Pub Date : 2019-07-17DOI: 10.1109/TIP.2019.2928133
Toby Sanders, Christian Dwyer
We consider sampling strategies for reducing the radiation dose during image acquisition in scanning-beam microscopies, such as SEM, STEM, and STXM. Our basic assumption is that we may acquire subsampled image data (with some pixels missing) and then inpaint the missing data using a compressed-sensing approach. Our noise model consists of Poisson noise plus random Gaussian noise. We include the possibility of acquiring fully-sampled image data, in which case the inpainting approach reduces to a denoising procedure. We use numerical simulations to compare the accuracy of reconstructed images with the "ground truths." The results generally indicate that, for sufficiently high radiation doses, higher sampling rates achieve greater accuracy, commensurate with well-established literature. However, for very low radiation doses, where the Poisson noise and/or random Gaussian noise begins to dominate, then our results indicate that subsampling/inpainting can result in smaller reconstruction errors. We also present an information-theoretic analysis, which allows us to quantify the amount of information gained through the different sampling strategies and enables some broader discussion of the main results.
{"title":"Inpainting vs denoising for dose reduction in scanning-beam microscopies.","authors":"Toby Sanders, Christian Dwyer","doi":"10.1109/TIP.2019.2928133","DOIUrl":"10.1109/TIP.2019.2928133","url":null,"abstract":"<p><p>We consider sampling strategies for reducing the radiation dose during image acquisition in scanning-beam microscopies, such as SEM, STEM, and STXM. Our basic assumption is that we may acquire subsampled image data (with some pixels missing) and then inpaint the missing data using a compressed-sensing approach. Our noise model consists of Poisson noise plus random Gaussian noise. We include the possibility of acquiring fully-sampled image data, in which case the inpainting approach reduces to a denoising procedure. We use numerical simulations to compare the accuracy of reconstructed images with the \"ground truths.\" The results generally indicate that, for sufficiently high radiation doses, higher sampling rates achieve greater accuracy, commensurate with well-established literature. However, for very low radiation doses, where the Poisson noise and/or random Gaussian noise begins to dominate, then our results indicate that subsampling/inpainting can result in smaller reconstruction errors. We also present an information-theoretic analysis, which allows us to quantify the amount of information gained through the different sampling strategies and enables some broader discussion of the main results.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"29 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2019-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62583239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-07-15DOI: 10.1109/TIP.2019.2927331
Tegan H Emerson, Colin Olson, Timothy Doster
We have previously shown that augmenting orthogonal matching pursuit (OMP) with an additional step in the identification stage of each pursuit iteration yields improved k-sparse reconstruction and denoising performance relative to baseline OMP. At each iteration a "path," or geodesic, is generated between the two dictionary atoms that are most correlated with the residual and from this path a new atom that has a greater correlation to the residual than either of the two bracketing atoms is selected. Here, we provide new computational results illustrating improvements in sparse coding and denoising on canonical datasets using both learned and structured dictionaries. Two methods of constructing a path are investigated for each dictionary type: the Euclidean geodesic formed by a linear combination of the two atoms and the 2-Wasserstein geodesic corresponding to the optimal transport map between the atoms. We prove here the existence of a higher-correlation atom in the Euclidean case under assumptions on the two bracketing atoms and introduce algorithmic modifications to improve the likelihood that the bracketing atoms meet those conditions. Although we demonstrate our augmentation on OMP alone, in general it may be applied to any reconstruction algorithm that relies on the selection and sorting of high-similarity atoms during an analysis or identification phase.
