首页 > 最新文献

IEEE Transactions on Emerging Topics in Computational Intelligence最新文献

英文 中文
Enhanced Adjacency-Constrained Hierarchical Clustering Using Fine-Grained Pseudo Labels 使用细粒度伪标签的增强型邻接约束分层聚类法
IF 5.3 3区 计算机科学 Q1 Mathematics Pub Date : 2024-04-02 DOI: 10.1109/TETCI.2024.3367811
Jie Yang;Chin-Teng Lin
Hierarchical clustering is able to provide partitions of different granularity levels. However, most existing hierarchical clustering techniques perform clustering in the original feature space of the data, which may suffer from overlap, sparseness, or other undesirable characteristics, resulting in noncompetitive performance. In the field of deep clustering, learning representations using pseudo labels has recently become a research hotspot. Yet most existing approaches employ coarse-grained pseudo labels, which may contain noise or incorrect labels. Hence, the learned feature space does not produce a competitive model. In this paper, we introduce the idea of fine-grained labels of supervised learning into unsupervised clustering, giving rise to the enhanced adjacency-constrained hierarchical clustering (ECHC) model. The full framework comprises four steps. One, adjacency-constrained hierarchical clustering (CHC) is used to produce relatively pure fine-grained pseudo labels. Two, those fine-grained pseudo labels are used to train a shallow multilayer perceptron to generate good representations. Three, the corresponding representation of each sample in the learned space is used to construct a similarity matrix. Four, CHC is used to generate the final partition based on the similarity matrix. The experimental results show that the proposed ECHC framework not only outperforms 14 shallow clustering methods on eight real-world datasets but also surpasses current state-of-the-art deep clustering models on six real-world datasets. In addition, on five real-world datasets, ECHC achieves comparable results to supervised algorithms.
分层聚类能够提供不同粒度的分区。然而,现有的大多数分层聚类技术都是在数据的原始特征空间中进行聚类,而原始特征空间可能存在重叠、稀疏或其他不良特征,从而导致性能缺乏竞争力。在深度聚类领域,使用伪标签学习表示最近成为研究热点。然而,大多数现有方法都采用粗粒度伪标签,其中可能包含噪声或错误标签。因此,学习到的特征空间无法生成有竞争力的模型。在本文中,我们将有监督学习的细粒度标签思想引入到无监督聚类中,从而产生了增强型邻接约束分层聚类(ECHC)模型。整个框架包括四个步骤。首先,使用邻接约束分层聚类(CHC)生成相对纯粹的细粒度伪标签。其二,这些细粒度伪标签用于训练浅层多层感知器,以生成良好的表征。第三,每个样本在所学空间中的相应表示用于构建相似性矩阵。第四,使用 CHC 根据相似性矩阵生成最终分区。实验结果表明,所提出的 ECHC 框架不仅在 8 个真实世界数据集上优于 14 种浅层聚类方法,而且在 6 个真实世界数据集上超越了当前最先进的深度聚类模型。此外,在五个真实世界数据集上,ECHC 取得了与监督算法相当的结果。
{"title":"Enhanced Adjacency-Constrained Hierarchical Clustering Using Fine-Grained Pseudo Labels","authors":"Jie Yang;Chin-Teng Lin","doi":"10.1109/TETCI.2024.3367811","DOIUrl":"https://doi.org/10.1109/TETCI.2024.3367811","url":null,"abstract":"Hierarchical clustering is able to provide partitions of different granularity levels. However, most existing hierarchical clustering techniques perform clustering in the original feature space of the data, which may suffer from overlap, sparseness, or other undesirable characteristics, resulting in noncompetitive performance. In the field of deep clustering, learning representations using pseudo labels has recently become a research hotspot. Yet most existing approaches employ coarse-grained pseudo labels, which may contain noise or incorrect labels. Hence, the learned feature space does not produce a competitive model. In this paper, we introduce the idea of fine-grained labels of supervised learning into unsupervised clustering, giving rise to the enhanced adjacency-constrained hierarchical clustering (ECHC) model. The full framework comprises four steps. One, adjacency-constrained hierarchical clustering (CHC) is used to produce relatively pure fine-grained pseudo labels. Two, those fine-grained pseudo labels are used to train a shallow multilayer perceptron to generate good representations. Three, the corresponding representation of each sample in the learned space is used to construct a similarity matrix. Four, CHC is used to generate the final partition based on the similarity matrix. The experimental results show that the proposed ECHC framework not only outperforms 14 shallow clustering methods on eight real-world datasets but also surpasses current state-of-the-art deep clustering models on six real-world datasets. In addition, on five real-world datasets, ECHC achieves comparable results to supervised algorithms.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141096325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transformer and Graph Convolution-Based Unsupervised Detection of Machine Anomalous Sound Under Domain Shifts 基于变换器和图卷积的域偏移下机器异常声音无监督检测
IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-04-02 DOI: 10.1109/TETCI.2024.3377728
Jingke Yan;Yao Cheng;Qin Wang;Lei Liu;Weihua Zhang;Bo Jin
Thanks to the development of deep learning, machine abnormal sound detection (MASD) based on unsupervised learning has exhibited excellent performance. However, in the task of unsupervised MASD, there are discrepancies between the acoustic characteristics of the test set and the training set under the physical parameter changes (domain shifts) of the same machine's operating conditions. Existing methods not only struggle to stably learn the sound signal features under various domain shifts but also inevitably increase computational overhead. To address these issues, we propose an unsupervised machine abnormal sound detection model based on Transformer and Dynamic Graph Convolution (Unsuper-TDGCN) in this paper. Firstly, we design a network that models time-frequency domain features to capture both global and local spatial and time-frequency interactions, thus improving the model's stability under domain shifts. Then, we introduce a Dynamic Graph Convolutional Network (DyGCN) to model the dependencies between features under domain shifts, enhancing the model's ability to perceive changes in domain features. Finally, a Domain Self-adaptive Network (DSN) is employed to compensate for the performance decline caused by domain shifts, thereby improving the model's adaptive ability for detecting anomalous sounds in MASD tasks under domain shifts. The effectiveness of our proposed model has been validated on multiple datasets.
得益于深度学习的发展,基于无监督学习的机器异常声音检测(MASD)表现出了卓越的性能。然而,在无监督 MASD 任务中,测试集和训练集的声学特征在同一机器运行条件下的物理参数变化(域偏移)中存在差异。现有的方法不仅难以在各种域变换下稳定地学习声音信号特征,而且不可避免地增加了计算开销。针对这些问题,我们在本文中提出了一种基于变压器和动态图卷积(Unsuper-TDGCN)的无监督机器异常声音检测模型。首先,我们设计了一种时频域特征建模网络,以捕捉全局和局部空间与时频的相互作用,从而提高模型在域偏移情况下的稳定性。然后,我们引入了动态图卷积网络(DyGCN)来模拟域变化下特征之间的依赖关系,从而提高了模型感知域特征变化的能力。最后,我们采用了领域自适应网络(DSN)来补偿因领域转移而导致的性能下降,从而提高了模型在领域转移情况下检测 MASD 任务中异常声音的自适应能力。我们提出的模型的有效性已在多个数据集上得到验证。
{"title":"Transformer and Graph Convolution-Based Unsupervised Detection of Machine Anomalous Sound Under Domain Shifts","authors":"Jingke Yan;Yao Cheng;Qin Wang;Lei Liu;Weihua Zhang;Bo Jin","doi":"10.1109/TETCI.2024.3377728","DOIUrl":"https://doi.org/10.1109/TETCI.2024.3377728","url":null,"abstract":"Thanks to the development of deep learning, machine abnormal sound detection (MASD) based on unsupervised learning has exhibited excellent performance. However, in the task of unsupervised MASD, there are discrepancies between the acoustic characteristics of the test set and the training set under the physical parameter changes (domain shifts) of the same machine's operating conditions. Existing methods not only struggle to stably learn the sound signal features under various domain shifts but also inevitably increase computational overhead. To address these issues, we propose an unsupervised machine abnormal sound detection model based on Transformer and Dynamic Graph Convolution (Unsuper-TDGCN) in this paper. Firstly, we design a network that models time-frequency domain features to capture both global and local spatial and time-frequency interactions, thus improving the model's stability under domain shifts. Then, we introduce a Dynamic Graph Convolutional Network (DyGCN) to model the dependencies between features under domain shifts, enhancing the model's ability to perceive changes in domain features. Finally, a Domain Self-adaptive Network (DSN) is employed to compensate for the performance decline caused by domain shifts, thereby improving the model's adaptive ability for detecting anomalous sounds in MASD tasks under domain shifts. The effectiveness of our proposed model has been validated on multiple datasets.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Broad Recommender System: An Efficient Nonlinear Collaborative Filtering Approach 广义推荐系统:一种高效的非线性协作过滤方法
IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-04-01 DOI: 10.1109/TETCI.2024.3378599
Ling Huang;Can-Rong Guan;Zhen-Wei Huang;Yuefang Gao;Chang-Dong Wang;C. L. P. Chen
