Emile d'Angremont, Remco Renken, Sygrid van der Zee, Erik F. J. de Vries, Teus van Laar, Iris E. C. Sommer
Cognitive impairment is considered to be one of the key features of Parkinson's disease (PD), ultimately resulting in PD-related dementia in approximately 80% of patients over the course of the disease. Several distinct cognitive syndromes of PD have been suggested, driven by different neurotransmitter deficiencies and thus requiring different treatment regimes. In this study, we aimed to identify characteristic brain covariance patterns that reveal how cholinergic denervation is related to PD and to cognitive impairment, focusing on four domains, including attention, executive functioning, memory, and visuospatial cognition. We applied scaled sub-profile model principal component analysis to reveal cholinergic-specific disease-related and cognition-related covariance patterns using [18F]fluoroethoxybenzovesamicol PET imaging. Stepwise logistic regression was applied to predict disease state (PD vs. healthy control). Linear regression models were applied to predict cognitive functioning within the PD group, for each cognitive domain separately. We assessed the performance of the identified patterns with leave-one-out cross validation and performed bootstrapping to assess pattern stability. We included 34 PD patients with various levels of cognitive dysfunction and 10 healthy controls, with similar age, sex, and educational level. The disease-related cholinergic pattern was strongly discriminative (AUC 0.91), and was most prominent in posterior brain regions, with lower tracer uptake in patients compared to controls. We found largely overlapping cholinergic-specific patterns across cognitive domains, with positive correlations between tracer uptake in the opercular cortex, left dorsolateral prefrontal cortex and posterior cingulate gyrus, among other regions, and attention, executive, and visuospatial functioning. Cross validation showed significant correlations between predicted and measured cognition scores, with the exception of memory. We identified a robust structural covariance pattern for the assessment of cholinergic dysfunction related to PD, as well as overlapping cholinergic patterns related to attentional, executive- and visuospatial impairment in PD patients.
{"title":"Cholinergic Denervation Patterns in Parkinson's Disease Associated With Cognitive Impairment Across Domains","authors":"Emile d'Angremont, Remco Renken, Sygrid van der Zee, Erik F. J. de Vries, Teus van Laar, Iris E. C. Sommer","doi":"10.1002/hbm.70047","DOIUrl":"10.1002/hbm.70047","url":null,"abstract":"<p>Cognitive impairment is considered to be one of the key features of Parkinson's disease (PD), ultimately resulting in PD-related dementia in approximately 80% of patients over the course of the disease. Several distinct cognitive syndromes of PD have been suggested, driven by different neurotransmitter deficiencies and thus requiring different treatment regimes. In this study, we aimed to identify characteristic brain covariance patterns that reveal how cholinergic denervation is related to PD and to cognitive impairment, focusing on four domains, including attention, executive functioning, memory, and visuospatial cognition. We applied scaled sub-profile model principal component analysis to reveal cholinergic-specific disease-related and cognition-related covariance patterns using [<sup>18</sup>F]fluoroethoxybenzovesamicol PET imaging. Stepwise logistic regression was applied to predict disease state (PD vs. healthy control). Linear regression models were applied to predict cognitive functioning within the PD group, for each cognitive domain separately. We assessed the performance of the identified patterns with leave-one-out cross validation and performed bootstrapping to assess pattern stability. We included 34 PD patients with various levels of cognitive dysfunction and 10 healthy controls, with similar age, sex, and educational level. The disease-related cholinergic pattern was strongly discriminative (AUC 0.91), and was most prominent in posterior brain regions, with lower tracer uptake in patients compared to controls. We found largely overlapping cholinergic-specific patterns across cognitive domains, with positive correlations between tracer uptake in the opercular cortex, left dorsolateral prefrontal cortex and posterior cingulate gyrus, among other regions, and attention, executive, and visuospatial functioning. Cross validation showed significant correlations between predicted and measured cognition scores, with the exception of memory. We identified a robust structural covariance pattern for the assessment of cholinergic dysfunction related to PD, as well as overlapping cholinergic patterns related to attentional, executive- and visuospatial impairment in PD patients.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 2","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755113/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143058901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Athena Taymourtash, Ernst Schwartz, Karl-Heinz Nenning, Roxane Licandro, Patric Kienast, Veronika Hielle, Daniela Prayer, Gregor Kasprian, Georg Langs
Irregular and unpredictable fetal movement is the most common cause of artifacts in in utero functional magnetic resonance imaging (fMRI), affecting analysis and limiting our understanding of early functional brain development. The accurate detection of corrupted functional connectivity (FC) resulting from motion artifacts or preprocessing, instead of neural activity, is a prerequisite for reliable and valid analysis of FC and early brain development. Approaches to address this problem in adult data are of limited utility in fetal fMRI. In this study, we evaluate a novel technique for robust computational assessment of motion artifacts, and the quantitative comparison of regression models for artifact removal in fetal FC analysis. It exploits the association between dynamic FC and non-stationarity of fetal movement, to detect residual noise. To validate our motion artifact detection technique in detail, we used a parametric generative model for neural events and fMRI blood oxygenation level-dependent (BOLD) signal. We conducted a systematic evaluation of 11 commonly used regression models in a sample of 70 fetuses with gestational age of 19–39 weeks. Results demonstrate that the proposed method has better accuracy in identifying corrupted FC compared to methods designed for adults. The technique, suggests that censoring, global signal regression and anatomical component-based regression models are the most effective models for compensating motion. The benchmarking technique, and the generative model for realistic fetal fMRI BOLD enables investigators conducting in utero fMRI analysis to effectively quantify the impact of fetal motion and evaluate alternative regression strategies for mitigating this impact. The code is publicly available at: https://github.com/cirmuw/fetalfMRIproc.
