Pub Date : 2024-06-19DOI: 10.1109/JSTSP.2024.3416681
Kangjian Chen;Chenhao Qi;Geoffrey Ye Li;Octavia A. Dobre
This paper considers near-field multiuser communications based on sparse arrays (SAs). First, for the uniform SAs (USAs), we analyze the beam gains of channel steering vectors, which shows that increasing the antenna spacings can effectively improve the spatial resolution of the antenna arrays to enhance the sum rate of multiuser communications. Then, we investigate nonuniform SAs (NSAs) to mitigate the high multiuser interference from the grating lobes of the USAs. To maximize the sum rate of near-field multiuser communications, we optimize the antenna positions of the NSAs, where a successive convex approximation-based antenna position optimization algorithm is proposed. Moreover, we find that the channels of both the USAs and the NSAs show uniform sparsity in the defined surrogate distance-angle (SD-A) domain. Based on the channel sparsity, an on-grid SD-A-domain orthogonal matching pursuit (SDA-OMP) algorithm is developed to estimate multiuser channels. To further improve the resolution of the SDA-OMP, we also design an off-grid SD-A-domain iterative super-resolution channel estimation algorithm. Simulation results demonstrate the superior performance of the proposed methods.
{"title":"Near-Field Multiuser Communications Based on Sparse Arrays","authors":"Kangjian Chen;Chenhao Qi;Geoffrey Ye Li;Octavia A. Dobre","doi":"10.1109/JSTSP.2024.3416681","DOIUrl":"https://doi.org/10.1109/JSTSP.2024.3416681","url":null,"abstract":"This paper considers near-field multiuser communications based on sparse arrays (SAs). First, for the uniform SAs (USAs), we analyze the beam gains of channel steering vectors, which shows that increasing the antenna spacings can effectively improve the spatial resolution of the antenna arrays to enhance the sum rate of multiuser communications. Then, we investigate nonuniform SAs (NSAs) to mitigate the high multiuser interference from the grating lobes of the USAs. To maximize the sum rate of near-field multiuser communications, we optimize the antenna positions of the NSAs, where a successive convex approximation-based antenna position optimization algorithm is proposed. Moreover, we find that the channels of both the USAs and the NSAs show uniform sparsity in the defined surrogate distance-angle (SD-A) domain. Based on the channel sparsity, an on-grid SD-A-domain orthogonal matching pursuit (SDA-OMP) algorithm is developed to estimate multiuser channels. To further improve the resolution of the SDA-OMP, we also design an off-grid SD-A-domain iterative super-resolution channel estimation algorithm. Simulation results demonstrate the superior performance of the proposed methods.","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":"18 4","pages":"619-632"},"PeriodicalIF":8.7,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Despite the current surge of interest in autonomous robotic systems, robot activity recognition within restricted indoor environments remains a formidable challenge. Conventional methods for detecting and recognizing robotic arms' activities often rely on vision-based or light detection and ranging (LiDAR) sensors, which require line-of-sight (LoS) access and may raise privacy concerns, for example, in nursing facilities. This research pioneers an innovative approach harnessing channel state information (CSI) measured from WiFi signals, subtly influenced by the activity of robotic arms. We developed an attention-based network to classify eight distinct activities performed by a Franka Emika robotic arm in different situations. Our proposed bidirectional vision transformer-concatenated (BiVTC) methodology aspires to predict robotic arm activities accurately, even when trained on activities with different velocities, all without dependency on external or internal sensors or visual aids. Considering the high dependency of CSI data on the environment motivated us study the problem of sniffer location selection, by systematically changing the sniffer's location and collecting different sets of data. Finally, this paper also marks the first publication of the CSI data of eight distinct robotic arm activities, collectively referred to as RoboFiSense. This initiative aims to provide a benchmark dataset and baselines to the research community, fostering advancements in the field of robotics sensing.