{"title":"Path-Based Dictionary Augmentation: A Framework for Improving k-Sparse Image Processing.","authors":"Tegan H Emerson, Colin Olson, Timothy Doster","doi":"10.1109/TIP.2019.2927331","DOIUrl":"10.1109/TIP.2019.2927331","url":null,"abstract":"<p><p>We have previously shown that augmenting orthogonal matching pursuit (OMP) with an additional step in the identification stage of each pursuit iteration yields improved k-sparse reconstruction and denoising performance relative to baseline OMP. At each iteration a \"path,\" or geodesic, is generated between the two dictionary atoms that are most correlated with the residual and from this path a new atom that has a greater correlation to the residual than either of the two bracketing atoms is selected. Here, we provide new computational results illustrating improvements in sparse coding and denoising on canonical datasets using both learned and structured dictionaries. Two methods of constructing a path are investigated for each dictionary type: the Euclidean geodesic formed by a linear combination of the two atoms and the 2-Wasserstein geodesic corresponding to the optimal transport map between the atoms. We prove here the existence of a higher-correlation atom in the Euclidean case under assumptions on the two bracketing atoms and introduce algorithmic modifications to improve the likelihood that the bracketing atoms meet those conditions. Although we demonstrate our augmentation on OMP alone, in general it may be applied to any reconstruction algorithm that relies on the selection and sorting of high-similarity atoms during an analysis or identification phase.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"29 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2019-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62583013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Instance segmentation is a challenging computer vision problem which lies at the intersection of object detection and semantic segmentation. Motivated by plant image analysis in the context of plant phenotyping, a recently emerging application field of computer vision, this paper presents the Exemplar-Based Recursive Instance Segmentation (ERIS) framework. A three-layer probabilistic model is firstly introduced to jointly represent hypotheses, voting elements, instance labels and their connections. Afterwards, a recursive optimization algorithm is developed to infer the maximum a posteriori (MAP) solution, which handles one instance at a time by alternating among the three steps of detection, segmentation and update. The proposed ERIS framework departs from previous works mainly in two respects. First, it is exemplar-based and model-free, which can achieve instance-level segmentation of a specific object class given only a handful of (typically less than 10) annotated exemplars. Such a merit enables its use in case that no massive manually-labeled data is available for training strong classification models, as required by most existing methods. Second, instead of attempting to infer the solution in a single shot, which suffers from extremely high computational complexity, our recursive optimization strategy allows for reasonably efficient MAP-inference in full hypothesis space. The ERIS framework is substantialized for the specific application of plant leaf segmentation in this work. Experiments are conducted on public benchmarks to demonstrate the superiority of our method in both effectiveness and efficiency in comparison with the state-of-the-art.
{"title":"Exemplar-Based Recursive Instance Segmentation With Application to Plant Image Analysis.","authors":"Jin-Gang Yu, Yansheng Li, Changxin Gao, Hongxia Gaoa, Gui-Song Xia, Zhu Liang Yub, Yuanqing Lic","doi":"10.1109/TIP.2019.2923571","DOIUrl":"10.1109/TIP.2019.2923571","url":null,"abstract":"<p><p>Instance segmentation is a challenging computer vision problem which lies at the intersection of object detection and semantic segmentation. Motivated by plant image analysis in the context of plant phenotyping, a recently emerging application field of computer vision, this paper presents the Exemplar-Based Recursive Instance Segmentation (ERIS) framework. A three-layer probabilistic model is firstly introduced to jointly represent hypotheses, voting elements, instance labels and their connections. Afterwards, a recursive optimization algorithm is developed to infer the maximum a posteriori (MAP) solution, which handles one instance at a time by alternating among the three steps of detection, segmentation and update. The proposed ERIS framework departs from previous works mainly in two respects. First, it is exemplar-based and model-free, which can achieve instance-level segmentation of a specific object class given only a handful of (typically less than 10) annotated exemplars. Such a merit enables its use in case that no massive manually-labeled data is available for training strong classification models, as required by most existing methods. Second, instead of attempting to infer the solution in a single shot, which suffers from extremely high computational complexity, our recursive optimization strategy allows for reasonably efficient MAP-inference in full hypothesis space. The ERIS framework is substantialized for the specific application of plant leaf segmentation in this work. Experiments are conducted on public benchmarks to demonstrate the superiority of our method in both effectiveness and efficiency in comparison with the state-of-the-art.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"29 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2019-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62582750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-02-04DOI: 10.1109/TIP.2020.3007844
