Pub Date : 2024-09-17DOI: 10.1109/LSP.2024.3462174
Xulong Liu;Weixiang Li;Kaiqing Lin;Bin Li
Current deep learning-based JPEG image steganalysis methods typically rely on decompressed pixels for steganalytic feature extraction, without fully leveraging the inherent information in JPEG images. Additionally, they often face limitations such as large parameter counts and restricted image sizes for detection. In this letter, we propose a spatial-frequency feature fusion network (SF3Net) for lightweight and arbitrary-sized JPEG steganalysis. SF3Net introduces a PReLU activation function and a multi-view convolutional module to capture refined residual features from decompressed pixels, while also integrating original DCT coefficients and quantization tables to extract additional modal features. The spatial-frequency multi-modality features are then fused using a coordinate attention mechanism. And a patch splitting scheme is designed to be compatible with any feature resolution, enabling the detection of arbitrary-sized images with a Swin Transformer block. Experimental results demonstrate that SF3Net outperforms existing methods in detecting both fixed-sized and arbitrary-sized images, while significantly reducing the number of parameters.
{"title":"Spatial-Frequency Feature Fusion Network for Lightweight and Arbitrary-Sized JPEG Steganalysis","authors":"Xulong Liu;Weixiang Li;Kaiqing Lin;Bin Li","doi":"10.1109/LSP.2024.3462174","DOIUrl":"10.1109/LSP.2024.3462174","url":null,"abstract":"Current deep learning-based JPEG image steganalysis methods typically rely on decompressed pixels for steganalytic feature extraction, without fully leveraging the inherent information in JPEG images. Additionally, they often face limitations such as large parameter counts and restricted image sizes for detection. In this letter, we propose a spatial-frequency feature fusion network (SF3Net) for lightweight and arbitrary-sized JPEG steganalysis. SF3Net introduces a PReLU activation function and a multi-view convolutional module to capture refined residual features from decompressed pixels, while also integrating original DCT coefficients and quantization tables to extract additional modal features. The spatial-frequency multi-modality features are then fused using a coordinate attention mechanism. And a patch splitting scheme is designed to be compatible with any feature resolution, enabling the detection of arbitrary-sized images with a Swin Transformer block. Experimental results demonstrate that SF3Net outperforms existing methods in detecting both fixed-sized and arbitrary-sized images, while significantly reducing the number of parameters.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"31 ","pages":"2585-2589"},"PeriodicalIF":3.2,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1109/LSP.2024.3462292
Taoshen Li;Shuping Dang;Zhihui Ge;Zhenrong Zhang
Because of the equilibrium between mathematical tractability and approximation accuracy maintained by the inverse Gaussian (IG) distributional model, it has been regarded as the most appropriate approximation substitute for the lognormal distributional model for shadowed and atmospheric turbulence induced (ATI) fading in the past decades. In this paper, we conduct an in-depth information-theoretic analysis for the lognormal-to-IG channel model substitution (CMS) technique and study its parametric mapping optimality achieved by minimizing the Kullback-Leibler (K-L) divergence between the two distributional models. In this way, we rigorously prove that the moment matching criterion produces the optimal IG substitute for lognormal reference distributions, which has never been observed in other CMS techniques. In addition, we clarify a myth in the realm of CMS that the IG substitute outperforms the gamma substitute for approximating lognormal reference distributions; instead, the substitution superiority shall depend on the parametric mapping criterion and the scale parameter of the lognormal reference distribution. All analytical insights presented in this paper are validated by simulation results.
{"title":"On the Optimality of Inverse Gaussian Approximation for Lognormal Channel Models","authors":"Taoshen Li;Shuping Dang;Zhihui Ge;Zhenrong Zhang","doi":"10.1109/LSP.2024.3462292","DOIUrl":"10.1109/LSP.2024.3462292","url":null,"abstract":"Because of the equilibrium between mathematical tractability and approximation accuracy maintained by the inverse Gaussian (IG) distributional model, it has been regarded as the most appropriate approximation substitute for the lognormal distributional model for shadowed and atmospheric turbulence induced (ATI) fading in the past decades. In this paper, we conduct an in-depth information-theoretic analysis for the lognormal-to-IG channel model substitution (CMS) technique and study its parametric mapping optimality achieved by minimizing the Kullback-Leibler (K-L) divergence between the two distributional models. In this way, we rigorously prove that the moment matching criterion produces the optimal IG substitute for lognormal reference distributions, which has never been observed in other CMS techniques. In addition, we clarify a myth in the realm of CMS that the IG substitute outperforms the gamma substitute for approximating lognormal reference distributions; instead, the substitution superiority shall depend on the parametric mapping criterion and the scale parameter of the lognormal reference distribution. All analytical insights presented in this paper are validated by simulation results.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"31 ","pages":"2625-2629"},"PeriodicalIF":3.2,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1109/LSP.2024.3461654
Zhuoran Zheng;Chen Wu;Yeying Jin;Xiuyi Jia
Recently, large models (Segment Anything model) came on the scene to provide a new baseline for polyp segmentation tasks. This demonstrates that large models with a sufficient image level prior can achieve promising performance on a given task. In this paper, we unfold a new perspective on polyp segmentation modeling by leveraging the Depth Anything Model (DAM) to provide depth prior to polyp segmentation models. Specifically, the input polyp image is first passed through a frozen DAM to generate a depth map. The depth map and the input polyp images are then concatenated and fed into a convolutional neural network with multiscale to generate segmented images. Extensive experimental results demonstrate the effectiveness of our method, and in addition, we observe that our method still performs well on images of polyps with noise.