{"title":"RoboFiSense: Attention-Based Robotic Arm Activity Recognition With WiFi Sensing","authors":"Rojin Zandi;Kian Behzad;Elaheh Motamedi;Hojjat Salehinejad;Milad Siami","doi":"10.1109/JSTSP.2024.3416851","DOIUrl":"https://doi.org/10.1109/JSTSP.2024.3416851","url":null,"abstract":"Despite the current surge of interest in autonomous robotic systems, robot activity recognition within restricted indoor environments remains a formidable challenge. Conventional methods for detecting and recognizing robotic arms' activities often rely on vision-based or light detection and ranging (LiDAR) sensors, which require line-of-sight (LoS) access and may raise privacy concerns, for example, in nursing facilities. This research pioneers an innovative approach harnessing channel state information (CSI) measured from WiFi signals, subtly influenced by the activity of robotic arms. We developed an attention-based network to classify eight distinct activities performed by a Franka Emika robotic arm in different situations. Our proposed bidirectional vision transformer-concatenated (BiVTC) methodology aspires to predict robotic arm activities accurately, even when trained on activities with different velocities, all without dependency on external or internal sensors or visual aids. Considering the high dependency of CSI data on the environment motivated us study the problem of sniffer location selection, by systematically changing the sniffer's location and collecting different sets of data. Finally, this paper also marks the first publication of the CSI data of eight distinct robotic arm activities, collectively referred to as RoboFiSense. This initiative aims to provide a benchmark dataset and baselines to the research community, fostering advancements in the field of robotics sensing.","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":"18 3","pages":"396-406"},"PeriodicalIF":8.7,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the context of single-base station (BS) non-line-of-sight (NLoS) single-epoch localization with the aid of a reflective reconfigurable intelligent surface (RIS), this paper introduces a novel three-step algorithm that jointly estimates the position and velocity of a mobile user equipment (UE), while compensating for the Doppler effects observed in near-field (NF) at the RIS elements over the short transmission duration of a sequence of downlink (DL) pilot symbols. First, a low-complexity initialization procedure is proposed, relying in part on far-field (FF) approximation and a static user assumption. Then, an alternating optimization procedure is designed to iteratively refine the velocity and position estimates, as well as the channel gain. The refinement routines leverage small angle approximations and the linearization of the RIS response, accounting for both NF and mobility effects. We evaluate the performance of the proposed algorithm through extensive simulations under diverse operating conditions with regard to signal-to-noise ratio (SNR), UE mobility, uncontrolled multipath and RIS-UE distance. Our results reveal remarkable performance improvements over the state-of-the-art (SoTA) mobility-agnostic benchmark algorithm, while indicating convergence of the proposed algorithm to respective theoretical bounds on position and velocity estimation.
{"title":"RIS-Enabled NLoS Near-Field Joint Position and Velocity Estimation Under User Mobility","authors":"Moustafa Rahal;Benoit Denis;Musa Furkan Keskin;Bernard Uguen;Henk Wymeersch","doi":"10.1109/JSTSP.2024.3414110","DOIUrl":"https://doi.org/10.1109/JSTSP.2024.3414110","url":null,"abstract":"In the context of single-base station (BS) non-line-of-sight (NLoS) single-epoch localization with the aid of a reflective reconfigurable intelligent surface (RIS), this paper introduces a novel three-step algorithm that jointly estimates the position and velocity of a mobile user equipment (UE), while compensating for the Doppler effects observed in near-field (NF) at the RIS elements over the short transmission duration of a sequence of downlink (DL) pilot symbols. First, a low-complexity initialization procedure is proposed, relying in part on far-field (FF) approximation and a static user assumption. Then, an alternating optimization procedure is designed to iteratively refine the velocity and position estimates, as well as the channel gain. The refinement routines leverage small angle approximations and the linearization of the RIS response, accounting for both NF and mobility effects. We evaluate the performance of the proposed algorithm through extensive simulations under diverse operating conditions with regard to signal-to-noise ratio (SNR), UE mobility, uncontrolled multipath and RIS-UE distance. Our results reveal remarkable performance improvements over the state-of-the-art (SoTA) mobility-agnostic benchmark algorithm, while indicating convergence of the proposed algorithm to respective theoretical bounds on position and velocity estimation.","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":"18 4","pages":"633-645"},"PeriodicalIF":8.7,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-13DOI: 10.1109/JSTSP.2024.3414137
Wentao Yu;Hengtao He;Xianghao Yu;Shenghui Song;Jun Zhang;Ross Murch;Khaled B. Letaief
Holographic MIMO (HMIMO) is being increasingly recognized as a key enabling technology for 6G wireless systems through the deployment of an extremely large number of antennas within a compact space to fully exploit the potentials of the electromagnetic (EM) channel. Nevertheless, the benefits of HMIMO systems cannot be fully unleashed without an efficient means to estimate the high-dimensional channel, whose distribution becomes increasingly complicated due to the accessibility of the near-field region. In this paper, we address the fundamental challenge of designing a low-complexity Bayes-optimal