Pub Date : 2019-06-01DOI: 10.1109/ICORR.2019.8779407
M. C. Yildirim, Ahmet Talha Kansizoglu, S. Emre, M. Derman, Sinan Coruk, A. Soliman, P. Şendur, B. Ugurlu
In this paper, we present our research study concerning the design and development of an exoskeleton that aims to provide 3D walking support with minimum number of actuators. Following a prior simulation study, the joint configuration was primarily determined. In order for the exoskeleton to possess advanced characteristics, the following design criteria were investigated: i) all the actuators (hip/knee/ankle) were deployed around the waist area to decrease leg weight and improve wearability, ii) custom-built series elastic actuators were used to power system for high fidelity torque-controllability, iii) 3D walking support is potentially enabled with reduced power requirements. As a result, we built the first actual prototype to experimentally verify the aforementioned design specifications. Furthermore, the preliminary torque control experiments indicated the viability of torque control.
{"title":"Co-Ex: A Torque-Controllable Lower Body Exoskeleton for Dependable Human-Robot Co-existence","authors":"M. C. Yildirim, Ahmet Talha Kansizoglu, S. Emre, M. Derman, Sinan Coruk, A. Soliman, P. Şendur, B. Ugurlu","doi":"10.1109/ICORR.2019.8779407","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779407","url":null,"abstract":"In this paper, we present our research study concerning the design and development of an exoskeleton that aims to provide 3D walking support with minimum number of actuators. Following a prior simulation study, the joint configuration was primarily determined. In order for the exoskeleton to possess advanced characteristics, the following design criteria were investigated: i) all the actuators (hip/knee/ankle) were deployed around the waist area to decrease leg weight and improve wearability, ii) custom-built series elastic actuators were used to power system for high fidelity torque-controllability, iii) 3D walking support is potentially enabled with reduced power requirements. As a result, we built the first actual prototype to experimentally verify the aforementioned design specifications. Furthermore, the preliminary torque control experiments indicated the viability of torque control.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133893477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/ICORR.2019.8779454
Raffaele Ranzani, Federica Viggiano, Bernadette Engelbrecht, J. Held, O. Lambercy, R. Gassert
Robot-assisted rehabilitation of hand function is becoming an established approach to complement conventional therapy after stroke, particularly in view of its possible unsupervised use to promote an increase in therapy dose. Given their intensive therapy regime, robots may promote a temporary increase in hand muscle tone and spasticity, which may cause pain and negatively affect recovery. To integrate hand muscle tone monitoring into an assessment-driven robot-assisted therapy concept, an online assessment of muscle tone is proposed and incorporated into an exercise. The exercise was preliminarily tested in a pilot study with five chronic stroke survivors (non-spastic at rest) and five healthy participants to identify the range of potential physiological muscle tone change that can happen also in a non-spastic population during a single exercise session. In both groups, the muscle tone level during hand opening was higher in fast 20 mm ramp-and-hold perturbations (150 ms) compared to slow (250 ms) perturbations, and corresponded to a force change of approximately 4-5 N. Despite not being statistically significantly different, in the stroke group the force change (and the speed dependency) increased with exercise time. This information could serve as a basis to develop strategies to continuously adapt the difficulty and activity level required in robot-assisted rehabilitation and to monitor or even control the muscle tone evolution over time
{"title":"Method for Muscle Tone Monitoring During Robot-Assisted Therapy of Hand Function: A Proof of Concept","authors":"Raffaele Ranzani, Federica Viggiano, Bernadette Engelbrecht, J. Held, O. Lambercy, R. Gassert","doi":"10.1109/ICORR.2019.8779454","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779454","url":null,"abstract":"Robot-assisted rehabilitation of hand function is becoming an established approach to complement conventional therapy after stroke, particularly in view of its possible unsupervised use to promote an increase in therapy dose. Given their intensive therapy regime, robots may promote a temporary increase in hand muscle tone and spasticity, which may cause pain and negatively affect recovery. To integrate hand muscle tone monitoring into an assessment-driven robot-assisted therapy concept, an online assessment of muscle tone is proposed and incorporated into an exercise. The exercise was preliminarily tested in a pilot study with five chronic stroke survivors (non-spastic at rest) and