Pub Date : 2019-06-01DOI: 10.1109/ICORR.2019.8779533
J. G. Colli-Alfaro, Anas Ibrahim, Ana Luisa Trejos
According to the World Health Organization, stroke is the third leading cause of disability. A common consequence of stroke is hemiparesis, which leads to the impairment of one side of the body and affects the performance of activities of daily living. It has been proven that targeting the motor impairments as early as possible while using wearable mechatronic devices as a robot assisted therapy, and letting the patient be in control of the robotic system, can improve the rehabilitation outcomes. However, despite the increased progress on control methods for wearable mechatronic devices, a need for a more natural interface that allows for better control remains. In this work, a user-independent gesture classification method based on a sensor fusion technique using surface electromyography (EMG) and an inertial measurement unit (IMU) is presented. The Myo Armband was used to extract EMG and IMU data from healthy subjects. Participants were asked to perform 10 types of gestures in 4 different arm positions while using the Myo on their dominant limb. Data obtained from 14 participants were used to classify the gestures using a Multilayer Perceptron Network. Finally, the classification algorithm was tested on 5 novel users, obtaining an average accuracy of 78.94%. These results demonstrate that by using the proposed approach, it is possible to achieve a more natural human machine interface that allows better control of wearable mechatronic devices during robot assisted therapies.
{"title":"Design of User-Independent Hand Gesture Recognition Using Multilayer Perceptron Networks and Sensor Fusion Techniques","authors":"J. G. Colli-Alfaro, Anas Ibrahim, Ana Luisa Trejos","doi":"10.1109/ICORR.2019.8779533","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779533","url":null,"abstract":"According to the World Health Organization, stroke is the third leading cause of disability. A common consequence of stroke is hemiparesis, which leads to the impairment of one side of the body and affects the performance of activities of daily living. It has been proven that targeting the motor impairments as early as possible while using wearable mechatronic devices as a robot assisted therapy, and letting the patient be in control of the robotic system, can improve the rehabilitation outcomes. However, despite the increased progress on control methods for wearable mechatronic devices, a need for a more natural interface that allows for better control remains. In this work, a user-independent gesture classification method based on a sensor fusion technique using surface electromyography (EMG) and an inertial measurement unit (IMU) is presented. The Myo Armband was used to extract EMG and IMU data from healthy subjects. Participants were asked to perform 10 types of gestures in 4 different arm positions while using the Myo on their dominant limb. Data obtained from 14 participants were used to classify the gestures using a Multilayer Perceptron Network. Finally, the classification algorithm was tested on 5 novel users, obtaining an average accuracy of 78.94%. These results demonstrate that by using the proposed approach, it is possible to achieve a more natural human machine interface that allows better control of wearable mechatronic devices during robot assisted therapies.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"141 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115459785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/ICORR.2019.8779404
Christopher Shallal, Lu Li, Harrison H. Nguyen, Filip Aronshtein, Soo Hyun Lee, Jian Zhu, N. Thakor
A major challenge for upper limb amputees is discomfort due to improper socket fit on the residual limb during daily use of their prosthesis. Our work introduces the implementation of soft robotic actuators into a prosthetic socket. The soft actuators are a type of electrically-powered actuator. The actuator is driven through changes in internal temperature causing actuation due to vapor pressure, which results in high and reliable force outputs. A regression fit was generated to model how the smart polymer’s temperature relates to force output, and the model was cross-validated based on training data collected from each actuator. A proportional integral (PI) controller regulated the force exerted by the actuators based off of tactile and temperature feedback. Results showed that a socket system can be integrated with smart polymers and sensors, and demonstrated the ability to control two actuators and reach desired forces from set temperatures.
