Chuanji Gao, Sewon Oh, Xuan Yang, Jacob M. Stanley, Svetlana V. Shinkareva
Growing evidence suggests that conceptual knowledge influences emotion perception, yet the neural mechanisms underlying this effect are not fully understood. Recent studies have shown that brain representations of facial emotion categories in visual-perceptual areas are predicted by conceptual knowledge, but it remains to be seen if auditory regions are similarly affected. Moreover, it is not fully clear whether these conceptual influences operate at a modality-independent level. To address these questions, we conducted a functional magnetic resonance imaging study presenting participants with both facial and vocal emotional stimuli. This dual-modality approach allowed us to investigate effects on both modality-specific and modality-independent brain regions. Using univariate and representational similarity analyses, we found that brain representations in both visual (middle and lateral occipital cortices) and auditory (superior temporal gyrus) regions were predicted by conceptual understanding of emotions for faces and voices, respectively. Additionally, we discovered that conceptual knowledge also influenced supra-modal representations in the superior temporal sulcus. Dynamic causal modeling revealed a brain network showing both bottom-up and top-down flows, suggesting a complex interplay of modality-specific and modality-independent regions in emotional processing. These findings collectively indicate that the neural representations of emotions in both sensory-perceptual and modality-independent regions are likely shaped by each individual's conceptual knowledge.
{"title":"Neural Representations of Emotions in Visual, Auditory, and Modality-Independent Regions Reflect Idiosyncratic Conceptual Knowledge","authors":"Chuanji Gao, Sewon Oh, Xuan Yang, Jacob M. Stanley, Svetlana V. Shinkareva","doi":"10.1002/hbm.70040","DOIUrl":"https://doi.org/10.1002/hbm.70040","url":null,"abstract":"<p>Growing evidence suggests that conceptual knowledge influences emotion perception, yet the neural mechanisms underlying this effect are not fully understood. Recent studies have shown that brain representations of facial emotion categories in visual-perceptual areas are predicted by conceptual knowledge, but it remains to be seen if auditory regions are similarly affected. Moreover, it is not fully clear whether these conceptual influences operate at a modality-independent level. To address these questions, we conducted a functional magnetic resonance imaging study presenting participants with both facial and vocal emotional stimuli. This dual-modality approach allowed us to investigate effects on both modality-specific and modality-independent brain regions. Using univariate and representational similarity analyses, we found that brain representations in both visual (middle and lateral occipital cortices) and auditory (superior temporal gyrus) regions were predicted by conceptual understanding of emotions for faces and voices, respectively. Additionally, we discovered that conceptual knowledge also influenced supra-modal representations in the superior temporal sulcus. Dynamic causal modeling revealed a brain network showing both bottom-up and top-down flows, suggesting a complex interplay of modality-specific and modality-independent regions in emotional processing. These findings collectively indicate that the neural representations of emotions in both sensory-perceptual and modality-independent regions are likely shaped by each individual's conceptual knowledge.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70040","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nelleke van der Weerd, Peter Mulders, Janna Vrijsen, Jasper van Oort, Rose Collard, Philip van Eijndhoven, Indira Tendolkar
Childhood adversity (CA), including childhood adverse life events, increases the risk for development of psychiatric disorders later in life. Both CA and psychiatric disorders are associated with structural brain changes and dysfunctional hypothalamic–pituitary–adrenal-axis. However, many studies investigated single diagnostic and single regions of interest of the brain, and did not take stress reactivity into account. We investigated associations of CA and cortisol levels with gray matter volume and cortical thickness, in a whole-brain manner. Primary analysis constituted of a transdiagnostic approach, followed by a moderation analysis to investigate the influence of diagnosis. Patients with stress-related and/or neurodevelopmental disorders and matched healthy controls underwent an magnetic resonance imaging scan, next to assessing hair cortisol levels and CA/life events. CA was reported by 62–72% of the patients versus 33% of the controls. Primary transdiagnostic linear regression analyses revealed that CA was not associated with gray matter volume, while childhood life events were associated with lower right thalamic volume. Hair cortisol was not associated with any lobe volume. None of the associations were moderated by diagnosis. In conclusion, CA is a risk factor that needs to be taken into account when investigating psychiatric disorders. Yet the relationship with structural brain changes and stress reactivity is less clear than postulated on the basis of more seed-based studies.