five healthy participants to identify the range of potential physiological muscle tone change that can happen also in a non-spastic population during a single exercise session. In both groups, the muscle tone level during hand opening was higher in fast 20 mm ramp-and-hold perturbations (150 ms) compared to slow (250 ms) perturbations, and corresponded to a force change of approximately 4-5 N. Despite not being statistically significantly different, in the stroke group the force change (and the speed dependency) increased with exercise time. This information could serve as a basis to develop strategies to continuously adapt the difficulty and activity level required in robot-assisted rehabilitation and to monitor or even control the muscle tone evolution over time","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114726394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/ICORR.2019.8779390
S. A. Mutalib, M. Mace, H. Ong, E. Burdet
Controlling two objects simultaneously during a bimanual task is a cognitively demanding process; both hands need to be temporally and spatially coordinated to achieve the shared task goal. Children with unilateral spastic cerebral palsy (USCP) exhibit severe sensory and motor impairments to one side of their body that make the process of coordinating bimanual movements particularly exhausting. Prior studies have shown that performing visually-coupled task could reduce cognitive interference associated with performing ‘two tasks at once’ in an uncoupled bimanual task. For children with USCP, who also present with cognitive delay, performing this type of task may allow them to process and plan their movement faster. We tested this hypothesis by examining the grip force control of 7 children with USCP during unimanual and visually-coupled bimanual tasks. Results demonstrated that despite the visual coupling, the bimanual coordination of these children remained impaired. However, there may be a potential benefit of visually-coupled task in encouraging both hands to initiate in concert. The implication of the study for children with USCP is discussed.
{"title":"Influence of visual-coupling on bimanual coordination in unilateral spastic cerebral palsy","authors":"S. A. Mutalib, M. Mace, H. Ong, E. Burdet","doi":"10.1109/ICORR.2019.8779390","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779390","url":null,"abstract":"Controlling two objects simultaneously during a bimanual task is a cognitively demanding process; both hands need to be temporally and spatially coordinated to achieve the shared task goal. Children with unilateral spastic cerebral palsy (USCP) exhibit severe sensory and motor impairments to one side of their body that make the process of coordinating bimanual movements particularly exhausting. Prior studies have shown that performing visually-coupled task could reduce cognitive interference associated with performing ‘two tasks at once’ in an uncoupled bimanual task. For children with USCP, who also present with cognitive delay, performing this type of task may allow them to process and plan their movement faster. We tested this hypothesis by examining the grip force control of 7 children with USCP during unimanual and visually-coupled bimanual tasks. Results demonstrated that despite the visual coupling, the bimanual coordination of these children remained impaired. However, there may be a potential benefit of visually-coupled task in encouraging both hands to initiate in concert. The implication of the study for children with USCP is discussed.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123585922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/ICORR.2019.8779480
Mark Robinson, Raphael M. Mayer, Y. Tan, D. Oetomo, C. Manzie
Wool harvesting remains an important industry in Australia, but its workers suffer from extreme rates of injury, in particular, the lower back injuries. Reducing injuries in sheep shearing could be as simple as extending shearer rest periods between sheep, but the effect of this has not previously been studied. The lumbar flexion-relaxation phenomenon is present in sheep shearing and the onset angle of this phenomenon can provide insight into lower back injury risk. The increase in the onset angle of lumbar flexion-relaxation over several work-rest periods for a simulated sheep shearing task is studied. The rate of increase in the onset angle of lumbar flexion-relaxation was higher when shorter breaks were taken for all participants at least unilaterally, indicating that longer rest breaks could reduce back injury risk. Due to the constraints of the sheep shearing occupation, this type of intervention is better suited to learner and novice shearers. Assistive robotic devices would be more suited to reduce injuries in expert shearers, and some insight is provided for the application of these within sheep shearing. Further study of this phenomenon in sheep shearing could provide additional insight to developing an assistive device that could reduce injury.