Recently, Deep Neural Networks (DNNs) have been largely utilized in Collaborative Filtering (CF) to produce more accurate recommendation results due to their ability of extracting the nonlinear relationships in the user-item pairs. However, the DNNs-based models usually encounter high computational complexity, i.e., consuming very long training time and storing huge amount of trainable parameters. To address these problems, we develop a novel broad recommender system named Broad Collaborative Filtering (BroadCF), which is an efficient nonlinear collaborative filtering approach. Instead of DNNs, Broad Learning System (BLS) is used as a mapping function to learn the nonlinear matching relationships in the user-item pairs, which can avoid the above issues while achieving very satisfactory rating prediction performance. Contrary to DNNs, BLS is a shallow network that captures nonlinear relationships between input features simply and efficiently. However, directly feeding the original rating data into BLS is not suitable due to the very large dimensionality of the original rating vector. To this end, a new preprocessing procedure is designed to generate user-item rating collaborative vector, which is a low-dimensional user-item input vector that can leverage quality judgments of the most similar users/items. Convincing experimental results on seven datasets have demonstrated the effectiveness of the BroadCF algorithm.
最近,深度神经网络(DNN)因其能够提取用户-物品对中的非线性关系,在很大程度上被用于协作过滤(CF),以产生更准确的推荐结果。然而,基于 DNNs 的模型通常具有很高的计算复杂性,即需要消耗很长的训练时间和存储大量的可训练参数。为了解决这些问题,我们开发了一种名为 "广义协同过滤"(BroadCF)的新型广义推荐系统,它是一种高效的非线性协同过滤方法。与 DNNs 不同,Broad Learning System(BLS)被用作映射函数来学习用户-物品配对中的非线性匹配关系,从而避免了上述问题,同时获得了非常令人满意的评级预测性能。与 DNN 不同,BLS 是一种浅层网络,能简单有效地捕捉输入特征之间的非线性关系。然而,由于原始评分向量的维度非常大,直接将原始评分数据输入 BLS 并不合适。为此,我们设计了一种新的预处理程序来生成用户-项目评分协作向量,这是一种低维的用户-项目输入向量,可以利用最相似用户/项目的质量判断。在七个数据集上令人信服的实验结果证明了 BroadCF 算法的有效性。
{"title":"Broad Recommender System: An Efficient Nonlinear Collaborative Filtering Approach","authors":"Ling Huang;Can-Rong Guan;Zhen-Wei Huang;Yuefang Gao;Chang-Dong Wang;C. L. P. Chen","doi":"10.1109/TETCI.2024.3378599","DOIUrl":"https://doi.org/10.1109/TETCI.2024.3378599","url":null,"abstract":"Recently, Deep Neural Networks (DNNs) have been largely utilized in Collaborative Filtering (CF) to produce more accurate recommendation results due to their ability of extracting the nonlinear relationships in the user-item pairs. However, the DNNs-based models usually encounter high computational complexity, i.e., consuming very long training time and storing huge amount of trainable parameters. To address these problems, we develop a novel broad recommender system named Broad Collaborative Filtering (BroadCF), which is an efficient nonlinear collaborative filtering approach. Instead of DNNs, Broad Learning System (BLS) is used as a mapping function to learn the nonlinear matching relationships in the user-item pairs, which can avoid the above issues while achieving very satisfactory rating prediction performance. Contrary to DNNs, BLS is a shallow network that captures nonlinear relationships between input features simply and efficiently. However, directly feeding the original rating data into BLS is not suitable due to the very large dimensionality of the original rating vector. To this end, a new preprocessing procedure is designed to generate user-item rating collaborative vector, which is a low-dimensional user-item input vector that can leverage quality judgments of the most similar users/items. Convincing experimental results on seven datasets have demonstrated the effectiveness of the BroadCF algorithm.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid Architecture-Based Evolutionary Robust Neural Architecture Search 基于混合架构的进化鲁棒神经架构搜索
IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-03-29 DOI: 10.1109/TETCI.2024.3400867
Shangshang Yang;Xiangkun Sun;Ke Xu;Yuanchao Liu;Ye Tian;Xingyi Zhang
