney donor grafts.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"284-297"},"PeriodicalIF":3.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11044854/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138827097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Interleukin 7 Receptor alpha Severe Combined Immunodeficiency (IL7R-SCID) is a life-threatening disorder caused by homozygous mutations in the IL7RA gene. Defective IL7R expression in humans hampers T cell precursors' proliferation and differentiation during lymphopoiesis resulting in the absence of T cells in newborns, who succumb to severe infections and death early after birth. Previous attempts to tackle IL7R-SCID by viral gene therapy have shown that unregulated IL7R expression predisposes to leukemia, suggesting the application of targeted gene editing to insert a correct copy of the IL7RA gene in its genomic locus and mediate its physiological expression as a more feasible therapeutic approach. To this aim, we have first developed a CRISPR/Cas9-based IL7R-SCID disease modeling system that recapitulates the disease phenotype in primary human T cells and hematopoietic stem and progenitor cells (HSPCs). Then, we have designed a knockin strategy that targets IL7RA exon 1 and introduces through homology-directed repair a corrective, promoterless IL7RA cDNA followed by a reporter cassette through AAV6 transduction. Targeted integration of the corrective cassette in primary T cells restored IL7R expression and rescued functional downstream IL7R signaling. When applied to HSPCs further induced to differentiate into T cells in an Artificial Thymic Organoid system, our gene editing strategy overcame the T cell developmental block observed in IL7R-SCID patients, while promoting full maturation of T cells with physiological and developmentally regulated IL7R expression. Finally, genotoxicity assessment of the CRISPR/Cas9 platform in HSPCs using biased and unbiased technologies confirmed the safety of the strategy, paving the way for a new, efficient, and safe therapeutic option for IL7R-SCID patients.
白细胞介素 7 受体 严重联合免疫缺陷症(IL7R-SCID)是一种由 IL7RA 基因同源突变引起的危及生命的疾病。人类体内 IL7R 的表达缺陷阻碍了淋巴细胞生成过程中 T 细胞前体的增殖和分化,导致新生儿体内缺乏 T 细胞,并在出生后早期死于严重感染。之前通过病毒基因疗法解决 IL7R-SCID 的尝试表明,IL7R 表达不正常易导致白血病,这表明应用靶向基因编辑技术在其基因组位点插入正确的 IL7RA 基因拷贝并介导其生理表达是一种更可行的治疗方法。为此,我们首先开发了基于CRISPR/Cas9的IL7R-SCID疾病模型系统,该系统能在原代人类T细胞和造血干细胞及祖细胞(HSPCs)中重现疾病表型。然后,我们设计了一种基因敲入策略,以 IL7RA 第 1 外显子为靶点,通过同源定向修复引入一个纠正性的、无启动子的 IL7RA cDNA,然后通过 AAV6 转导引入一个报告基因盒。在原代 T 细胞中靶向整合校正盒后,IL7R 的表达得到恢复,下游 IL7R 信号的功能也得到恢复。当应用于在人工胸腺器官系统中进一步诱导分化成 T 细胞的 HSPCs 时,我们的基因编辑策略克服了在 IL7R-SCID 患者中观察到的 T 细胞发育障碍,同时促进了具有生理和发育调控 IL7R 表达的 T 细胞的完全成熟。最后,利用偏倚和非偏倚技术对CRISPR/Cas9平台在HSPCs中的遗传毒性进行了评估,证实了该策略的安全性,为IL7R-SCID患者提供一种高效、安全的新治疗方案铺平了道路。
{"title":"CRISPR/Cas9-Based Disease Modeling and Functional Correction of Interleukin 7 Receptor Alpha Severe Combined Immunodeficiency in T-Lymphocytes and Hematopoietic Stem Cells.","authors":"Rajeev Rai, Zohar Steinberg, Marianna Romito, Federica Zinghirino, Yi-Ting Hu, Nathan White, Asma Naseem, Adrian J Thrasher, Giandomenico Turchiano, Alessia Cavazza","doi":"10.1089/hum.2023.100","DOIUrl":"10.1089/hum.2023.100","url":null,"abstract":"<p><p>Interleukin 7 Receptor alpha Severe Combined Immunodeficiency (IL7R-SCID) is a life-threatening disorder caused by homozygous mutations in the <i>IL7RA</i> gene. Defective IL7R expression in humans hampers T cell precursors' proliferation and differentiation during lymphopoiesis resulting in the absence of T cells in newborns, who succumb to severe infections and death early after birth. Previous attempts to tackle IL7R-SCID by viral gene therapy have shown that unregulated IL7R expression predisposes to leukemia, suggesting the application of targeted gene editing to insert a correct copy of the <i>IL7RA</i> gene in its genomic locus and mediate its physiological expression as a more feasible therapeutic approach. To this aim, we have first developed a CRISPR/Cas9-based IL7R-SCID disease modeling system that recapitulates the disease phenotype in primary human T cells and hematopoietic stem and progenitor cells (HSPCs). Then, we have designed a knockin strategy that targets <i>IL7RA</i> exon 1 and introduces through homology-directed repair a corrective, promoterless IL7RA cDNA followed by a reporter cassette through AAV6 transduction. Targeted integration of the corrective cassette in primary T cells restored IL7R expression and rescued functional downstream IL7R signaling. When applied to HSPCs further induced to differentiate into T cells in an Artificial Thymic Organoid system, our gene editing strategy overcame the T cell developmental block observed in IL7R-SCID patients, while promoting full maturation of T cells with physiological and developmentally regulated IL7R expression. Finally, genotoxicity assessment of the CRISPR/Cas9 platform in HSPCs using biased and unbiased technologies confirmed the safety of the strategy, paving the way for a new, efficient, and safe therapeutic option for IL7R-SCID patients.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"269-283"},"PeriodicalIF":3.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139512294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}