{"title":"Childhood adversity, stress reactivity, and structural brain measures in stress-related/neurodevelopmental disorders, and their comorbidity: A large transdiagnostic cross-sectional study","authors":"Nelleke van der Weerd, Peter Mulders, Janna Vrijsen, Jasper van Oort, Rose Collard, Philip van Eijndhoven, Indira Tendolkar","doi":"10.1002/hbm.70025","DOIUrl":"https://doi.org/10.1002/hbm.70025","url":null,"abstract":"<p>Childhood adversity (CA), including childhood adverse life events, increases the risk for development of psychiatric disorders later in life. Both CA and psychiatric disorders are associated with structural brain changes and dysfunctional hypothalamic–pituitary–adrenal-axis. However, many studies investigated single diagnostic and single regions of interest of the brain, and did not take stress reactivity into account. We investigated associations of CA and cortisol levels with gray matter volume and cortical thickness, in a whole-brain manner. Primary analysis constituted of a transdiagnostic approach, followed by a moderation analysis to investigate the influence of diagnosis. Patients with stress-related and/or neurodevelopmental disorders and matched healthy controls underwent an magnetic resonance imaging scan, next to assessing hair cortisol levels and CA/life events. CA was reported by 62–72% of the patients versus 33% of the controls. Primary transdiagnostic linear regression analyses revealed that CA was not associated with gray matter volume, while childhood life events were associated with lower right thalamic volume. Hair cortisol was not associated with any lobe volume. None of the associations were moderated by diagnosis. In conclusion, CA is a risk factor that needs to be taken into account when investigating psychiatric disorders. Yet the relationship with structural brain changes and stress reactivity is less clear than postulated on the basis of more seed-based studies.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70025","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Naftali Raz, Ana M. Daugherty, Dalal Khatib, Cheryl L. Dahle, Usha Rajan, Caroline Zajac-Benitez, Jeffrey A. Stanley
Using Phosphorus Magnetic Resonance Spectroscopy (31P MRS), we examined five metabolites associated with brain energy cycle, and cellular membrane production and degradation in 11 brain regions of 48 children (age 6–15), and 80 middle-aged and older adults (age 52–87). Levels of phosphomonoesters (PMEs) and phosphodiesters (PDEs), gamma plus alpha adenosine triphosphate (γαATP), phosphocreatine (PCr) and inorganic phosphate (Pi), were residualized on the total amplitude value. PMEs were greater in children compared to adults, whereas PDEs showed the opposite age difference. Higher γαATP and lower Pi were found in children compared to adults. The age group differences were particularly salient in the association cortices and anterior white matter. Among children, age correlated negatively with PMEs and positively with PDEs in association cortices. Compared to children, adults had lower intracellular pH. The results suggest reduction in membrane synthesis and increase in membrane degradation in adolescents and to a greater degree in adults compared to younger children. Concomitant reduction in γαATP and increase in Pi are consistent with reduced energy consumption in adolescents and further drop in middle-aged and older adults, although it is impossible to distinguish declines in energy supply from reduced demand due to shrinking neuropil, without longitudinal studies.
{"title":"Mapping Age Differences in Brain Energy Metabolites and Metabolic Markers of Cellular Membrane Production and Degradation With 31P Magnetic Resonance Spectroscopy","authors":"Naftali Raz, Ana M. Daugherty, Dalal Khatib, Cheryl L. Dahle, Usha Rajan, Caroline Zajac-Benitez, Jeffrey A. Stanley","doi":"10.1002/hbm.70039","DOIUrl":"10.1002/hbm.70039","url":null,"abstract":"<p>Using Phosphorus Magnetic Resonance Spectroscopy (<sup>31</sup>P MRS), we examined five metabolites associated with brain energy cycle, and cellular membrane production and degradation in 11 brain regions of 48 children (age 6–15), and 80 middle-aged and older adults (age 52–87). Levels of phosphomonoesters (PMEs) and phosphodiesters (PDEs), gamma plus alpha adenosine triphosphate (γαATP), phosphocreatine (PCr) and inorganic phosphate (Pi), were residualized on the total amplitude value. PMEs were greater in children compared to adults, whereas PDEs showed the opposite age difference. Higher γαATP and lower Pi were found in children compared to adults. The age group differences were particularly salient in the association cortices and anterior white matter. Among children, age correlated negatively with PMEs and positively with PDEs in association cortices. Compared to children, adults had lower intracellular pH. The results suggest reduction in membrane synthesis and increase in membrane degradation in adolescents and to a greater degree in adults compared to younger children. Concomitant reduction in γαATP and increase in Pi are consistent with reduced energy consumption in adolescents and further drop in middle-aged and older adults, although it is impossible to distinguish declines in energy supply from reduced demand due to shrinking neuropil, without longitudinal studies.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fan Zhang, Yuqian Chen, Lipeng Ning, Jarrett Rushmore, Qiang Liu, Mubai Du, Shiva Hassanzadeh-Behbahani, Jon Haitz Legarreta, Edward Yeterian, Nikos Makris, Yogesh Rathi, Lauren J. O'Donnell