{"title":"Measuring the effects of motion corruption in fetal fMRI","authors":"Athena Taymourtash, Ernst Schwartz, Karl-Heinz Nenning, Roxane Licandro, Patric Kienast, Veronika Hielle, Daniela Prayer, Gregor Kasprian, Georg Langs","doi":"10.1002/hbm.26806","DOIUrl":"10.1002/hbm.26806","url":null,"abstract":"<p>Irregular and unpredictable fetal movement is the most common cause of artifacts in in utero functional magnetic resonance imaging (fMRI), affecting analysis and limiting our understanding of early functional brain development. The accurate detection of corrupted functional connectivity (FC) resulting from motion artifacts or preprocessing, instead of neural activity, is a prerequisite for reliable and valid analysis of FC and early brain development. Approaches to address this problem in adult data are of limited utility in fetal fMRI. In this study, we evaluate a novel technique for robust computational assessment of motion artifacts, and the quantitative comparison of regression models for artifact removal in fetal FC analysis. It exploits the association between dynamic FC and non-stationarity of fetal movement, to detect residual noise. To validate our motion artifact detection technique in detail, we used a parametric generative model for neural events and fMRI blood oxygenation level-dependent (BOLD) signal. We conducted a systematic evaluation of 11 commonly used regression models in a sample of 70 fetuses with gestational age of 19–39 weeks. Results demonstrate that the proposed method has better accuracy in identifying corrupted FC compared to methods designed for adults. The technique, suggests that censoring, global signal regression and anatomical component-based regression models are the most effective models for compensating motion. The benchmarking technique, and the generative model for realistic fetal fMRI BOLD enables investigators conducting in utero fMRI analysis to effectively quantify the impact of fetal motion and evaluate alternative regression strategies for mitigating this impact. The code is publicly available at: https://github.com/cirmuw/fetalfMRIproc.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 2","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755121/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143023198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lanxin Ji, Mark Duffy, Bosi Chen, Amyn Majbri, Christopher J. Trentacosta, Moriah Thomason
Iron in the brain is essential to neurodevelopmental processes, as it supports neural functions, including processes of oxygen delivery, electron transport, and enzymatic activity. However, the development of brain iron before birth is scarcely understood. By estimating R2* (1/T2*) relaxometry from a sizable sample of fetal multiecho echo-planar imaging (EPI) scans, which is the standard sequence for functional magnetic resonance imaging (fMRI), across gestation, this study investigates age and sex-related changes in iron, across regions and tissue segments. Our findings reveal that brain R2* levels significantly increase throughout gestation spanning many different regions, except the frontal lobe. Furthermore, females exhibit a faster rate of R2* increase compared to males, in both gray matter and white matter. This sex effect is particularly notable within the left insula. This work represents the first MRI examination of iron accumulation and sex differences in developing fetal brains. This is also the first study to establish R2* estimation methodology in fetal multiecho functional MRI.