{"title":"Effects of varying the rest period on the onset angle of lumbar flexion-relaxation in simulated sheep shearing: a preliminary study","authors":"Mark Robinson, Raphael M. Mayer, Y. Tan, D. Oetomo, C. Manzie","doi":"10.1109/ICORR.2019.8779480","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779480","url":null,"abstract":"Wool harvesting remains an important industry in Australia, but its workers suffer from extreme rates of injury, in particular, the lower back injuries. Reducing injuries in sheep shearing could be as simple as extending shearer rest periods between sheep, but the effect of this has not previously been studied. The lumbar flexion-relaxation phenomenon is present in sheep shearing and the onset angle of this phenomenon can provide insight into lower back injury risk. The increase in the onset angle of lumbar flexion-relaxation over several work-rest periods for a simulated sheep shearing task is studied. The rate of increase in the onset angle of lumbar flexion-relaxation was higher when shorter breaks were taken for all participants at least unilaterally, indicating that longer rest breaks could reduce back injury risk. Due to the constraints of the sheep shearing occupation, this type of intervention is better suited to learner and novice shearers. Assistive robotic devices would be more suited to reduce injuries in expert shearers, and some insight is provided for the application of these within sheep shearing. Further study of this phenomenon in sheep shearing could provide additional insight to developing an assistive device that could reduce injury.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123953822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/ICORR.2019.8779525
Hye Ju Yoo, Woongbae Kim, Sang-Yoep Lee, Joonmyeong Choi, Youn Joo Kim, D. Koo, Y. Nam, Kyu-Jin Cho
Lymphedema is a non-curative chronic swelling caused by impairment of the lymphatic system, affecting up to 250 million patients worldwide. The patients suffer from low quality of life because of discomfort and reduced range of motion due to the swelling. Severe swellings can be immediately mediated with special massaging technique known as the Manual Lymphatic Drainage (MLD). Limitations of MLD involves long travel distances, the cost of regular treatment sessions, and the lack of lymphedema specialists. Since MLD is performed very gently, described as caressing a baby’s head, soft wearable robotics with its inherent compliance and safety is the perfect solution to creating a light and safe wearable lymphedema massaging device. In this paper, origami-inspired soft fabric pneumatic actuator is developed that creates not only normal force, but also shear force which is essential in the performance of MLD. The shear is created by the unfolding of the Z-shaped fold-lines as the actuator is inflated. One Z-folded actuator module of 30 x 60 mm dimension with a single fold of 15 mm fold height creates maximum shear force of about 1.5 N and stroke displacement of about 30 mm when subjected to compression loading of 5 N. The range of forces exerted can be tuned by varying the tension of the compressive clothing covering the actuators, and the stroke displacement can be varied by changing the parameter of the actuator module itself, such as the fold height and the number of the folds. The modules can also be repeatedly actuated under compressive clothing, and therefore, the developed actuator modules have high potential as a wearable massaging device.
淋巴水肿是由淋巴系统损伤引起的一种不可治愈的慢性肿胀,影响全世界多达2.5亿患者。患者的生活质量较低,因为不适和活动范围减少,由于肿胀。严重的肿胀可以立即通过称为手动淋巴引流(MLD)的特殊按摩技术调解。MLD的局限性包括长途旅行、定期治疗的费用以及缺乏淋巴水肿专家。由于MLD的操作非常轻柔,被描述为抚摸婴儿的头部,因此具有固有顺应性和安全性的柔软可穿戴机器人是创造一种轻便安全的可穿戴淋巴水肿按摩设备的完美解决方案。本文研制的折纸软织物气动执行器不仅能产生法向力,还能产生对MLD性能至关重要的剪切力。当致动器膨胀时,剪切是由z形折叠线展开而产生的。Z-folded致动器模块之一30 x 60毫米尺寸只有一个折叠的15毫米褶皱高度创造最大剪切力约为1.5 N和中风的位移约30毫米当受到压缩加载5 N .受力分析的范围可以通过不同的张力调整压缩衣服覆盖在致动器,和中风位移致动器模块本身的变化通过改变参数,如折叠高度和褶皱的数量。该模块还可以在压缩服装下重复驱动,因此,所开发的执行器模块作为可穿戴式按摩设备具有很高的潜力。
{"title":"Wearable Lymphedema Massaging Modules: Proof of Concept using Origami-inspired Soft Fabric Pneumatic Actuators","authors":"Hye Ju Yoo, Woongbae Kim, Sang-Yoep Lee, Joonmyeong Choi, Youn Joo Kim, D. Koo, Y. Nam, Kyu-Jin Cho","doi":"10.1109/ICORR.2019.8779525","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779525","url":null,"abstract":"Lymphedema is a non-curative chronic swelling caused by impairment of the lymphatic system, affecting up to 250 million patients worldwide. The patients suffer from low quality of life because of discomfort and reduced range of motion due to the swelling. Severe swellings can be immediately mediated with special massaging technique known as the Manual Lymphatic Drainage (MLD). Limitations of MLD involves long travel distances, the cost of regular treatment sessions, and the lack of lymphedema specialists. Since MLD is performed very gently, described as caressing a baby’s head, soft wearable robotics with its inherent compliance and safety is the perfect solution to creating a light and safe wearable lymphedema massaging device. In this paper, origami-inspired soft fabric pneumatic actuator is developed that creates not only normal force, but also shear force which is essential in the performance of MLD. The shear is created by the unfolding of the Z-shaped fold-lines as the actuator is inflated. One Z-folded actuator module of 30 x 60 mm dimension with a single fold of 15 mm fold height creates maximum shear force of about 1.5 N and stroke displacement of about 30 mm when subjected to compression loading of 5 N. The range of forces exerted can be tuned by varying the tension of the compressive clothing covering the actuators, and the stroke displacement can be varied by changing the parameter of the actuator module itself, such as the fold height and the number of the folds. The modules can also be repeatedly actuated under compressive clothing, and therefore, the developed actuator modules have high potential as a wearable massaging device.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126069181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/ICORR.2019.8779471