The superficial white matter (SWM) consists of numerous short-range association fibers connecting adjacent and nearby gyri and plays an important role in brain function, development, aging, and various neurological disorders. Diffusion MRI (dMRI) tractography is an advanced imaging technique that enables in vivo mapping of the SWM. However, detailed imaging of the small, highly-curved fibers of the SWM is a challenge for current clinical and research dMRI acquisitions. This work investigates the efficacy of mapping the SWM using in vivo ultra-high-resolution dMRI data. We compare the SWM mapping performance from two dMRI acquisitions: a high-resolution 0.76-mm isotropic acquisition using the generalized slice-dithered enhanced resolution (gSlider) protocol and a lower resolution 1.25-mm isotropic acquisition obtained from the Human Connectome Project Young Adult (HCP-YA) database. Our results demonstrate significant differences in the cortico-cortical anatomical connectivity that is depicted by these two acquisitions. We perform a detailed assessment of the anatomical plausibility of these results with respect to the nonhuman primate (macaque) tract-tracing literature. We find that the high-resolution gSlider dataset is more successful at depicting a large number of true positive anatomical connections in the SWM. An additional cortical coverage analysis demonstrates significantly higher cortical coverage in the gSlider dataset for SWM streamlines under 40 mm in length. Overall, we conclude that the spatial resolution of the dMRI data is one important factor that can significantly affect the mapping of SWM. Considering the relatively long acquisition time, the application of dMRI tractography for SWM mapping in future work should consider the balance of data acquisition efforts and the efficacy of SWM depiction.
{"title":"Assessment of the Depiction of Superficial White Matter Using Ultra-High-Resolution Diffusion MRI","authors":"Fan Zhang, Yuqian Chen, Lipeng Ning, Jarrett Rushmore, Qiang Liu, Mubai Du, Shiva Hassanzadeh-Behbahani, Jon Haitz Legarreta, Edward Yeterian, Nikos Makris, Yogesh Rathi, Lauren J. O'Donnell","doi":"10.1002/hbm.70041","DOIUrl":"10.1002/hbm.70041","url":null,"abstract":"<p>The superficial white matter (SWM) consists of numerous short-range association fibers connecting adjacent and nearby gyri and plays an important role in brain function, development, aging, and various neurological disorders. Diffusion MRI (dMRI) tractography is an advanced imaging technique that enables in vivo mapping of the SWM. However, detailed imaging of the small, highly-curved fibers of the SWM is a challenge for current clinical and research dMRI acquisitions. This work investigates the efficacy of mapping the SWM using in vivo ultra-high-resolution dMRI data. We compare the SWM mapping performance from two dMRI acquisitions: a high-resolution 0.76-mm isotropic acquisition using the generalized slice-dithered enhanced resolution (gSlider) protocol and a lower resolution 1.25-mm isotropic acquisition obtained from the Human Connectome Project Young Adult (HCP-YA) database. Our results demonstrate significant differences in the cortico-cortical anatomical connectivity that is depicted by these two acquisitions. We perform a detailed assessment of the anatomical plausibility of these results with respect to the nonhuman primate (macaque) tract-tracing literature. We find that the high-resolution gSlider dataset is more successful at depicting a large number of true positive anatomical connections in the SWM. An additional cortical coverage analysis demonstrates significantly higher cortical coverage in the gSlider dataset for SWM streamlines under 40 mm in length. Overall, we conclude that the spatial resolution of the dMRI data is one important factor that can significantly affect the mapping of SWM. Considering the relatively long acquisition time, the application of dMRI tractography for SWM mapping in future work should consider the balance of data acquisition efforts and the efficacy of SWM depiction.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70041","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ida Rangus, Alex Teghipco, Sarah Newman-Norlund, Roger Newman-Norlund, Chris Rorden, Nicholas Riccardi, Sarah Wilson, Natalie Busby, Janina Wilmskoetter, Samaneh Nemati, Lumi Bakos, Julius Fridriksson, Leonardo Bonilha