{"title":"Whole Brain MRI Assessment of Age and Sex-Related R2* Changes in the Human Fetal Brain","authors":"Lanxin Ji, Mark Duffy, Bosi Chen, Amyn Majbri, Christopher J. Trentacosta, Moriah Thomason","doi":"10.1002/hbm.70073","DOIUrl":"10.1002/hbm.70073","url":null,"abstract":"<p>Iron in the brain is essential to neurodevelopmental processes, as it supports neural functions, including processes of oxygen delivery, electron transport, and enzymatic activity. However, the development of brain iron before birth is scarcely understood. By estimating R2* (1/T2*) relaxometry from a sizable sample of fetal multiecho echo-planar imaging (EPI) scans, which is the standard sequence for functional magnetic resonance imaging (fMRI), across gestation, this study investigates age and sex-related changes in iron, across regions and tissue segments. Our findings reveal that brain R2* levels significantly increase throughout gestation spanning many different regions, except the frontal lobe. Furthermore, females exhibit a faster rate of R2* increase compared to males, in both gray matter and white matter. This sex effect is particularly notable within the left insula. This work represents the first MRI examination of iron accumulation and sex differences in developing fetal brains. This is also the first study to establish R2* estimation methodology in fetal multiecho functional MRI.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 2","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754245/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143023201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexandru Mihai Dumitrescu, Tim Coolen, Vincent Wens, Antonin Rovai, Nicola Trotta, Serge Goldman, Xavier De Tiège, Charline Urbain
Language control processes allow for the flexible manipulation and access to context-appropriate verbal representations. Functional magnetic resonance imaging (fMRI) studies have localized the brain regions involved in language control processes usually by comparing high vs. low lexical–semantic control conditions during verbal tasks. Yet, the spectro-temporal dynamics of associated brain processes remain unexplored, preventing a proper understanding of the neural bases of language control mechanisms. To do so, we recorded functional brain activity using magnetoencephalography (MEG) and fMRI, while 30 healthy participants performed a silent verb generation (VGEN) and a picture naming (PN) task upon confrontation with pictures requiring low or high lexical–semantic control processes. fMRI confirmed the association between stronger language control processes and increased left inferior frontal gyrus (IFG) perfusion, while MEG revealed these controlled mechanisms to be associated with a specific sequence of early (< 500 ms) and late (> 500 ms) beta-band (de)synchronization processes within fronto-temporo-parietal areas. Particularly, beta-band modulations of event-related (de)synchronization mechanisms were first observed in the right IFG, followed by bilateral IFG and temporo-parietal brain regions. Altogether, these results suggest that beyond a specific recruitment of inferior frontal brain regions, language control mechanisms rely on a complex temporal sequence of beta-band oscillatory mechanisms over antero-posterior areas.
{"title":"Investigating the Spatio-Temporal Signatures of Language Control–Related Brain Synchronization Processes","authors":"Alexandru Mihai Dumitrescu, Tim Coolen, Vincent Wens, Antonin Rovai, Nicola Trotta, Serge Goldman, Xavier De Tiège, Charline Urbain","doi":"10.1002/hbm.70109","DOIUrl":"10.1002/hbm.70109","url":null,"abstract":"<p>Language control processes allow for the flexible manipulation and access to context-appropriate verbal representations. Functional magnetic resonance imaging (fMRI) studies have localized the brain regions involved in language control processes usually by comparing high vs. low lexical–semantic control conditions during verbal tasks. Yet, the spectro-temporal dynamics of associated brain processes remain unexplored, preventing a proper understanding of the neural bases of language control mechanisms. To do so, we recorded functional brain activity using magnetoencephalography (MEG) and fMRI, while 30 healthy participants performed a silent verb generation (VGEN) and a picture naming (PN) task upon confrontation with pictures requiring low or high lexical–semantic control processes. fMRI confirmed the association between stronger language control processes and increased left inferior frontal gyrus (IFG) perfusion, while MEG revealed these controlled mechanisms to be associated with a specific sequence of early (< 500 ms) and late (> 500 ms) beta-band (de)synchronization processes within fronto-temporo-parietal areas. Particularly, beta-band modulations of event-related (de)synchronization mechanisms were first observed in the right IFG, followed by bilateral IFG and temporo-parietal brain regions. Altogether, these results suggest that beyond a specific recruitment of inferior frontal brain regions, language control mechanisms rely on a complex temporal sequence of beta-band oscillatory mechanisms over antero-posterior areas.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 2","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11747998/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143004584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Minjun Kim, Sooyeon Ji, Jiye Kim, Kyeongseon Min, Hwihun Jeong, Jonghyo Youn, Taechang Kim, Jinhee Jang, Berkin Bilgic, Hyeong-Geol Shin, Jongho Lee
<p>Magnetic susceptibility source separation (<i>χ</i>-separation), an advanced quantitative susceptibility mapping (QSM) method, enables the separate estimation of paramagnetic and diamagnetic susceptibility source distributions in the brain. Similar to QSM, it requires solving the ill-conditioned problem of dipole inversion, suffering from so-called streaking artifacts. Additionally, the method utilizes reversible transverse relaxation (<span></span><math>