The robustness of neural networks in image classification is important to resist adversarial attacks. Although many researchers proposed to enhance the network robustness by inventing network training paradigms or designing network architectures, existing approaches are mainly based on a single type of networks, e.g., convolution neural networks (CNNs) or vision Transformer (ViT). Considering a recently revealed fact that CNNs and ViT can effectively defend against adversarial attacks transferred from each other, this paper aims to enhance network robustness by designing robust hybrid architecture networks containing different types of networks. To this end, we propose a hybrid architecture-based evolutionary neural architecture search approach for robust architecture design, termed HA-ENAS. Specifically, to combine or aggregate different types of networks in the same network framework, a multi-stage block-wise hybrid architecture network is first devised as the supernet, where three types of blocks (called convolution blocks, Transformer blocks, multi-layer perception blocks) are further designed as each block's candidate, and thus a hybrid architecture-based search space is established for HA-ENAS; then, the robust hybrid architecture search is formulated as an optimization problem maximizing both clean and adversarial accuracy of architectures, and an efficient multi-objective evolutionary algorithm is employed to solve the problem, where a supernet-based retraining evaluation and a surrogate model are used to mitigate coupled weight influence and reduce the whole search cost. Experimental results show that the hybrid architectures found by the proposed HA-ENAS outperform state-of-the-art single-type architectures in terms of clean accuracy and adversarial accuracy under a variety of common attacks.
在图像分类中,神经网络的鲁棒性对于抵御恶意攻击非常重要。尽管许多研究人员提出通过发明网络训练范式或设计网络架构来增强网络的鲁棒性,但现有方法主要基于单一类型的网络,如卷积神经网络(CNN)或视觉转换器(ViT)。考虑到最近揭示的一个事实,即 CNN 和 ViT 可以有效抵御相互转移的对抗性攻击,本文旨在通过设计包含不同类型网络的鲁棒混合架构网络来增强网络的鲁棒性。为此,我们提出了一种基于混合架构的鲁棒架构设计进化神经架构搜索方法,称为 HA-ENAS。具体来说,为了在同一网络框架中组合或聚合不同类型的网络,我们首先设计了一个多阶段分块式混合架构网络作为超级网络,并进一步设计了三种类型的分块(称为卷积分块、变换器分块和多层感知分块)作为每个分块的候选,从而为 HA-ENAS 建立了一个基于混合架构的搜索空间;然后,将鲁棒混合架构搜索表述为一个优化问题,使架构的清洁度和对抗精度都最大化,并采用高效的多目标进化算法来解决该问题,其中基于超网的再训练评估和代理模型用于减轻耦合权重的影响并降低整个搜索成本。实验结果表明,在各种常见攻击下,HA-ENAS 所发现的混合架构在净精度和对抗精度方面都优于最先进的单一类型架构。
{"title":"Hybrid Architecture-Based Evolutionary Robust Neural Architecture Search","authors":"Shangshang Yang;Xiangkun Sun;Ke Xu;Yuanchao Liu;Ye Tian;Xingyi Zhang","doi":"10.1109/TETCI.2024.3400867","DOIUrl":"https://doi.org/10.1109/TETCI.2024.3400867","url":null,"abstract":"The robustness of neural networks in image classification is important to resist adversarial attacks. Although many researchers proposed to enhance the network robustness by inventing network training paradigms or designing network architectures, existing approaches are mainly based on a single type of networks, e.g., convolution neural networks (CNNs) or vision Transformer (ViT). Considering a recently revealed fact that CNNs and ViT can effectively defend against adversarial attacks transferred from each other, this paper aims to enhance network robustness by designing robust hybrid architecture networks containing different types of networks. To this end, we propose a hybrid architecture-based evolutionary neural architecture search approach for robust architecture design, termed HA-ENAS. Specifically, to combine or aggregate different types of networks in the same network framework, a multi-stage block-wise hybrid architecture network is first devised as the supernet, where three types of blocks (called convolution blocks, Transformer blocks, multi-layer perception blocks) are further designed as each block's candidate, and thus a hybrid architecture-based search space is established for HA-ENAS; then, the robust hybrid architecture search is formulated as an optimization problem maximizing both clean and adversarial accuracy of architectures, and an efficient multi-objective evolutionary algorithm is employed to solve the problem, where a supernet-based retraining evaluation and a surrogate model are used to mitigate coupled weight influence and reduce the whole search cost. Experimental results show that the hybrid architectures found by the proposed HA-ENAS outperform state-of-the-art single-type architectures in terms of clean accuracy and adversarial accuracy under a variety of common attacks.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid IRS-Assisted Secure Satellite Downlink Communications: A Fast Deep Reinforcement Learning Approach 混合 IRS 辅助安全卫星下行链路通信:快速深度强化学习方法
IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-03-28 DOI: 10.1109/TETCI.2024.3378605