The contribution of age-related structural brain changes to the well-established link between aging and cognitive decline is not fully defined. While both age-related regional brain atrophy and cognitive decline have been extensively studied, the specific mediating role of age-related regional brain atrophy on cognitive functions is unclear. This study introduces an open-source software tool with a graphical user interface that streamlines advanced whole-brain mediation analyses, enabling researchers to systematically explore how the brain acts as a mediator in relationships between various behavioral and health outcomes. The tool is showcased by investigating regional brain volume as a mediator to determine the contribution of age-related brain volume loss toward cognition in healthy aging. We analyzed regional brain volumes and cognitive testing data (Montreal Cognitive Assessment [MoCA]) from a cohort of 131 neurologically healthy adult participants (mean age 50 ± 20.8 years, range 20–79, 73% females) drawn from the Aging Brain Cohort Study at the University of South Carolina. Using our open-source tool developed for evaluating brain-behavior associations across the brain and optimized for exploring mediation effects, we conducted a series of mediation analyses using participant age as the predictor variable, total MoCA and MoCA subtest scores as the outcome variables, and regional brain volume as potential mediators. Age-related atrophy within specific anatomical networks was found to mediate the relationship between age and cognition across multiple cognitive domains. Specifically, atrophy in bilateral frontal, parietal, and occipital areas, along with widespread subcortical regions mediated the effect of age on total MoCA scores. Various MoCA subscores were influenced by age through atrophy in distinct brain regions. These involved prefrontal regions, sensorimotor cortex, and parieto-occipital areas for executive function subscores, prefrontal and temporo-occipital regions, along with the caudate nucleus for attention and concentration subscores, frontal and parieto-occipital areas, alongside connecting subcortical areas such as the optic tract for visuospatial subscores and frontoparietal areas for language subscores. Brain-based mediation analysis offers a causal framework for evaluating the mediating role of brain structure on the relationship between age and cognition and provides a more nuanced understanding of cognitive aging than previously possible. By validating the applicability and effectiveness of this approach and making it openly available to the scientific community, we facilitate the exploration of causal mechanisms between variables mediated by the brain.
{"title":"The Influence of Structural Brain Changes on Cognition in the Context of Healthy Aging: Exploring Mediation Effects Through gBAT—The Graphical Brain Association Tool","authors":"Ida Rangus, Alex Teghipco, Sarah Newman-Norlund, Roger Newman-Norlund, Chris Rorden, Nicholas Riccardi, Sarah Wilson, Natalie Busby, Janina Wilmskoetter, Samaneh Nemati, Lumi Bakos, Julius Fridriksson, Leonardo Bonilha","doi":"10.1002/hbm.70038","DOIUrl":"10.1002/hbm.70038","url":null,"abstract":"<p>The contribution of age-related structural brain changes to the well-established link between aging and cognitive decline is not fully defined. While both age-related regional brain atrophy and cognitive decline have been extensively studied, the specific mediating role of age-related regional brain atrophy on cognitive functions is unclear. This study introduces an open-source software tool with a graphical user interface that streamlines advanced whole-brain mediation analyses, enabling researchers to systematically explore how the brain acts as a mediator in relationships between various behavioral and health outcomes. The tool is showcased by investigating regional brain volume as a mediator to determine the contribution of age-related brain volume loss toward cognition in healthy aging. We analyzed regional brain volumes and cognitive testing data (Montreal Cognitive Assessment [MoCA]) from a cohort of 131 neurologically healthy adult participants (mean age 50 ± 20.8 years, range 20–79, 73% females) drawn from the Aging Brain Cohort Study at the University of South Carolina. Using our open-source tool developed for evaluating brain-behavior associations across the brain and optimized for exploring mediation effects, we conducted a series of mediation analyses using participant age as the predictor variable, total MoCA and MoCA subtest scores as the outcome variables, and regional brain volume as potential mediators. Age-related atrophy within specific anatomical networks was found to mediate the relationship between age and cognition across multiple cognitive domains. Specifically, atrophy in bilateral frontal, parietal, and occipital areas, along with widespread subcortical regions mediated the effect of age on total MoCA scores. Various MoCA subscores were influenced by age through atrophy in distinct brain regions. These involved prefrontal regions, sensorimotor cortex, and parieto-occipital areas for executive function subscores, prefrontal and temporo-occipital regions, along with the caudate nucleus for attention and concentration subscores, frontal and parieto-occipital areas, alongside connecting subcortical areas such as the optic tract for visuospatial subscores and frontoparietal areas for language subscores. Brain-based mediation analysis offers a causal framework for evaluating the mediating role of brain structure on the relationship between age and cognition and provides a more nuanced understanding of cognitive aging than previously possible. By validating the applicability and effectiveness of this approach and making it openly available to the scientific community, we facilitate the exploration of causal mechanisms between variables mediated by the brain.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462644/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Melanie Ehrler, Anna Speckert, Oliver Kretschmar, Ruth Tuura O'Gorman, Beatrice Latal, Andras Jakab