{"title":"An Adaptive Socket Attaches onto Residual Limb Using Smart Polymers for Upper Limb Prosthesis","authors":"Christopher Shallal, Lu Li, Harrison H. Nguyen, Filip Aronshtein, Soo Hyun Lee, Jian Zhu, N. Thakor","doi":"10.1109/ICORR.2019.8779404","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779404","url":null,"abstract":"A major challenge for upper limb amputees is discomfort due to improper socket fit on the residual limb during daily use of their prosthesis. Our work introduces the implementation of soft robotic actuators into a prosthetic socket. The soft actuators are a type of electrically-powered actuator. The actuator is driven through changes in internal temperature causing actuation due to vapor pressure, which results in high and reliable force outputs. A regression fit was generated to model how the smart polymer’s temperature relates to force output, and the model was cross-validated based on training data collected from each actuator. A proportional integral (PI) controller regulated the force exerted by the actuators based off of tactile and temperature feedback. Results showed that a socket system can be integrated with smart polymers and sensors, and demonstrated the ability to control two actuators and reach desired forces from set temperatures.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"54 99 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115925775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/ICORR.2019.8779476
R. Meattini, L. Biagiotti, G. Palli, Daniele De Gregorio, C. Melchiorri
Nowadays, electric-powered hand prostheses do not provide adequate sensory instrumentation and artificial feedback to allow users voluntarily and finely modulate the grasp strength applied to the objects. In this work, the design of a control architecture for a myocontrol-based regulation of the grasp strength for a robotic hand equipped with contact force sensors is presented. The goal of the study was to provide the user with the capability of modulating the grasping force according to target required levels by exploiting a vibrotactile feedback. In particular, the whole human-robot control system is concerned (i.e. myocontrol, robotic hand controller, vibrotactile feedback.) In order to evaluate the intuitiveness and force tracking performance provided by the proposed control architecture, an experiment was carried out involving four naïve able-bodied subjects in a grasping strength regulation task with a myocontrolled robotic hand (the University of Bologna Hand), requiring for grasping different objects with specific target force levels. The reported results show that the control architecture successfully allowed all subjects to achieve all grasping strength levels exploiting the vibrotactile feedback information. This preliminary demonstrates that, potentially, the proposed control interface can be profitably exploited in upper-limb prosthetic applications, as well as for non-rehabilitation uses, e.g. in ultra-light teleoperation for grasping devices.
{"title":"A Control Architecture for Grasp Strength Regulation in Myocontrolled Robotic Hands Using Vibrotactile Feedback: Preliminary Results","authors":"R. Meattini, L. Biagiotti, G. Palli, Daniele De Gregorio, C. Melchiorri","doi":"10.1109/ICORR.2019.8779476","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779476","url":null,"abstract":"Nowadays, electric-powered hand prostheses do not provide adequate sensory instrumentation and artificial feedback to allow users voluntarily and finely modulate the grasp strength applied to the objects. In this work, the design of a control architecture for a myocontrol-based regulation of the grasp strength for a robotic hand equipped with contact force sensors is presented. The goal of the study was to provide the user with the capability of modulating the grasping force according to target required levels by exploiting a vibrotactile feedback. In particular, the whole human-robot control system is concerned (i.e. myocontrol, robotic hand controller, vibrotactile feedback.) In order to evaluate the intuitiveness and force tracking performance provided by the proposed control architecture, an experiment was carried out involving four naïve able-bodied subjects in a grasping strength regulation task with a myocontrolled robotic hand (the University of Bologna Hand), requiring for grasping different objects with specific target force levels. The reported results show that the control architecture successfully allowed all subjects to achieve all grasping strength levels exploiting the vibrotactile feedback information. This preliminary demonstrates that, potentially, the proposed control interface can be profitably exploited in upper-limb prosthetic applications, as well as for non-rehabilitation uses, e.g. in ultra-light teleoperation for grasping devices.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124418446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/ICORR.2019.8779369
Andrea Scheidig, Bianca Jäschke, Benjamin Schütz, T. Q. Trinh, Alexander Vorndran, Anke Mayfarth, H. Groß
A successful rehabilitation after surgery in hip endoprosthetics comprises self-training of the lessons taught by physiotherapists. While doing this, immediate feedback to the patient about deviations from physiological gait patterns during training is important. Such immediate feedback also concerns the correct usage of forearm crutches in three-point gait. In the project ROGER, a mobile Socially Assistive Robot (SAR) to support patients after surgery in hip endoprosthetics is going to be developed. The current implementation status of the robotic application developed for the use in a real-world scenario is presented below.