G. Marchesi, G. A. Albanese, D. Ferrazzoli, Shaina George, S. Ricci, E. Tatti, A. Rocco, A. Quartarone, G. Frazzitta, M. Ghilardi
Movement is accompanied by modulation of oscillatory activity in different ranges over the sensorimotor areas. This increase is more evident in normal subjects and less in patients with Parkinson’s Disease (PD), a disorder associated with deficits in the formation of new motor skills. Here, we investigated whether such EEG changes improved in a group of PD patients, after two different treatments and whether this relates to performance. Subjects underwent either a session of 5 Hz repetitive Transcranial Magnetic Stimulation (rTMS) over the right posterior parietal cortex or a 4-week Multidisciplinary Intensive Rehabilitation Treatment (MIRT). We used a reaching task with visuo-motor adaptation to a rotated display in incremental 10° steps up to 60°. Retention of the learned rotation was tested before and after either intervention over two consecutive days. High-density EEG was recorded throughout the testing. We found that patients adapted their movements to the rotated display similarly to controls, although retention was poorer. Both rTMS and MIRT lead to improvement in retention of the learned rotation. Mean beta modulation levels changed significantly after MIRT and not after rTMS. These results suggest that rTMS produced local improvement reflected in enhanced short-term skill retention; on the other hand, MIRT determined changes across the contralateral sensorimotor area, reflected in beta EEG changes.
{"title":"Effects of rTMS and intensive rehabilitation in Parkinson’s Disease on learning and retention","authors":"G. Marchesi, G. A. Albanese, D. Ferrazzoli, Shaina George, S. Ricci, E. Tatti, A. Rocco, A. Quartarone, G. Frazzitta, M. Ghilardi","doi":"10.1109/ICORR.2019.8779471","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779471","url":null,"abstract":"Movement is accompanied by modulation of oscillatory activity in different ranges over the sensorimotor areas. This increase is more evident in normal subjects and less in patients with Parkinson’s Disease (PD), a disorder associated with deficits in the formation of new motor skills. Here, we investigated whether such EEG changes improved in a group of PD patients, after two different treatments and whether this relates to performance. Subjects underwent either a session of 5 Hz repetitive Transcranial Magnetic Stimulation (rTMS) over the right posterior parietal cortex or a 4-week Multidisciplinary Intensive Rehabilitation Treatment (MIRT). We used a reaching task with visuo-motor adaptation to a rotated display in incremental 10° steps up to 60°. Retention of the learned rotation was tested before and after either intervention over two consecutive days. High-density EEG was recorded throughout the testing. We found that patients adapted their movements to the rotated display similarly to controls, although retention was poorer. Both rTMS and MIRT lead to improvement in retention of the learned rotation. Mean beta modulation levels changed significantly after MIRT and not after rTMS. These results suggest that rTMS produced local improvement reflected in enhanced short-term skill retention; on the other hand, MIRT determined changes across the contralateral sensorimotor area, reflected in beta EEG changes.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129280399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/ICORR.2019.8779537
James V. McCall, Miranda C. Ludovice, Jared A. Blaylock, D. Kamper
The brain injury that results in cerebral palsy CP may adversely affect fine motor control of the hand. The degradation of manual dexterity in the fingers profoundly impacts overall functionality of the upper limb, yet research efforts to facilitate rehabilitation of finger individuation in children with CP have been limited. This study describes the development of an integrated hardware and software platform for training and evaluating finger individuation. A pneumatically actuated glove provides extension assistance or flexion resistance independently to each digit in concert with playing a virtual reality keyboard. This setup enables intensive and efficient practice of fine motor control of either or both hands. Bimanual training options range from mirror movements to fully independent motions and rhythms in each hand, thereby enabling maintenance of the proper level of challenge. Additionally, an instrument was created to provide assessment of individuated fingertip force generation in order to evaluate effectiveness of the training. Preliminary data were obtained from children both with and without CP using this tool.