Patients with congenital heart disease (CHD) demonstrate altered structural brain network connectivity. However, there is large variability between reported results and little information is available to identify those patients at highest risk for brain alterations. Thus, we aimed to investigate if network connectivity measures were associated with the individual patient's cumulative load of clinical risk factors and with family-environmental factors in a cohort of adolescents with CHD. Further, we investigated associations with executive function impairments. In 53 adolescents with CHD who underwent open-heart surgery during infancy, and 75 healthy controls, diffusion magnetic resonance imaging and neuropsychological assessment was conducted at a mean age of 13.2 ± 1.3 years. Structural connectomes were constructed using constrained spherical deconvolution tractography. Graph theory and network-based statistics were applied to investigate network connectivity measures. A cumulative clinical risk (CCR) score was built by summing up binary risk factors (neonatal, cardiac, neurologic) based on clinically relevant thresholds. The role of family-environmental factors (parental education, parental mental health, and family function) was investigated. An age-adjusted executive function summary score was built from nine neuropsychological tests. While network integration and segregation were preserved in adolescents with CHD, they showed lower edge strength in a dense subnetwork. A higher CCR score was associated with lower network segregation, edge strength, and executive function performance. Edge strength was particularly reduced in a subnetwork including inter-frontal and fronto-parietal-thalamic connections. There was no association with family-environmental factors. Poorer executive functioning was associated with lower network integration and segregation. We demonstrated evidence for alterations of network connectivity strength in adolescents with CHD — particularly in those patients who face a cumulative exposure to multiple clinical risk factors over time. Quantifying the cumulative load of risk early in life may help to better predict trajectories of brain development in order to identify and support the most vulnerable patients as early as possible.
{"title":"The cumulative impact of clinical risk on brain networks and associations with executive function impairments in adolescents with congenital heart disease","authors":"Melanie Ehrler, Anna Speckert, Oliver Kretschmar, Ruth Tuura O'Gorman, Beatrice Latal, Andras Jakab","doi":"10.1002/hbm.70028","DOIUrl":"10.1002/hbm.70028","url":null,"abstract":"<p>Patients with congenital heart disease (CHD) demonstrate altered structural brain network connectivity. However, there is large variability between reported results and little information is available to identify those patients at highest risk for brain alterations. Thus, we aimed to investigate if network connectivity measures were associated with the individual patient's cumulative load of clinical risk factors and with family-environmental factors in a cohort of adolescents with CHD. Further, we investigated associations with executive function impairments. In 53 adolescents with CHD who underwent open-heart surgery during infancy, and 75 healthy controls, diffusion magnetic resonance imaging and neuropsychological assessment was conducted at a mean age of 13.2 ± 1.3 years. Structural connectomes were constructed using constrained spherical deconvolution tractography. Graph theory and network-based statistics were applied to investigate network connectivity measures. A cumulative clinical risk (CCR) score was built by summing up binary risk factors (neonatal, cardiac, neurologic) based on clinically relevant thresholds. The role of family-environmental factors (parental education, parental mental health, and family function) was investigated. An age-adjusted executive function summary score was built from nine neuropsychological tests. While network integration and segregation were preserved in adolescents with CHD, they showed lower edge strength in a dense subnetwork. A higher CCR score was associated with lower network segregation, edge strength, and executive function performance. Edge strength was particularly reduced in a subnetwork including inter-frontal and fronto-parietal-thalamic connections. There was no association with family-environmental factors. Poorer executive functioning was associated with lower network integration and segregation. We demonstrated evidence for alterations of network connectivity strength in adolescents with CHD — particularly in those patients who face a cumulative exposure to multiple clinical risk factors over time. Quantifying the cumulative load of risk early in life may help to better predict trajectories of brain development in order to identify and support the most vulnerable patients as early as possible.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459682/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aron T. Hill, Peter G. Enticott, Paul B. Fitzgerald, Neil W. Bailey