{"title":"May I Keep an Eye on Your Training? Gait Assessment Assisted by a Mobile Robot*","authors":"Andrea Scheidig, Bianca Jäschke, Benjamin Schütz, T. Q. Trinh, Alexander Vorndran, Anke Mayfarth, H. Groß","doi":"10.1109/ICORR.2019.8779369","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779369","url":null,"abstract":"A successful rehabilitation after surgery in hip endoprosthetics comprises self-training of the lessons taught by physiotherapists. While doing this, immediate feedback to the patient about deviations from physiological gait patterns during training is important. Such immediate feedback also concerns the correct usage of forearm crutches in three-point gait. In the project ROGER, a mobile Socially Assistive Robot (SAR) to support patients after surgery in hip endoprosthetics is going to be developed. The current implementation status of the robotic application developed for the use in a real-world scenario is presented below.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115054602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/ICORR.2019.8779514
Maja Goršič, I. Cikajlo, Metka Javh, N. Goljar, D. Novak
Interpersonal rehabilitation games, which allow patients to compete or cooperate with other patients or unimpaired loved ones, have demonstrated promising short-term results, but have not yet been tested in longer-term studies. This paper thus presents a preliminary 9-session evaluation of interpersonal rehabilitation games for post-stroke arm exercise. Two pairs of stroke survivors were provided with a system that included one competitive and one cooperative rehabilitation game, and exercised with it for 9 sessions in addition to their conventional therapy. They were able to choose the game they wanted to play in each session, and had to exercise for at least 10 minutes per session. Both pairs completed the protocol without any issues, reporting high levels of motivation and consistent levels of exercise intensity (measured using inertial sensors) across the sessions. Furthermore, the maximum difficulty levels reached in the cooperative game increased over time, and improvements of 1–8 points were observed on the Box and Block test. These results indicate that 2 different interpersonal games are sufficient to promote high levels of motivation and exercise intensity for 9 sessions performed over a 3-week period. As the next step, our system will be expanded with additional competitive, cooperative and single-player games, then tested in full clinical trials in both clinical and home environments.
{"title":"Pilot Long-term Evaluation of Competitive and Cooperative Exercise Games in Inpatient Stroke Rehabilitation","authors":"Maja Goršič, I. Cikajlo, Metka Javh, N. Goljar, D. Novak","doi":"10.1109/ICORR.2019.8779514","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779514","url":null,"abstract":"Interpersonal rehabilitation games, which allow patients to compete or cooperate with other patients or unimpaired loved ones, have demonstrated promising short-term results, but have not yet been tested in longer-term studies. This paper thus presents a preliminary 9-session evaluation of interpersonal rehabilitation games for post-stroke arm exercise. Two pairs of stroke survivors were provided with a system that included one competitive and one cooperative rehabilitation game, and exercised with it for 9 sessions in addition to their conventional therapy. They were able to choose the game they wanted to play in each session, and had to exercise for at least 10 minutes per session. Both pairs completed the protocol without any issues, reporting high levels of motivation and consistent levels of exercise intensity (measured using inertial sensors) across the sessions. Furthermore, the maximum difficulty levels reached in the cooperative game increased over time, and improvements of 1–8 points were observed on the Box and Block test. These results indicate that 2 different interpersonal games are sufficient to promote high levels of motivation and exercise intensity for 9 sessions performed over a 3-week period. As the next step, our system will be expanded with additional competitive, cooperative and single-player games, then tested in full clinical trials in both clinical and home environments.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124634803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/ICORR.2019.8779464
Johannes Zajc, M. Russold
The increasing number of strokes coincides with the need for new effective rehabilitation systems. In this contribution the methods and results of a series of user surveys comprising methods of qualitative research are presented. The goal of these surveys was to elicit requirements health care professionals pose on rehabilitation devices for upper limb training to enable an effective, efficient and satisfying use in a rehabilitation environment. In a two-step process, two different methods – semi-structured interviews and online questionnaire – were combined to collect data from two independent populations. The analysis of the survey showed that the use of a rehabilitation device should be time-effective and bring joy and that the device should be customizable and provide feedback.
{"title":"Elicitation of usability-related Requirements for Upper-Limb Rehabilitation Systems","authors":"Johannes Zajc, M. Russold","doi":"10.1109/ICORR.2019.8779464","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779464","url":null,"abstract":"The increasing number of strokes coincides with the need for new effective rehabilitation systems. In this contribution the methods and results of a series of user surveys comprising methods of qualitative research are presented. The goal of these surveys was to elicit requirements health care professionals pose on rehabilitation devices for upper limb training to enable an effective, efficient and satisfying use in a rehabilitation environment. In a two-step process, two different methods – semi-structured interviews and online questionnaire – were combined to collect data from two independent populations. The analysis of the survey showed that the use of a rehabilitation device should be time-effective and bring joy and that the device should be customizable and provide feedback.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124788280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/ICORR.2019.8779496
Guillaume Vailland, F. Grzeskowiak, Louise Devigne, Yoren Gaffary, B. Fraudet, E. Leblong, Florian Nouviale, François Pasteau, R. L. Breton, S. Guégan, V. Gouranton, B. Arnaldi, Marie Babel
Autonomy and social inclusion can reveal themselves everyday challenges for people experiencing mobility impairments. These people can benefit from technical aids such as power wheelchairs to access mobility and overcome social exclusion. However, power wheelchair driving is a challenging task which requires good visual, cognitive and visuo-spatial abilities. Besides, a power wheelchair can cause material damage or represent a danger of injury for others or oneself if not operated safely. Therefore, training and repeated practice are mandatory to acquire safe driving skills to obtain power wheelchair prescription from therapists. However, conventional training programs may reveal themselves insufficient for some people with severe impairments. In this context, Virtual Reality offers the opportunity to design innovative learning and training programs while providing realistic wheelchair driving experience within a virtual environment. In line with this, we propose a user-centered design of a multisensory power wheelchair simulator. This simulator addresses classical virtual experience drawbacks such as cybersickness and sense of presence by combining 3D visual rendering, haptic feedback and motion cues. It relies on a modular and versatile workflow enabling not only easy interfacing with any virtual display, but also with any user interface such as wheelchair controllers or feedback devices. This paper presents the design of the first implementation as well as its first commissioning through pretests. The first setup achieves consistent and realistic behavior.