Quynh Tu Ngo;Khoa Tran Phan;Abdun Mahmood;Wei Xiang
This paper considers a secure satellite downlink communication system with a hybrid intelligent reflecting surface (IRS). A robust design problem for the satellite and IRS joint beamforming is formulated to maximize the system's worst-case secrecy rate, considering practical models of the outdated channel state information and IRS power consumption. We leverage deep reinforcement learning (DRL) to solve the problem by proposing a fast DRL algorithm, namely the deep post-decision state–deterministic policy gradient (DPDS-DPG) algorithm. In DPDS-DPG, the prior known system dynamics are exploited by integrating the PDS concept into the traditional deep DPG (DDPG) algorithm, resulting in faster learning convergence. Simulation results show a faster learning convergence of 50% for DPDS-DPG compared to DDPG, with a comparable achievable system secrecy rate. Additionally, the results demonstrate system secrecy rate gains of 52% and 35% when employing active IRS and hybrid IRS, respectively, over conventional passive IRS, thereby supporting secure communications.
本文研究了一种带有混合智能反射面(IRS)的安全卫星下行链路通信系统。考虑到过时信道状态信息和 IRS 功耗的实用模型,提出了卫星和 IRS 联合波束成形的稳健设计问题,以最大化系统的最坏情况保密率。我们利用深度强化学习(DRL)来解决这个问题,提出了一种快速 DRL 算法,即深度决策后状态决定策略梯度(DPDS-DPG)算法。在 DPDS-DPG 中,通过将 PDS 概念融入传统的深度 DPG(DDPG)算法,利用了事先已知的系统动态,从而实现了更快的学习收敛。仿真结果表明,与 DDPG 相比,DPDS-DPG 的学习收敛速度提高了 50%,可实现的系统保密率相当。此外,结果表明,采用主动 IRS 和混合 IRS 时,系统保密率分别比传统的被动 IRS 提高了 52% 和 35%,从而支持了安全通信。
{"title":"Hybrid IRS-Assisted Secure Satellite Downlink Communications: A Fast Deep Reinforcement Learning Approach","authors":"Quynh Tu Ngo;Khoa Tran Phan;Abdun Mahmood;Wei Xiang","doi":"10.1109/TETCI.2024.3378605","DOIUrl":"https://doi.org/10.1109/TETCI.2024.3378605","url":null,"abstract":"This paper considers a secure satellite downlink communication system with a hybrid intelligent reflecting surface (IRS). A robust design problem for the satellite and IRS joint beamforming is formulated to maximize the system's worst-case secrecy rate, considering practical models of the outdated channel state information and IRS power consumption. We leverage deep reinforcement learning (DRL) to solve the problem by proposing a fast DRL algorithm, namely the deep post-decision state–deterministic policy gradient (DPDS-DPG) algorithm. In DPDS-DPG, the prior known system dynamics are exploited by integrating the PDS concept into the traditional deep DPG (DDPG) algorithm, resulting in faster learning convergence. Simulation results show a faster learning convergence of 50% for DPDS-DPG compared to DDPG, with a comparable achievable system secrecy rate. Additionally, the results demonstrate system secrecy rate gains of 52% and 35% when employing active IRS and hybrid IRS, respectively, over conventional passive IRS, thereby supporting secure communications.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovering Interpretable Latent Space Directions for 3D-Aware Image Generation 为三维感知图像生成发现可解释的潜在空间方向
IF 5.3 3区 计算机科学 Q1 Mathematics Pub Date : 2024-03-27 DOI: 10.1109/TETCI.2024.3369319
Zhiyuan Yang;Qingfu Zhang
2D GANs have yielded impressive results especially in image synthesis. However, they often encounter challenges with multi-view inconsistency due to the absence of 3D perception in their generation process. To overcome this shortcoming, 3D-aware GANs have been proposed to take advantage of both 3D representation methods, GANs, but it is very difficult to edit semantic attributes. To explore the semantic disentanglement in the 3D-aware latent space, this paper proposes a general framework, presents two representative approaches for the 3D manipulation task in both supervised, unsupervised manners. Our key idea is to utilize existing latent discovery methods, bring direct compatibility to 3D control. Specifically, we propose a novel module to extract the semantic latent space of the existing 3D-aware models, then develop two approaches to find a normal editing direction in the latent space. Leveraging the meaningful semantic latent directions, we can easily edit the shape, appearance attributes while preserving the 3D consistency. Quantitative, qualitative experiments show that our method is effective, efficient for the 3D-aware generation with steerability on both synthetic, real-world datasets.