Automated EEG pre-processing pipelines provide several key advantages over traditional manual data cleaning approaches; primarily, they are less time-intensive and remove potential experimenter error/bias. Automated pipelines also require fewer technical expertise as they remove the need for manual artefact identification. We recently developed the fully automated Reduction of Electroencephalographic Artefacts (RELAX) pipeline and demonstrated its performance in cleaning EEG data recorded from adult populations. Here, we introduce the RELAX-Jr pipeline, which was adapted from RELAX and designed specifically for pre-processing of data collected from children. RELAX-Jr implements multi-channel Wiener filtering (MWF) and/or wavelet-enhanced independent component analysis (wICA) combined with the adjusted-ADJUST automated independent component classification algorithm to identify and reduce all artefacts using algorithms adapted to optimally identify artefacts in EEG recordings taken from children. Using a dataset of resting-state EEG recordings (N = 136) from children spanning early-to-middle childhood (4–12 years), we assessed the cleaning performance of RELAX-Jr using a range of metrics including signal-to-error ratio, artefact-to-residue ratio, ability to reduce blink and muscle contamination, and differences in estimates of alpha power between eyes-open and eyes-closed recordings. We also compared the performance of RELAX-Jr against four publicly available automated cleaning pipelines. We demonstrate that RELAX-Jr provides strong cleaning performance across a range of metrics, supporting its use as an effective and fully automated cleaning pipeline for neurodevelopmental EEG data.
{"title":"RELAX-Jr: An Automated Pre-Processing Pipeline for Developmental EEG Recordings","authors":"Aron T. Hill, Peter G. Enticott, Paul B. Fitzgerald, Neil W. Bailey","doi":"10.1002/hbm.70034","DOIUrl":"10.1002/hbm.70034","url":null,"abstract":"<p>Automated EEG pre-processing pipelines provide several key advantages over traditional manual data cleaning approaches; primarily, they are less time-intensive and remove potential experimenter error/bias. Automated pipelines also require fewer technical expertise as they remove the need for manual artefact identification. We recently developed the fully automated Reduction of Electroencephalographic Artefacts (RELAX) pipeline and demonstrated its performance in cleaning EEG data recorded from adult populations. Here, we introduce the RELAX-Jr pipeline, which was adapted from RELAX and designed specifically for pre-processing of data collected from children. RELAX-Jr implements multi-channel Wiener filtering (MWF) and/or wavelet-enhanced independent component analysis (wICA) combined with the adjusted-ADJUST automated independent component classification algorithm to identify and reduce all artefacts using algorithms adapted to optimally identify artefacts in EEG recordings taken from children. Using a dataset of resting-state EEG recordings (<i>N</i> = 136) from children spanning early-to-middle childhood (4–12 years), we assessed the cleaning performance of RELAX-Jr using a range of metrics including signal-to-error ratio, artefact-to-residue ratio, ability to reduce blink and muscle contamination, and differences in estimates of alpha power between eyes-open and eyes-closed recordings. We also compared the performance of RELAX-Jr against four publicly available automated cleaning pipelines. We demonstrate that RELAX-Jr provides strong cleaning performance across a range of metrics, supporting its use as an effective and fully automated cleaning pipeline for neurodevelopmental EEG data.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456615/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Hyde, I. Fuelscher, K. S. Rosch, K. E. Seymour, D. Crocetti, T. Silk, M. Singh, S. H. Mostofsky
Subtle motor signs are a common feature in children with attention-deficit/hyperactivity disorder (ADHD). It has long been suggested that white matter abnormalities may be involved in their presentation, though no study has directly probed this question. The aim of this study was to investigate the relationship between white matter organization and the severity of subtle motor signs in children with and without ADHD. Participants were 92 children with ADHD aged between 8 and 12 years, and 185 typically developing controls. Subtle motor signs were examined using the Physical and Neurological Examination for Soft Signs (PANESS). Children completed diffusion MRI, and fixel-based analysis was performed after preprocessing. Tracts of interest were delineated using TractSeg including the corpus callosum (CC), the bilateral corticospinal tracts (CST), superior longitudinal fasciculus, and fronto-pontine tracts (FPT). Fiber cross-section (FC) was calculated for each tract. Across all participants, lower FC in the CST was associated with higher PANESS Total score (greater motor deficits). Within the PANESS, similar effects were observed for Timed Left and Right maneuvers of the hands and feet, with lower FC of the CST, CC, and FPT associated with poorer performance. No significant group differences were observed in FC in white matter regions associated with PANESS performance. Our data are consistent with theoretical accounts implicating white matter organization in the expression of motor signs in childhood. However, rather than contributing uniquely to the increased severity of soft motor signs in those with ADHD, white matter appears to contribute to these symptoms in childhood in general.