{"title":"User-centered design of a multisensory power wheelchair simulator: towards training and rehabilitation applications","authors":"Guillaume Vailland, F. Grzeskowiak, Louise Devigne, Yoren Gaffary, B. Fraudet, E. Leblong, Florian Nouviale, François Pasteau, R. L. Breton, S. Guégan, V. Gouranton, B. Arnaldi, Marie Babel","doi":"10.1109/ICORR.2019.8779496","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779496","url":null,"abstract":"Autonomy and social inclusion can reveal themselves everyday challenges for people experiencing mobility impairments. These people can benefit from technical aids such as power wheelchairs to access mobility and overcome social exclusion. However, power wheelchair driving is a challenging task which requires good visual, cognitive and visuo-spatial abilities. Besides, a power wheelchair can cause material damage or represent a danger of injury for others or oneself if not operated safely. Therefore, training and repeated practice are mandatory to acquire safe driving skills to obtain power wheelchair prescription from therapists. However, conventional training programs may reveal themselves insufficient for some people with severe impairments. In this context, Virtual Reality offers the opportunity to design innovative learning and training programs while providing realistic wheelchair driving experience within a virtual environment. In line with this, we propose a user-centered design of a multisensory power wheelchair simulator. This simulator addresses classical virtual experience drawbacks such as cybersickness and sense of presence by combining 3D visual rendering, haptic feedback and motion cues. It relies on a modular and versatile workflow enabling not only easy interfacing with any virtual display, but also with any user interface such as wheelchair controllers or feedback devices. This paper presents the design of the first implementation as well as its first commissioning through pretests. The first setup achieves consistent and realistic behavior.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129610908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/ICORR.2019.8779549
Jongbum Kim, Seunghue Oh, Junyoung Kim, Jonghyun Kim
Body weight support (BWS) system is widely used for patients to help their gait training. However, that existing systems require large workspace and elastic component in actuation makes the systems inappropriate for wide clinical use. The interactive treadmill was reported to be cost/space effectively simulate overground walking, but there was no suitable BWS system for the treadmill. We proposed a new concept of body weight support system for interactive treadmill. For wide clinical use, we applied a two-wire driven mechanism with simple actuator and a custom pelvic-type harness. With three healthy subjects, the performance of the proposed BWS system on unloading force control was evaluated, and the result showed that the feasibility of the proposed BWS system.
{"title":"A two-wire body weight support system for interactive treadmill","authors":"Jongbum Kim, Seunghue Oh, Junyoung Kim, Jonghyun Kim","doi":"10.1109/ICORR.2019.8779549","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779549","url":null,"abstract":"Body weight support (BWS) system is widely used for patients to help their gait training. However, that existing systems require large workspace and elastic component in actuation makes the systems inappropriate for wide clinical use. The interactive treadmill was reported to be cost/space effectively simulate overground walking, but there was no suitable BWS system for the treadmill. We proposed a new concept of body weight support system for interactive treadmill. For wide clinical use, we applied a two-wire driven mechanism with simple actuator and a custom pelvic-type harness. With three healthy subjects, the performance of the proposed BWS system on unloading force control was evaluated, and the result showed that the feasibility of the proposed BWS system.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127289805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/ICORR.2019.8779560
F. Marini, Chloe Gordon-Murer, Michael Sera, Tiana Tanha, Fahrial Licudo, J. Zenzeri, C. Hughes
This study utilized a 3-degree of freedom robotic device (Wristbot) to examine wrist proprioception and eye-hand coordination in a cross-sectional sample of sixty-three young adults (19-29 years), 20 older young adults (30-49), and 17 older adults (50 years and older). Results indicated differences in the emergence of age-related declines in sensorimotor functioning depending on the tested motor skill component. While young adults exhibited smaller matching error and lower variability compared to older young adults and older adults on the proprioception task, we observed lower times-on-target and higher Linearity indices for participants older than 50 years of age compared to both young adults and older young adults. The present results provide necessary quantitative information on sensorimotor function in adulthood, and have implications for the early diagnosis and effective management of sensorimotor dysfunction in clinical settings using a commercially available robotic device.
