首页 > 最新文献

High Temperature最新文献

英文 中文
Natural Thermogravitational Convection in a Partially Blocked Square Area Heated from Below: Local and Medium Heat Transfer 从下方加热的部分封闭方形区域中的自然热重对流:局部和介质传热
IF 1 4区 物理与天体物理 Q3 Engineering Pub Date : 2024-03-21 DOI: 10.1134/s0018151x23050048
I. A. Ermolaev

Abstract

The results of a numerical study of the local and average heat transfer during the natural thermal convection of air in a square-shaped area with two symmetrical horizontal partitions (fins) in the middle of the sides are presented. The region is heated from below by a constant uniform heat flow, the horizontal boundaries and partitions are assumed to be adiabatic, and the upper boundary is assumed to be isothermal. The dependences of the local and average Nusselt numbers on the size of the partitions and the intensity of the convective flow are obtained.

摘要 本文介绍了在一个两侧中间有两个对称水平隔板(翅片)的正方形区域中,空气自然热对流过程中的局部和平均传热的数值研究结果。该区域由恒定的均匀热流自下而上加热,水平边界和隔板假定为绝热,上边界假定为等温。得出了局部和平均努塞尔特数对分区大小和对流强度的依赖关系。
{"title":"Natural Thermogravitational Convection in a Partially Blocked Square Area Heated from Below: Local and Medium Heat Transfer","authors":"I. A. Ermolaev","doi":"10.1134/s0018151x23050048","DOIUrl":"https://doi.org/10.1134/s0018151x23050048","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The results of a numerical study of the local and average heat transfer during the natural thermal convection of air in a square-shaped area with two symmetrical horizontal partitions (fins) in the middle of the sides are presented. The region is heated from below by a constant uniform heat flow, the horizontal boundaries and partitions are assumed to be adiabatic, and the upper boundary is assumed to be isothermal. The dependences of the local and average Nusselt numbers on the size of the partitions and the intensity of the convective flow are obtained.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":"66 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140887178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Chemical Reactions in a Boundary Layer on the Overall Heat-and-Mass Transfer Coefficient 边界层中的化学反应对整体传热传质系数的影响
IF 1 4区 物理与天体物理 Q3 Engineering Pub Date : 2024-03-21 DOI: 10.1134/s0018151x23040107
V. V. Mironov, M. A. Tolkach, V. V. Tlevtsezhev

Abstract

A method to analyze the influence of chemical reactions on heat-and-mass transfer in a reactive boundary layer has been suggested, and the influence of thermal effects on the overall heat-and-mass transfer coefficient has been estimated. It has been found that endothermal reactions in the boundary layer have a considerable effect on the overall heat-and-mass transfer coefficient. Taking into account the influence of thermal effects due to homogeneous reactions inside the boundary layer on convective thermal flux ({{dot {q}}_{lambda }}) is equivalent to taking into account the heat of these reactions on the surface of a heat protection coating, that is, on the surface of a coked layer.

摘要 提出了一种分析化学反应对反应边界层传热传质影响的方法,并估算了热效应对整体传热传质系数的影响。研究发现,边界层中的内热反应对整体传热传质系数有相当大的影响。考虑到边界层内均匀反应引起的热效应对对流热通量的影响,相当于考虑到这些反应在防热涂层表面(即焦化层表面)的热量。
{"title":"Influence of Chemical Reactions in a Boundary Layer on the Overall Heat-and-Mass Transfer Coefficient","authors":"V. V. Mironov, M. A. Tolkach, V. V. Tlevtsezhev","doi":"10.1134/s0018151x23040107","DOIUrl":"https://doi.org/10.1134/s0018151x23040107","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A method to analyze the influence of chemical reactions on heat-and-mass transfer in a reactive boundary layer has been suggested, and the influence of thermal effects on the overall heat-and-mass transfer coefficient has been estimated. It has been found that endothermal reactions in the boundary layer have a considerable effect on the overall heat-and-mass transfer coefficient. Taking into account the influence of thermal effects due to homogeneous reactions inside the boundary layer on convective thermal flux <span>({{dot {q}}_{lambda }})</span> is equivalent to taking into account the heat of these reactions on the surface of a heat protection coating, that is, on the surface of a coked layer.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":"51 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140203247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
System of Model Kinetic Equations for a Multicomponent Gas 多组分气体的模型动力学方程组
IF 1 4区 物理与天体物理 Q3 Engineering Pub Date : 2024-03-21 DOI: 10.1134/s0018151x23050115
Yu. A. Nikitchenko, S. A. Popov, N. I. Sergeeva