{"title":"Subtle motor signs in children with ADHD and their white matter correlates","authors":"C. Hyde, I. Fuelscher, K. S. Rosch, K. E. Seymour, D. Crocetti, T. Silk, M. Singh, S. H. Mostofsky","doi":"10.1002/hbm.70002","DOIUrl":"10.1002/hbm.70002","url":null,"abstract":"<p>Subtle motor signs are a common feature in children with attention-deficit/hyperactivity disorder (ADHD). It has long been suggested that white matter abnormalities may be involved in their presentation, though no study has directly probed this question. The aim of this study was to investigate the relationship between white matter organization and the severity of subtle motor signs in children with and without ADHD. Participants were 92 children with ADHD aged between 8 and 12 years, and 185 typically developing controls. Subtle motor signs were examined using the Physical and Neurological Examination for Soft Signs (PANESS). Children completed diffusion MRI, and fixel-based analysis was performed after preprocessing. Tracts of interest were delineated using TractSeg including the corpus callosum (CC), the bilateral corticospinal tracts (CST), superior longitudinal fasciculus, and fronto-pontine tracts (FPT). Fiber cross-section (FC) was calculated for each tract. Across all participants, lower FC in the CST was associated with higher PANESS Total score (greater motor deficits). Within the PANESS, similar effects were observed for Timed Left and Right maneuvers of the hands and feet, with lower FC of the CST, CC, and FPT associated with poorer performance. No significant group differences were observed in FC in white matter regions associated with PANESS performance. Our data are consistent with theoretical accounts implicating white matter organization in the expression of motor signs in childhood. However, rather than contributing uniquely to the increased severity of soft motor signs in those with ADHD, white matter appears to contribute to these symptoms in childhood in general.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451263/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive flexibility, the ability to switch between mental processes to generate appropriate behavioral responses, is reduced with typical aging. Previous studies have found that age-related declines in cognitive flexibility are often accompanied by variations in the activation of multiple regions. However, no meta-analyses have examined the relationship between cognitive flexibility in aging and age-related variations in activation within large-scale networks. Here, we conducted a meta-analysis employing multilevel kernel density analysis to identify regions with different activity patterns between age groups, and determined how these regions fall into functional networks. We also employed lateralization analysis to explore the spatial distribution of regions exhibiting group differences in activation. The permutation tests based on Monte Carlo simulation were used to determine the significance of the activation and lateralization results. The results showed that cognitive flexibility in aging was associated with both decreased and increased activation in several functional networks. Compared to young adults, older adults exhibited increased activation in the default mode, dorsal attention, ventral attention, and somatomotor networks, while displayed decreased activation in the visual network. Moreover, we found a global-level left lateralization for regions with decreased activation, but no lateralization for regions with higher activation in older adults. At the network level, the regions with decreased activation were left-lateralized, while the regions with increased activation showed varying lateralization patterns within different networks. To sum up, we found that networks that support various mental functions contribute to age-related variations in cognitive flexibility. Additionally, the aging brain exhibited network-dependent activation and lateralization patterns in response to tasks involving cognitive flexibility. We highlighted that the comprehensive meta-analysis in this study offered new insights into understanding cognitive flexibility in aging from a network perspective.
