Pub Date : 2024-10-07DOI: 10.1109/LSP.2024.3475351
Esa Ollila
We propose greedy Capon beamformer (GCB) for direction finding of narrow-band sources present in the array's viewing field. After defining the grid covering the location search space, the algorithm greedily builds the interference-plus-noise covariance matrix by identifying a high-power source on the grid using Capon's principle of maximizing the signal to interference plus noise ratio while enforcing unit gain towards the signal of interest. An estimate of the power of the detected source is derived by exploiting the unit power constraint, which subsequently allows to update the noise covariance matrix by simple rank-1 matrix addition composed of outerproduct of the selected steering matrix with itself scaled by the signal power estimate. Our numerical examples demonstrate effectiveness of the proposed GCB in direction finding where it performs favourably compared to the state-of-the-art algorithms under a broad variety of settings. Furthermore, GCB estimates of direction-of-arrivals (DOAs) are very fast to compute.
{"title":"Greedy Capon Beamformer","authors":"Esa Ollila","doi":"10.1109/LSP.2024.3475351","DOIUrl":"https://doi.org/10.1109/LSP.2024.3475351","url":null,"abstract":"We propose greedy Capon beamformer (GCB) for direction finding of narrow-band sources present in the array's viewing field. After defining the grid covering the location search space, the algorithm greedily builds the interference-plus-noise covariance matrix by identifying a high-power source on the grid using Capon's principle of maximizing the signal to interference plus noise ratio while enforcing unit gain towards the signal of interest. An estimate of the power of the detected source is derived by exploiting the unit power constraint, which subsequently allows to update the noise covariance matrix by simple rank-1 matrix addition composed of outerproduct of the selected steering matrix with itself scaled by the signal power estimate. Our numerical examples demonstrate effectiveness of the proposed GCB in direction finding where it performs favourably compared to the state-of-the-art algorithms under a broad variety of settings. Furthermore, GCB estimates of direction-of-arrivals (DOAs) are very fast to compute.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10706632","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1109/LSP.2024.3475913
Arghya Sinha;Kunal N. Chaudhury
In the Plug-and-Play (PnP) method, a denoiser is used as a regularizer within classical proximal algorithms for image reconstruction. It is known that a broad class of linear denoisers can be expressed as the proximal operator of a convex regularizer. Consequently, the associated PnP algorithm can be linked to a convex optimization problem $mathcal {P}$