Abstract

A mathematical model of a multicomponent gas flow based on a model kinetic equation is presented. Flows of multicomponent monatomic perfect gases are considered. The model is tested using the example of the problem of the shock wave profile for a mixture of argon and helium in various proportions. It is shown that the model provides satisfactory agreement with the experimental data.

摘要 介绍了基于模型动力学方程的多组分气体流动数学模型。模型考虑了多组分单原子完全气体的流动。以不同比例的氩气和氦气混合物的冲击波剖面问题为例,对模型进行了检验。结果表明,模型与实验数据的一致性令人满意。
{"title":"System of Model Kinetic Equations for a Multicomponent Gas","authors":"Yu. A. Nikitchenko, S. A. Popov, N. I. Sergeeva","doi":"10.1134/s0018151x23050115","DOIUrl":"https://doi.org/10.1134/s0018151x23050115","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A mathematical model of a multicomponent gas flow based on a model kinetic equation is presented. Flows of multicomponent monatomic perfect gases are considered. The model is tested using the example of the problem of the shock wave profile for a mixture of argon and helium in various proportions. It is shown that the model provides satisfactory agreement with the experimental data.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":"9 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140203372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Problem of the Equation of State of Refractory Metals in the Near-Critical Region 近临界区难熔金属的状态方程问题
IF 1 4区 物理与天体物理 Q3 Engineering Pub Date : 2024-03-21 DOI: 10.1134/s0018151x23050176
A. S. Shumikhin

Abstract

A simple physical model of atomic plasma is proposed, which makes it possible to calculate the equation of state of refractory metals in the near-critical region and obtain the parameters of the critical point of the vapor–liquid phase transition, including the binodal. A special feature of the model is that it takes into account interatomic interaction using cohesion—the collective energy of the cohesion of atoms in a metal. Estimates of the critical point parameters for many refractory metals, including the conductivity at the critical point, are obtained.

摘要 提出了一个简单的原子等离子体物理模型,通过该模型可以计算难熔金属在近临界区的状态方程,并获得汽液相变临界点的参数,包括二极值。该模型的一个特点是利用内聚力(金属中原子内聚力的集体能量)考虑了原子间的相互作用。对许多难熔金属的临界点参数进行了估算,包括临界点的电导率。
{"title":"The Problem of the Equation of State of Refractory Metals in the Near-Critical Region","authors":"A. S. Shumikhin","doi":"10.1134/s0018151x23050176","DOIUrl":"https://doi.org/10.1134/s0018151x23050176","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A simple physical model of atomic plasma is proposed, which makes it possible to calculate the equation of state of refractory metals in the near-critical region and obtain the parameters of the critical point of the vapor–liquid phase transition, including the binodal. A special feature of the model is that it takes into account interatomic interaction using cohesion—the collective energy of the cohesion of atoms in a metal. Estimates of the critical point parameters for many refractory metals, including the conductivity at the critical point, are obtained.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":"162 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140203356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrical Resistance of Liquid Carbon (up to 9000 K) and Liquid Gadolinium (up to 6000 K) at Elevated Pressure and High Temperatures 液态碳(最高 9000 K)和液态钆(最高 6000 K)在高压和高温下的电阻特性
IF 1 4区 物理与天体物理 Q3 Engineering Pub Date : 2024-03-21 DOI: 10.1134/s0018151x23050127
S. V. Onufriev, A. I. Savvatimskiy