二维 GAN 取得了令人瞩目的成果,尤其是在图像合成方面。然而,由于在生成过程中缺乏三维感知,它们经常会遇到多视图不一致的难题。为了克服这一缺陷,人们提出了三维感知 GAN,以利用三维表示方法和 GAN 的优势,但编辑语义属性非常困难。为了探索三维感知潜空间中的语义分解问题,本文提出了一个总体框架,并针对三维操作任务提出了两种有监督和无监督的代表性方法。我们的主要想法是利用现有的潜在发现方法,直接兼容三维控制。具体来说,我们提出了一个新模块来提取现有三维感知模型的语义潜空间,然后开发了两种方法来寻找潜空间中的法线编辑方向。利用有意义的语义潜在方向,我们可以轻松地编辑形状、外观属性,同时保持三维一致性。定量和定性实验表明,我们的方法在合成和真实世界数据集上都能有效、高效地生成具有可转向性的三维感知模型。
{"title":"Discovering Interpretable Latent Space Directions for 3D-Aware Image Generation","authors":"Zhiyuan Yang;Qingfu Zhang","doi":"10.1109/TETCI.2024.3369319","DOIUrl":"https://doi.org/10.1109/TETCI.2024.3369319","url":null,"abstract":"2D GANs have yielded impressive results especially in image synthesis. However, they often encounter challenges with multi-view inconsistency due to the absence of 3D perception in their generation process. To overcome this shortcoming, 3D-aware GANs have been proposed to take advantage of both 3D representation methods, GANs, but it is very difficult to edit semantic attributes. To explore the semantic disentanglement in the 3D-aware latent space, this paper proposes a general framework, presents two representative approaches for the 3D manipulation task in both supervised, unsupervised manners. Our key idea is to utilize existing latent discovery methods, bring direct compatibility to 3D control. Specifically, we propose a novel module to extract the semantic latent space of the existing 3D-aware models, then develop two approaches to find a normal editing direction in the latent space. Leveraging the meaningful semantic latent directions, we can easily edit the shape, appearance attributes while preserving the 3D consistency. Quantitative, qualitative experiments show that our method is effective, efficient for the 3D-aware generation with steerability on both synthetic, real-world datasets.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141094885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Emerging Topics in Computational Intelligence Publication Information 电气和电子工程师学会《计算智能新课题论文集》出版信息
IF 5.3 3区 计算机科学 Q1 Mathematics Pub Date : 2024-03-27 DOI: 10.1109/TETCI.2024.3377151
{"title":"IEEE Transactions on Emerging Topics in Computational Intelligence Publication Information","authors":"","doi":"10.1109/TETCI.2024.3377151","DOIUrl":"https://doi.org/10.1109/TETCI.2024.3377151","url":null,"abstract":"","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10480103","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140310111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Computational Intelligence Society Information 电气和电子工程师学会计算智能学会信息
IF 5.3 3区 计算机科学 Q1 Mathematics Pub Date : 2024-03-27 DOI: 10.1109/TETCI.2024.3377153
{"title":"IEEE Computational Intelligence Society Information","authors":"","doi":"10.1109/TETCI.2024.3377153","DOIUrl":"https://doi.org/10.1109/TETCI.2024.3377153","url":null,"abstract":"","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10480104","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140321746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Centralized and Federated Learning for COVID-19 Detection With Chest X-Ray Images: Implementations and Analysis 利用胸部 X 光图像进行 COVID-19 检测的集中和联合学习:实施与分析
IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-03-27 DOI: 10.1109/TETCI.2024.3371222
Sadaf Naz;Khoa Phan;Yi-Ping Phoebe Chen
In the health domain, due to privacy issues, many important datasets are isolated, which nonetheless need to be analyzed collaboratively for conclusions to be drawn efficiently. To maintain data privacy, federated learning (FL) trains a communal model from scattered datasets without centralized data integration. In this paper, we compare and analyze the performance of traditional deep learning (DL) and FL techniques using the chest X-Ray (CXR) image dataset for COVID-19 detection. We first implemented DL techniques VGG-16, ResNet50, and Inceptionv3, where ResNet50 is found to be best on the classification task with 98% accuracy. We then proposed FL implementations - federated averaging and federated learning using ResNet50 for training local and global models. The proposed FL converges faster and outperforms the base FL for both independent and identically distributed (IID) and non-IID datasets. While the FL handles bigger data efficiently, compared to DL, it compromised 3.56% in accuracy to preserve privacy. Our results provide a platform for the further investigation of FL in COVID-19 detection.