{"title":"Age-related Declines in Sensorimotor Proficiency are Specific to the Tested Motor Skill Component","authors":"F. Marini, Chloe Gordon-Murer, Michael Sera, Tiana Tanha, Fahrial Licudo, J. Zenzeri, C. Hughes","doi":"10.1109/ICORR.2019.8779560","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779560","url":null,"abstract":"This study utilized a 3-degree of freedom robotic device (Wristbot) to examine wrist proprioception and eye-hand coordination in a cross-sectional sample of sixty-three young adults (19-29 years), 20 older young adults (30-49), and 17 older adults (50 years and older). Results indicated differences in the emergence of age-related declines in sensorimotor functioning depending on the tested motor skill component. While young adults exhibited smaller matching error and lower variability compared to older young adults and older adults on the proprioception task, we observed lower times-on-target and higher Linearity indices for participants older than 50 years of age compared to both young adults and older young adults. The present results provide necessary quantitative information on sensorimotor function in adulthood, and have implications for the early diagnosis and effective management of sensorimotor dysfunction in clinical settings using a commercially available robotic device.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129074353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/ICORR.2019.8779520
Dennis Yeung, D. Farina, I. Vujaklija
Non-negative Matrix Factorization (NMF) has been effective in extracting commands from surface electromyography (EMG) for the control of upper-limb prostheses. This approach enables Simultaneous and Proportional Control (SPC) over multiple degrees-of-freedom (DoFs) in a minimally supervised way. Here, like with other myoelectric approaches, robustness remains essential for clinical adoption, with device donning/doffing being a known cause for performance degradation. Previous research has demonstrated that NMF-based myocontrollers, trained on just single-DoF activations, permit a certain degree of user adaptation to a range of disturbances. In this study, we compare this traditional NMF controller with its sparsity constrained variation that allows initialization using both single and combined-DoF activations (NMF-C). The evaluation was done on 12 able bodied participants through a set of online target-reaching tests. Subjects were fitted with an 8-channel bipolar EMG setup, which was shifted by 1cm in both transversal directions throughout the experiments without system retraining. In the baseline condition NMF performed somewhat better than NMFC, but it did suffer more following the electrode repositioning, making the two perform on par. With no significant difference present across the conditions, results suggest that there is no immediate advantage from the naïve inclusion of more comprehensive training sets to the classic synergy-inspired implementation of SPC.
{"title":"Can Multi-DoF Training Improve Robustness of Muscle Synergy Inspired Myocontrollers?","authors":"Dennis Yeung, D. Farina, I. Vujaklija","doi":"10.1109/ICORR.2019.8779520","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779520","url":null,"abstract":"Non-negative Matrix Factorization (NMF) has been effective in extracting commands from surface electromyography (EMG) for the control of upper-limb prostheses. This approach enables Simultaneous and Proportional Control (SPC) over multiple degrees-of-freedom (DoFs) in a minimally supervised way. Here, like with other myoelectric approaches, robustness remains essential for clinical adoption, with device donning/doffing being a known cause for performance degradation. Previous research has demonstrated that NMF-based myocontrollers, trained on just single-DoF activations, permit a certain degree of user adaptation to a range of disturbances. In this study, we compare this traditional NMF controller with its sparsity constrained variation that allows initialization using both single and combined-DoF activations (NMF-C). The evaluation was done on 12 able bodied participants through a set of online target-reaching tests. Subjects were fitted with an 8-channel bipolar EMG setup, which was shifted by 1cm in both transversal directions throughout the experiments without system retraining. In the baseline condition NMF performed somewhat better than NMFC, but it did suffer more following the electrode repositioning, making the two perform on par. With no significant difference present across the conditions, results suggest that there is no immediate advantage from the naïve inclusion of more comprehensive training sets to the classic synergy-inspired implementation of SPC.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129285787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}