Abstract

Experiments are carried out on rapid heating by an electric current pulse of plates for anisotropic graphite and gadolinium foil clamped in the same way: between two thick-walled plates of TF-5 glass (heavy flint). In both cases, the glass cells were previously compressed with a clamp to create some initial pressure. During the passage of the current pulse (5 μs), the pressure in the samples is estimated; it increases due to thermal expansion when confined by the glass plates. The electrical resistance of liquid carbon at low pressures (up to 1 kbar) increases with increasing temperature, just as for most conductors. Under limited expansion (increasing pressure), the electrical resistance of liquid carbon becomes constant, independent of the increase in temperature and pressure (up to 9000 K). Unlike carbon, the electrical resistance of liquid gadolinium at elevated pressure (about 1 kbar) practically did not change (~260 µm cm) and remained approximately constant, as at lower pressures (~0.3 kbar); and at high temperatures, up to 6000 K.

摘要实验是通过电流脉冲快速加热各向异性石墨板和钆箔,夹持方式相同:夹在两块厚壁 TF-5 玻璃板(重燧石)之间。在这两种情况下,玻璃单元之前都用夹具压紧,以产生一些初始压力。在电流脉冲通过期间(5 μs),对样品中的压力进行估算;在玻璃板的限制下,压力会因热膨胀而增加。与大多数导体一样,液态碳在低压(最高 1 kbar)下的电阻会随着温度的升高而增大。在有限膨胀(压力增加)的情况下,液态碳的电阻会变得恒定,与温度和压力的增加无关(最高可达 9000 K)。与碳不同,液态钆在高压(约 1 千巴)下的电阻几乎没有变化(约 260 微米厘米),与在低压(约 0.3 千巴)和高温(高达 6000 K)下的电阻大致保持不变。
{"title":"Electrical Resistance of Liquid Carbon (up to 9000 K) and Liquid Gadolinium (up to 6000 K) at Elevated Pressure and High Temperatures","authors":"S. V. Onufriev, A. I. Savvatimskiy","doi":"10.1134/s0018151x23050127","DOIUrl":"https://doi.org/10.1134/s0018151x23050127","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Experiments are carried out on rapid heating by an electric current pulse of plates for anisotropic graphite and gadolinium foil clamped in the same way: between two thick-walled plates of TF-5 glass (heavy flint). In both cases, the glass cells were previously compressed with a clamp to create some initial pressure. During the passage of the current pulse (5 μs), the pressure in the samples is estimated; it increases due to thermal expansion when confined by the glass plates. The electrical resistance of liquid carbon at low pressures (up to 1 kbar) increases with increasing temperature, just as for most conductors. Under limited expansion (increasing pressure), the electrical resistance of liquid carbon becomes constant, independent of the increase in temperature and pressure (up to 9000 K). Unlike carbon, the electrical resistance of liquid gadolinium at elevated pressure (about 1 kbar) practically did not change (~260 µm cm) and remained approximately constant, as at lower pressures (~0.3 kbar); and at high temperatures, up to 6000 K.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":"33 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140887450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equation of State of Zirconium at High Pressures 锆在高压下的状态方程
IF 1 4区 物理与天体物理 Q3 Engineering Pub Date : 2024-03-21 DOI: 10.1134/s0018151x23050073
K. V. Khishchenko

Abstract

This paper describes the thermodynamic properties of zirconium in a high-pressure region. The available experimental data on isothermal and shock compression of this metal are summarized in the form of a simple model that specifies a pressure function of the specific volume and specific internal energy. The results of calculations of the thermodynamic characteristics of the body-centered cubic crystalline phase and zirconium melt are presented in comparison with the available experimental data in the studied range of thermodynamic parameters. The resulting equation of state can be used in the numerical modeling of adiabatic processes at high energy concentrations.