{"title":"A Platform for Rehabilitation of Finger Individuation in Children with Hemiplegic Cerebral Palsy","authors":"James V. McCall, Miranda C. Ludovice, Jared A. Blaylock, D. Kamper","doi":"10.1109/ICORR.2019.8779537","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779537","url":null,"abstract":"The brain injury that results in cerebral palsy CP may adversely affect fine motor control of the hand. The degradation of manual dexterity in the fingers profoundly impacts overall functionality of the upper limb, yet research efforts to facilitate rehabilitation of finger individuation in children with CP have been limited. This study describes the development of an integrated hardware and software platform for training and evaluating finger individuation. A pneumatically actuated glove provides extension assistance or flexion resistance independently to each digit in concert with playing a virtual reality keyboard. This setup enables intensive and efficient practice of fine motor control of either or both hands. Bimanual training options range from mirror movements to fully independent motions and rhythms in each hand, thereby enabling maintenance of the proper level of challenge. Additionally, an instrument was created to provide assessment of individuated fingertip force generation in order to evaluate effectiveness of the training. Preliminary data were obtained from children both with and without CP using this tool.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129210491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/ICORR.2019.8779468
K. Cleary, R. Monfaredi, Tyler Salvador, H. F. Talari, Catherine Coley, Staci Kovelman, Justine Belschner, S. Alyamani, M. Schladen, Sally Evans
Our research team has developed two versions of an ankle robot for children with cerebral palsy. Both devices provide three degrees of freedom and are connected to an airplane video game. The child uses his/her foot as the controller for the plane and attempts to fly through a series of hoops arranged to manipulate the foot across the ankle joint. The first device is for lab-based therapy and four children have completed 20 sessions each with the device. The second device is for home-based therapy and two children have completed a 28-day trial using the device at home. Both studies were done under Institutional Review Board approval and all participants improved ankle range of motion. Further studies are ongoing to gather more data and validate the results.
{"title":"Pedbothome: Robotically-Assisted Ankle Rehabilitation System For Children With Cerebral Palsy*","authors":"K. Cleary, R. Monfaredi, Tyler Salvador, H. F. Talari, Catherine Coley, Staci Kovelman, Justine Belschner, S. Alyamani, M. Schladen, Sally Evans","doi":"10.1109/ICORR.2019.8779468","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779468","url":null,"abstract":"Our research team has developed two versions of an ankle robot for children with cerebral palsy. Both devices provide three degrees of freedom and are connected to an airplane video game. The child uses his/her foot as the controller for the plane and attempts to fly through a series of hoops arranged to manipulate the foot across the ankle joint. The first device is for lab-based therapy and four children have completed 20 sessions each with the device. The second device is for home-based therapy and two children have completed a 28-day trial using the device at home. Both studies were done under Institutional Review Board approval and all participants improved ankle range of motion. Further studies are ongoing to gather more data and validate the results.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127063408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/ICORR.2019.8779458
Christopher Jarrett, C. Shirota, A. McDaid, D. Piovesan, A. Melendez-Calderon
Clinical assessment of abnormal neuromechanics is typically performed by manipulation of the affected limbs; a process with low inter- and intra-rater reliability. This paper aims at formalizing a framework that closes the loop between a clinician’s expertise and computational algorithms, to enhance the clinician’s diagnostic capabilities during physical manipulation. The framework’s premise is that the dynamics that can be measured by manipulation of a limb are distinct between movement disorders. An a priori database contains measurements encoded in a space called the information map. Based on this map, a computational algorithm identifies which probing motions are more likely to yield distinguishing information about a patient’s movement disorder. The clinician executes this movement and the resulting dynamics, combined with clinician input, is used by the algorithm to estimate which of the movement disorders in the database are most probable. This is recursively repeated until a diagnosis can be confidently made. The main contributions of this paper are the formalization of the framework and the addition of the information map to select informative movements. The establishment of the framework provides a foundation for a standardized assessment of movement disorders and future work will aim at testing the framework’s efficacy.
