Unmanned aerial vehicles (UAVs) have been widely used in urban missions, and proper planning of UAV paths can improve mission efficiency while reducing the risk of potential third-party impact. Existing work has considered all efficiency and safety objectives for a single decision-maker (DM) and regarded this as a multiobjective optimization problem (MOP). However, there is usually not a single DM but two DMs, i.e., an efficiency DM and a safety DM, and the DMs are only concerned with their respective objectives. The final decision is made based on the solutions of both DMs. In this paper, for the first time, biparty multiobjective UAV path planning (BPMO-UAVPP) problems involving both efficiency and safety departments are modeled. The existing multiobjective immune algorithm with nondominated neighbor-based selection (NNIA), the hybrid evolutionary framework for the multiobjective immune algorithm (HEIA), and the adaptive immune-inspired multiobjective algorithm (AIMA) are modified for solving the BPMO-UAVPP problem, and then biparty multiobjective optimization algorithms, including the BPNNIA, BPHEIA, and BPAIMA, are proposed and comprehensively compared with traditional multiobjective evolutionary algorithms and typical multiparty multiobjective evolutionary algorithms (i.e., OptMPNDS and OptMPNDS2). The experimental results show that BPAIMA performs better than ordinary multiobjective evolutionary algorithms such as NSGA-II and multiparty multiobjective evolutionary algorithms such as OptMPNDS, OptMPNDS2, BPNNIA and BPHEIA.
{"title":"Evolutionary Biparty Multiobjective UAV Path Planning: Problems and Empirical Comparisons","authors":"Kesheng Chen;Wenjian Luo;Xin Lin;Zhen Song;Yatong Chang","doi":"10.1109/TETCI.2024.3361755","DOIUrl":"https://doi.org/10.1109/TETCI.2024.3361755","url":null,"abstract":"Unmanned aerial vehicles (UAVs) have been widely used in urban missions, and proper planning of UAV paths can improve mission efficiency while reducing the risk of potential third-party impact. Existing work has considered all efficiency and safety objectives for a single decision-maker (DM) and regarded this as a multiobjective optimization problem (MOP). However, there is usually not a single DM but two DMs, i.e., an efficiency DM and a safety DM, and the DMs are only concerned with their respective objectives. The final decision is made based on the solutions of both DMs. In this paper, for the first time, biparty multiobjective UAV path planning (BPMO-UAVPP) problems involving both efficiency and safety departments are modeled. The existing multiobjective immune algorithm with nondominated neighbor-based selection (NNIA), the hybrid evolutionary framework for the multiobjective immune algorithm (HEIA), and the adaptive immune-inspired multiobjective algorithm (AIMA) are modified for solving the BPMO-UAVPP problem, and then biparty multiobjective optimization algorithms, including the BPNNIA, BPHEIA, and BPAIMA, are proposed and comprehensively compared with traditional multiobjective evolutionary algorithms and typical multiparty multiobjective evolutionary algorithms (i.e., OptMPNDS and OptMPNDS2). The experimental results show that BPAIMA performs better than ordinary multiobjective evolutionary algorithms such as NSGA-II and multiparty multiobjective evolutionary algorithms such as OptMPNDS, OptMPNDS2, BPNNIA and BPHEIA.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 3","pages":"2433-2445"},"PeriodicalIF":5.3,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141096323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-12DOI: 10.1109/TETCI.2024.3369976
Guangliang He;Zhen Zhang;Hanrui Wu;Sanchuan Luo;Yudong Liu
Knowledge graph (KG) is increasingly important in improving recommendation performance and handling item cold-start. A recent research hotspot is designing end-to-end models based on information propagation schemes. However, existing these methods do not highlight key collaborative signals hidden in user-item bipartite graphs, which leads to two problems: (1) the collaborative signal of user collaborative neighbors is not modeled and (2) the incompleteness of KG and the behavioral similarity of item collaborative neighbors are not considered. In this paper, we design a new model called Knowledge Graph Collaborative Neighbor Awareness network