最近,大型模型(Segment Anything model)的出现为息肉分割任务提供了新的基准。这表明,具有足够图像级先验的大型模型可以在给定任务中取得可喜的性能。在本文中,我们利用深度任意模型(DAM)为息肉分割模型提供深度先验,从而为息肉分割建模提供了一个新的视角。具体来说,输入的息肉图像首先通过冻结的 DAM 生成深度图。然后将深度图和输入的息肉图像连接起来,并输入具有多尺度的卷积神经网络,生成分割图像。广泛的实验结果证明了我们方法的有效性,此外,我们还观察到我们的方法在有噪声的息肉图像上仍然表现良好。
{"title":"Polyp-DAM: Polyp Segmentation via Depth Anything Model","authors":"Zhuoran Zheng;Chen Wu;Yeying Jin;Xiuyi Jia","doi":"10.1109/LSP.2024.3461654","DOIUrl":"https://doi.org/10.1109/LSP.2024.3461654","url":null,"abstract":"Recently, large models (Segment Anything model) came on the scene to provide a new baseline for polyp segmentation tasks. This demonstrates that large models with a sufficient image level prior can achieve promising performance on a given task. In this paper, we unfold a new perspective on polyp segmentation modeling by leveraging the Depth Anything Model (DAM) to provide depth prior to polyp segmentation models. Specifically, the input polyp image is first passed through a frozen DAM to generate a depth map. The depth map and the input polyp images are then concatenated and fed into a convolutional neural network with multiscale to generate segmented images. Extensive experimental results demonstrate the effectiveness of our method, and in addition, we observe that our method still performs well on images of polyps with noise.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"31 ","pages":"2925-2929"},"PeriodicalIF":3.2,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Radar signal deinterleaving is an essential step in perceiving the battlefield situation and mastering military initiative in the information battlefield. Complex radar systems are rapidly updated and iterated, which exacerbates the possibility of “increasing batch” and “mistaken batch” during radar signal deinterleaving. In this letter, a novel method based on complex networks and Laplacian graph clustering is proposed to improve the accuracy of deinterleaving. First, a complex network is constructed to mine the spatial correlation relationships of the same radar signals. Then, based on the graph characteristics of the Laplacian matrix, the number of cluster centers is solved. Finally, this letter employs Laplacian spectral clustering based on graph segmentation to accomplish radar signal deinterleaving. The results of the experimental simulation demonstrate that the method is capable of effectively tackling the “increasing batch” and “mistaken batch” problems of radar signal deinterleaving, and could reach 99.88% deinterleaving accuracy with high robustness.
{"title":"A Radar Signal Deinterleaving Method Based on Complex Network and Laplacian Graph Clustering","authors":"Qiang Guo;Shuai Huang;Liangang Qi;Daren Li;Mykola Kaliuzhnyi","doi":"10.1109/LSP.2024.3461656","DOIUrl":"https://doi.org/10.1109/LSP.2024.3461656","url":null,"abstract":"Radar signal deinterleaving is an essential step in perceiving the battlefield situation and mastering military initiative in the information battlefield. Complex radar systems are rapidly updated and iterated, which exacerbates the possibility of “increasing batch” and “mistaken batch” during radar signal deinterleaving. In this letter, a novel method based on complex networks and Laplacian graph clustering is proposed to improve the accuracy of deinterleaving. First, a complex network is constructed to mine the spatial correlation relationships of the same radar signals. Then, based on the graph characteristics of the Laplacian matrix, the number of cluster centers is solved. Finally, this letter employs Laplacian spectral clustering based on graph segmentation to accomplish radar signal deinterleaving. The results of the experimental simulation demonstrate that the method is capable of effectively tackling the “increasing batch” and “mistaken batch” problems of radar signal deinterleaving, and could reach 99.88% deinterleaving accuracy with high robustness.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"31 ","pages":"2580-2584"},"PeriodicalIF":3.2,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1109/LSP.2024.3459811
Natsuki Akaishi;Koki Yamada;Kohei Yatabe
Harmonic/percussive source separation (HPSS) is an important tool for analyzing and processing audio signals. The standard approach to HPSS takes advantage of the structural difference of sinusoidal and percussive components, called anisotropic smoothness