{"title":"A framework for closing the loop between human experts and computational algorithms for the assessment of movement disorders","authors":"Christopher Jarrett, C. Shirota, A. McDaid, D. Piovesan, A. Melendez-Calderon","doi":"10.1109/ICORR.2019.8779458","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779458","url":null,"abstract":"Clinical assessment of abnormal neuromechanics is typically performed by manipulation of the affected limbs; a process with low inter- and intra-rater reliability. This paper aims at formalizing a framework that closes the loop between a clinician’s expertise and computational algorithms, to enhance the clinician’s diagnostic capabilities during physical manipulation. The framework’s premise is that the dynamics that can be measured by manipulation of a limb are distinct between movement disorders. An a priori database contains measurements encoded in a space called the information map. Based on this map, a computational algorithm identifies which probing motions are more likely to yield distinguishing information about a patient’s movement disorder. The clinician executes this movement and the resulting dynamics, combined with clinician input, is used by the algorithm to estimate which of the movement disorders in the database are most probable. This is recursively repeated until a diagnosis can be confidently made. The main contributions of this paper are the formalization of the framework and the addition of the information map to select informative movements. The establishment of the framework provides a foundation for a standardized assessment of movement disorders and future work will aim at testing the framework’s efficacy.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125289535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/ICORR.2019.8779408
Zaile Mu, Juan Fang, Qiuju Zhang
In order to provide an effective system for rehabilitation of walking, a new rotational orthosis for walking with arm swing, called ROWAS II, was developed. This study focused on development and implementation of admittance control of the ankle mechanism in the ROWAS II system for promoting active training. Firstly, the mechanical structure of the ankle mechanism is briefly introduced. Then the algorithms of the closed-loop position control and the admittance control for the ankle mechanism are described in detail. Four able-bodied participants were recruited to use the ankle mechanism running in passive and active modes. The experimental results showed that the ankle mechanism well tracked the target trajectory in passive mode. In active mode, the participants interacted with the ankle mechanism, and adjusted their ankle movement based on their active force. The ankle mechanism has the technical potential to meet the requirements of passive and active training in the ankle movement for patients in different post-stroke stages.
{"title":"Admittance Control of the Ankle Mechanism in a Rotational Orthosis for Walking with Arm Swing","authors":"Zaile Mu, Juan Fang, Qiuju Zhang","doi":"10.1109/ICORR.2019.8779408","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779408","url":null,"abstract":"In order to provide an effective system for rehabilitation of walking, a new rotational orthosis for walking with arm swing, called ROWAS II, was developed. This study focused on development and implementation of admittance control of the ankle mechanism in the ROWAS II system for promoting active training. Firstly, the mechanical structure of the ankle mechanism is briefly introduced. Then the algorithms of the closed-loop position control and the admittance control for the ankle mechanism are described in detail. Four able-bodied participants were recruited to use the ankle mechanism running in passive and active modes. The experimental results showed that the ankle mechanism well tracked the target trajectory in passive mode. In active mode, the participants interacted with the ankle mechanism, and adjusted their ankle movement based on their active force. The ankle mechanism has the technical potential to meet the requirements of passive and active training in the ankle movement for patients in different post-stroke stages.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125496020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}