{"title":"A meta-analysis of cognitive flexibility in aging: Perspective from functional network and lateralization","authors":"Haishuo Xia, Yongqing Hou, Qing Li, Antao Chen","doi":"10.1002/hbm.70031","DOIUrl":"10.1002/hbm.70031","url":null,"abstract":"<p>Cognitive flexibility, the ability to switch between mental processes to generate appropriate behavioral responses, is reduced with typical aging. Previous studies have found that age-related declines in cognitive flexibility are often accompanied by variations in the activation of multiple regions. However, no meta-analyses have examined the relationship between cognitive flexibility in aging and age-related variations in activation within large-scale networks. Here, we conducted a meta-analysis employing multilevel kernel density analysis to identify regions with different activity patterns between age groups, and determined how these regions fall into functional networks. We also employed lateralization analysis to explore the spatial distribution of regions exhibiting group differences in activation. The permutation tests based on Monte Carlo simulation were used to determine the significance of the activation and lateralization results. The results showed that cognitive flexibility in aging was associated with both decreased and increased activation in several functional networks. Compared to young adults, older adults exhibited increased activation in the default mode, dorsal attention, ventral attention, and somatomotor networks, while displayed decreased activation in the visual network. Moreover, we found a global-level left lateralization for regions with decreased activation, but no lateralization for regions with higher activation in older adults. At the network level, the regions with decreased activation were left-lateralized, while the regions with increased activation showed varying lateralization patterns within different networks. To sum up, we found that networks that support various mental functions contribute to age-related variations in cognitive flexibility. Additionally, the aging brain exhibited network-dependent activation and lateralization patterns in response to tasks involving cognitive flexibility. We highlighted that the comprehensive meta-analysis in this study offered new insights into understanding cognitive flexibility in aging from a network perspective.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447525/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anja-Xiaoxing Cui, Sarah N. Kraeutner, Olga Kepinska, Negin Motamed Yeganeh, Nancy Hermiston, Janet F. Werker, Lara A. Boyd
The processing of auditory stimuli which are structured in time is thought to involve the arcuate fasciculus, the white matter tract which connects the temporal cortex and the inferior frontal gyrus. Research has indicated effects of both musical and language experience on the structural characteristics of the arcuate fasciculus. Here, we investigated in a sample of n = 84 young adults whether continuous conceptualizations of musical and multilingual experience related to structural characteristics of the arcuate fasciculus, measured using diffusion tensor imaging. Probabilistic tractography was used to identify the dorsal and ventral parts of the white matter tract. Linear regressions indicated that different aspects of musical sophistication related to the arcuate fasciculus' volume (emotional engagement with music), volumetric asymmetry (musical training and music perceptual abilities), and fractional anisotropy (music perceptual abilities). Our conceptualization of multilingual experience, accounting for participants' proficiency in reading, writing, understanding, and speaking different languages, was not related to the structural characteristics of the arcuate fasciculus. We discuss our results in the context of other research on hemispheric specializations and a dual-stream model of auditory processing.
对有时间结构的听觉刺激的处理被认为涉及弓状筋束,这是连接颞叶皮层和额下回的白质束。研究表明,音乐和语言经验都会对弓状束的结构特征产生影响。在此,我们以 n = 84 名年轻成人为样本,研究了音乐和多语言经验的连续概念是否与弓状束的结构特征有关。使用概率束成像技术确定了白质束的背侧和腹侧部分。线性回归结果表明,音乐复杂性的不同方面与弓状筋膜的体积(对音乐的情感投入)、体积不对称(音乐训练和音乐感知能力)和分数各向异性(音乐感知能力)有关。我们对多语言经验的概念化,包括参与者在读、写、理解和说不同语言方面的熟练程度,与弓状筋膜的结构特征无关。我们将结合其他半球特化研究和听觉处理双流模型来讨论我们的研究结果。
{"title":"Musical Sophistication and Multilingualism: Effects on Arcuate Fasciculus Characteristics","authors":"Anja-Xiaoxing Cui, Sarah N. Kraeutner, Olga Kepinska, Negin Motamed Yeganeh, Nancy Hermiston, Janet F. Werker, Lara A. Boyd","doi":"10.1002/hbm.70035","DOIUrl":"10.1002/hbm.70035","url":null,"abstract":"<p>The processing of auditory stimuli which are structured in time is thought to involve the arcuate fasciculus, the white matter tract which connects the temporal cortex and the inferior frontal gyrus. Research has indicated effects of both musical and language experience on the structural characteristics of the arcuate fasciculus. Here, we investigated in a sample of <i>n</i> = 84 young adults whether continuous conceptualizations of musical and multilingual experience related to structural characteristics of the arcuate fasciculus, measured using diffusion tensor imaging. Probabilistic tractography was used to identify the dorsal and ventral parts of the white matter tract. Linear regressions indicated that different aspects of musical sophistication related to the arcuate fasciculus' volume (emotional engagement with music), volumetric asymmetry (musical training and music perceptual abilities), and fractional anisotropy (music perceptual abilities). Our conceptualization of multilingual experience, accounting for participants' proficiency in reading, writing, understanding, and speaking different languages, was not related to the structural characteristics of the arcuate fasciculus. We discuss our results in the context of other research on hemispheric specializations and a dual-stream model of auditory processing.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447524/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}