摘要 本文介绍了锆在高压区的热力学性质。本文以一个简单模型的形式总结了该金属等温压缩和冲击压缩的现有实验数据,该模型规定了比容和比内能的压力函数。体心立方晶相和锆熔体的热力学特性计算结果与所研究的热力学参数范围内的现有实验数据进行了比较。计算得出的状态方程可用于高能量浓度下绝热过程的数值建模。
{"title":"Equation of State of Zirconium at High Pressures","authors":"K. V. Khishchenko","doi":"10.1134/s0018151x23050073","DOIUrl":"https://doi.org/10.1134/s0018151x23050073","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>This paper describes the thermodynamic properties of zirconium in a high-pressure region. The available experimental data on isothermal and shock compression of this metal are summarized in the form of a simple model that specifies a pressure function of the specific volume and specific internal energy. The results of calculations of the thermodynamic characteristics of the body-centered cubic crystalline phase and zirconium melt are presented in comparison with the available experimental data in the studied range of thermodynamic parameters. The resulting equation of state can be used in the numerical modeling of adiabatic processes at high energy concentrations.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":"8 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140203249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heat Capacity and Thermodynamic Functions of the Aluminum Alloy AlCu4.5Mg1 Alloyed with Barium 与钡合金化的铝合金 AlCu4.5Mg1 的热容量和热力学函数
IF 1 4区 物理与天体物理 Q3 Engineering Pub Date : 2024-03-21 DOI: 10.1134/s0018151x2305005x
I. N. Ganiev, R. S. Shonazarov, A. Elmurod, U. N. Faizulloev

Abstract

The results of the experimental determination of the heat capacity of the aluminum alloy AlCu4.5Mg1 alloyed with barium and the calculation of the temperature dependences of changes in the thermodynamic functions of this alloy are presented. Studies of the temperature dependence of the heat capacity of the AlCu4.5Mg1 alloy alloyed with barium are carried out in the cooling mode using a computer and the Sigma Plot 10.0 software. The types of polynomials of the temperature dependence of the heat capacity and changes in thermodynamic functions (enthalpy, entropy, and Gibbs energy) of the studied alloy and the standard (Al grade A5N), which describe these changes with the correlation coefficient Rcor = 0.999, are established. It is shown that with the increasing barium content, the heat capacity of the original alloy decreases. The enthalpy and entropy of the AlCu4.5Mg1 alloy alloyed with barium increase with increasing temperature, and decrease with the increasing barium content. The Gibbs energy values have an inverse relationship.

摘要 本文介绍了铝合金 AlCu4.5Mg1 与钡合金热容量的实验测定结果,以及该合金热力学函数变化随温度变化的计算结果。在冷却模式下,使用计算机和 Sigma Plot 10.0 软件对 AlCu4.5Mg1 钡合金热容量的温度依赖性进行了研究。确定了所研究合金和标准合金(Al 牌号 A5N)的热容量和热力学函数(焓、熵和吉布斯能)变化随温度变化的多项式类型,描述这些变化的相关系数 Rcor = 0.999。结果表明,随着钡含量的增加,原始合金的热容量降低。AlCu4.5Mg1 钡合金的焓和熵随着温度的升高而增加,随着钡含量的增加而减少。吉布斯能值呈反比关系。
{"title":"Heat Capacity and Thermodynamic Functions of the Aluminum Alloy AlCu4.5Mg1 Alloyed with Barium","authors":"I. N. Ganiev, R. S. Shonazarov, A. Elmurod, U. N. Faizulloev","doi":"10.1134/s0018151x2305005x","DOIUrl":"https://doi.org/10.1134/s0018151x2305005x","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The results of the experimental determination of the heat capacity of the aluminum alloy AlCu4.5Mg1 alloyed with barium and the calculation of the temperature dependences of changes in the thermodynamic functions of this alloy are presented. Studies of the temperature dependence of the heat capacity of the AlCu4.5Mg1 alloy alloyed with barium are carried out in the cooling mode using a computer and the Sigma Plot 10.0 software. The types of polynomials of the temperature dependence of the heat capacity and changes in thermodynamic functions (enthalpy, entropy, and Gibbs energy) of the studied alloy and the standard (Al grade A5N), which describe these changes with the correlation coefficient <i>R</i><sub>cor</sub> = 0.999, are established. It is shown that with the increasing barium content, the heat capacity of the original alloy decreases. The enthalpy and entropy of the AlCu4.5Mg1 alloy alloyed with barium increase with increasing temperature, and decrease with the increasing barium content. The Gibbs energy values have an inverse relationship.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":"11 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140203355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal State of a Region with a Thermally Insulated Moving Boundary 热绝缘移动边界区域的热状态
IF 1 4区 物理与天体物理 Q3 Engineering Pub Date : 2024-03-21 DOI: 10.1134/s0018151x23050061
E. M. Kartashov