在健康领域,由于隐私问题,许多重要的数据集都是孤立的,但仍需要对其进行协作分析,才能有效地得出结论。为了维护数据隐私,联合学习(FL)无需集中数据整合,而是从分散的数据集中训练一个公共模型。在本文中,我们使用胸部 X 光(CXR)图像数据集对传统深度学习(DL)和联合学习(FL)技术的性能进行了比较和分析,以检测 COVID-19。我们首先实施了 DL 技术 VGG-16、ResNet50 和 Inceptionv3,其中 ResNet50 在分类任务中表现最佳,准确率高达 98%。然后,我们提出了 FL 实现方法--使用 ResNet50 进行联合平均和联合学习,以训练局部和全局模型。在独立且同分布(IID)和非独立且同分布数据集上,提议的 FL 收敛更快,性能优于基本 FL。与 DL 相比,FL 能有效处理更大的数据,但在保护隐私方面却降低了 3.56% 的准确率。我们的研究结果为进一步研究 FL 在 COVID-19 检测中的应用提供了一个平台。
{"title":"Centralized and Federated Learning for COVID-19 Detection With Chest X-Ray Images: Implementations and Analysis","authors":"Sadaf Naz;Khoa Phan;Yi-Ping Phoebe Chen","doi":"10.1109/TETCI.2024.3371222","DOIUrl":"https://doi.org/10.1109/TETCI.2024.3371222","url":null,"abstract":"In the health domain, due to privacy issues, many important datasets are isolated, which nonetheless need to be analyzed collaboratively for conclusions to be drawn efficiently. To maintain data privacy, federated learning (FL) trains a communal model from scattered datasets without centralized data integration. In this paper, we compare and analyze the performance of traditional deep learning (DL) and FL techniques using the chest X-Ray (CXR) image dataset for COVID-19 detection. We first implemented DL techniques VGG-16, ResNet50, and Inceptionv3, where ResNet50 is found to be best on the classification task with 98% accuracy. We then proposed FL implementations - federated averaging and federated learning using ResNet50 for training local and global models. The proposed FL converges faster and outperforms the base FL for both independent and identically distributed (IID) and non-IID datasets. While the FL handles bigger data efficiently, compared to DL, it compromised 3.56% in accuracy to preserve privacy. Our results provide a platform for the further investigation of FL in COVID-19 detection.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141964859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Emerging Topics in Computational Intelligence Information for Authors 电气和电子工程师学会《计算智能新课题论文集》(IEEE Transactions on Emerging Topics in Computational Intelligence) 给作者的信息
IF 5.3 3区 计算机科学 Q1 Mathematics Pub Date : 2024-03-27 DOI: 10.1109/TETCI.2024.3377155
{"title":"IEEE Transactions on Emerging Topics in Computational Intelligence Information for Authors","authors":"","doi":"10.1109/TETCI.2024.3377155","DOIUrl":"https://doi.org/10.1109/TETCI.2024.3377155","url":null,"abstract":"","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10479968","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140321714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Emerging Topics in Computational Intelligence
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1