Abstract

Mathematical model representations of the temperature effect in regions with a thermally insulated moving boundary are developed. The boundary conditions for thermal insulation of a moving boundary are formulated both for locally equilibrium heat transfer processes within the classical Fourier phenomenology and for more complex locally nonequilibrium processes within the Maxwell–Cattaneo–Lykov–Vernott phenomenology, taking into account the finite speed of heat propagation. The applied problem of heat conductance and the theory of thermal shock for a region with a moving thermally insulated boundary, free from external and internal influences, is considered. An exact analytical solution of the formulated mathematical models for equations of the hyperbolic type is obtained. Methods and theorems of operational calculus and Riemann–Mellin contour integrals are used to calculate the originals of complex images with two branch points. A mathematical apparatus for the equivalence of functional structures for the originals of the obtained operational solutions is proposed. It is shown that the presence of a thermally insulated moving boundary leads to the appearance of a temperature gradient in the region and, consequently, to the appearance in the region of a temperature field and corresponding thermoelastic stresses of a wave nature. A numerical experiment is presented and the possibility of transition from one form of analytical solution of the temperature problem to another equivalent form is shown. The described effect manifests itself both for equations of the parabolic type based on classical Fourier phenomenology and for equations of hyperbolic type based on the generalized phenomenology of Maxwell–Cattaneo–Lykov–Vernott.

摘要 建立了热绝缘移动边界区域温度效应的数学模型表示法。考虑到有限的热传播速度,在经典傅立叶现象学中为局部平衡传热过程和在 Maxwell-Cattaneo-Lykov-Vernott 现象学中为更复杂的局部非平衡传热过程提出了运动边界隔热的边界条件。研究考虑了热传导和热冲击理论的应用问题,该理论适用于具有移动热绝缘边界的区域,不受外部和内部影响。获得了双曲型方程数学模型的精确解析解。运算微积分和黎曼-梅林等值线积分的方法和定理被用于计算具有两个分支点的复数图像的原点。提出了一种数学装置,用于等效所获运算解原点的函数结构。结果表明,热绝缘运动边界的存在会导致该区域出现温度梯度,进而在该区域出现温度场和相应的热弹性应力波。本文介绍了一个数值实验,并说明了从温度问题的一种分析解法过渡到另一种等效解法的可能性。所述效应既适用于基于经典傅立叶现象学的抛物型方程,也适用于基于 Maxwell-Cattaneo-Lykov-Vernott 广义现象学的双曲型方程。
{"title":"Thermal State of a Region with a Thermally Insulated Moving Boundary","authors":"E. M. Kartashov","doi":"10.1134/s0018151x23050061","DOIUrl":"https://doi.org/10.1134/s0018151x23050061","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Mathematical model representations of the temperature effect in regions with a thermally insulated moving boundary are developed. The boundary conditions for thermal insulation of a moving boundary are formulated both for locally equilibrium heat transfer processes within the classical Fourier phenomenology and for more complex locally nonequilibrium processes within the Maxwell–Cattaneo–Lykov–Vernott phenomenology, taking into account the finite speed of heat propagation. The applied problem of heat conductance and the theory of thermal shock for a region with a moving thermally insulated boundary, free from external and internal influences, is considered. An exact analytical solution of the formulated mathematical models for equations of the hyperbolic type is obtained. Methods and theorems of operational calculus and Riemann–Mellin contour integrals are used to calculate the originals of complex images with two branch points. A mathematical apparatus for the equivalence of functional structures for the originals of the obtained operational solutions is proposed. It is shown that the presence of a thermally insulated moving boundary leads to the appearance of a temperature gradient in the region and, consequently, to the appearance in the region of a temperature field and corresponding thermoelastic stresses of a wave nature. A numerical experiment is presented and the possibility of transition from one form of analytical solution of the temperature problem to another equivalent form is shown. The described effect manifests itself both for equations of the parabolic type based on classical Fourier phenomenology and for equations of hyperbolic type based on the generalized phenomenology of Maxwell–Cattaneo–Lykov–Vernott.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":"18 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140887192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shock Compression of Molybdenum under Impact of Ultrashort Laser Pulses 超短激光脉冲冲击下的钼冲击压缩
IF 1 4区 物理与天体物理 Q3 Engineering Pub Date : 2024-03-21 DOI: 10.1134/s0018151x23050012
S. I. Ashitkov, E. V. Struleva, P. S. Komarov, S. A. Evlashin

Abstract

The behavior of molybdenum under the action of load pulses of picosecond duration is studied in an experiment. Using the method of spectral interferometry in the single-exposure mode in the picosecond range, changes in the phase and amplitude of the diagnostic pulse reflected from the free surface of the sample are recorded. In a film sample of molybdenum of submicron thickness, compressive stresses reaching 89 GPa are realized and are accompanied by a significant increase in the surface reflectance.

摘要 在一项实验中研究了钼在持续时间为皮秒的负载脉冲作用下的行为。利用皮秒范围内单曝光模式下的光谱干涉测量法,记录了从样品自由表面反射的诊断脉冲的相位和振幅变化。在亚微米厚度的钼薄膜样品中,压应力达到 89 GPa,同时表面反射率显著增加。
{"title":"Shock Compression of Molybdenum under Impact of Ultrashort Laser Pulses","authors":"S. I. Ashitkov, E. V. Struleva, P. S. Komarov, S. A. Evlashin","doi":"10.1134/s0018151x23050012","DOIUrl":"https://doi.org/10.1134/s0018151x23050012","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The behavior of molybdenum under the action of load pulses of picosecond duration is studied in an experiment. Using the method of spectral interferometry in the single-exposure mode in the picosecond range, changes in the phase and amplitude of the diagnostic pulse reflected from the free surface of the sample are recorded. In a film sample of molybdenum of submicron thickness, compressive stresses reaching 89 GPa are realized and are accompanied by a significant increase in the surface reflectance.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":"76 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140887171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of Drop-Stream Condensation by the Gradient Heatmetry 利用梯度热量测量法研究滴流凝结
IF 1 4区 物理与天体物理 Q3 Engineering Pub Date : 2024-03-21 DOI: 10.1134/s0018151x2304017x
E. R. Zainullina, V. Yu. Mityakov

Abstract

The capabilities of flow visualization and gradient heatmetry are combined for the first time in studying heat transfer during condensation. The local heat flux per unit area during drop-stream condensation of water steam on the surface of a vertical plate was measured. In the drop-stream condensation mode, the average value of a significantly unsteady heat flux was about 31.2 kW/m2. The heat flux unsteady shows a complex physical picture of condensation. The results of the experiment revealed the possibility of using gradient heatmetry as a method for monitoring heat transfer during condensation.

摘要 在研究冷凝过程中的传热时,首次将流动可视化和梯度热量测量相结合。测量了水蒸汽在垂直板表面滴流冷凝过程中单位面积的局部热通量。在滴流冷凝模式下,明显不稳定的热通量平均值约为 31.2 kW/m2。不稳定的热通量显示了冷凝的复杂物理现象。实验结果揭示了使用梯度热量测量法监测冷凝过程中热量传递的可能性。
{"title":"Study of Drop-Stream Condensation by the Gradient Heatmetry","authors":"E. R. Zainullina, V. Yu. Mityakov","doi":"10.1134/s0018151x2304017x","DOIUrl":"https://doi.org/10.1134/s0018151x2304017x","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The capabilities of flow visualization and gradient heatmetry are combined for the first time in studying heat transfer during condensation. The local heat flux per unit area during drop-stream condensation of water steam on the surface of a vertical plate was measured. In the drop-stream condensation mode, the average value of a significantly unsteady heat flux was about 31.2 kW/m<sup>2</sup>. The heat flux unsteady shows a complex physical picture of condensation. The results of the experiment revealed the possibility of using gradient heatmetry as a method for monitoring heat transfer during condensation.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":"29 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140887176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
High Temperature
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1