Wei Liu, Xianxu Hou, Jiang Duan, G. Qiu
Single image defogging is a classical and challenging problem in computer vision. Existing methods towards this problem mainly include handcrafted priors based methods that rely on the use of the atmospheric degradation model and learning-based approaches that require paired fog-fogfree training example images. In practice, however, prior-based methods are prone to failure due to their own limitations and paired training data are extremely difficult to acquire. Moreover, there are few studies on the unpaired trainable defogging network in this field. Thus, inspired by the principle of CycleGAN network, we have developed an end-to-end learning system that uses unpaired fog and fogfree training images, adversarial discriminators and cycle consistency losses to automatically construct a fog removal system. Similar to CycleGAN, our system has two transformation paths; one maps fog images to a fogfree image domain and the other maps fogfree images to a fog image domain. Instead of one stage mapping, our system uses a two stage mapping strategy in each transformation path to enhance the effectiveness of fog removal. Furthermore, we make explicit use of prior knowledge in the networks by embedding the atmospheric degradation principle and a sky prior for mapping fogfree images to the fog images domain. In addition, we also contribute the first real world nature fog-fogfree image dataset for defogging research. Our multiple real fog images dataset (MRFID) contains images of 200 natural outdoor scenes. For each scene, there is one clear image and corresponding four foggy images of different fog densities manually selected from a sequence of images taken by a fixed camera over the course of one year. Qualitative and quantitative comparison against several state-of-the-art methods on both synthetic and real world images demonstrate that our approach is effective and performs favorably for recovering a clear image from a foggy image.
{"title":"End-to-End Single Image Fog Removal Using Enhanced Cycle Consistent Adversarial Networks","authors":"Wei Liu, Xianxu Hou, Jiang Duan, G. Qiu","doi":"10.1109/TIP.2020.3007844","DOIUrl":"https://doi.org/10.1109/TIP.2020.3007844","url":null,"abstract":"Single image defogging is a classical and challenging problem in computer vision. Existing methods towards this problem mainly include handcrafted priors based methods that rely on the use of the atmospheric degradation model and learning-based approaches that require paired fog-fogfree training example images. In practice, however, prior-based methods are prone to failure due to their own limitations and paired training data are extremely difficult to acquire. Moreover, there are few studies on the unpaired trainable defogging network in this field. Thus, inspired by the principle of CycleGAN network, we have developed an end-to-end learning system that uses unpaired fog and fogfree training images, adversarial discriminators and cycle consistency losses to automatically construct a fog removal system. Similar to CycleGAN, our system has two transformation paths; one maps fog images to a fogfree image domain and the other maps fogfree images to a fog image domain. Instead of one stage mapping, our system uses a two stage mapping strategy in each transformation path to enhance the effectiveness of fog removal. Furthermore, we make explicit use of prior knowledge in the networks by embedding the atmospheric degradation principle and a sky prior for mapping fogfree images to the fog images domain. In addition, we also contribute the first real world nature fog-fogfree image dataset for defogging research. Our multiple real fog images dataset (MRFID) contains images of 200 natural outdoor scenes. For each scene, there is one clear image and corresponding four foggy images of different fog densities manually selected from a sequence of images taken by a fixed camera over the course of one year. Qualitative and quantitative comparison against several state-of-the-art methods on both synthetic and real world images demonstrate that our approach is effective and performs favorably for recovering a clear image from a foggy image.","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"29 1","pages":"7819-7833"},"PeriodicalIF":10.6,"publicationDate":"2019-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TIP.2020.3007844","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62591533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-25DOI: 10.1109/TIP.2019.2895460
Jun Fu, Jing Liu, Yuhang Wang, Jin Zhou, Changyong Wang, Hanqing Lu
Recent progress in semantic segmentation has been driven by improving the spatial resolution under Fully Convolutional Networks (FCNs). To address this problem, we propose a Stacked Deconvolutional Network (SDN) for semantic segmentation. In SDN, multiple shallow deconvolutional networks, which are called as SDN units, are stacked one by one to integrate contextual information and bring the fine recovery of localization information. Meanwhile, inter-unit and intra-unit connections are designed to assist network training and enhance feature fusion since the connections improve the flow of information and gradient propagation throughout the network. Besides, hierarchical supervision is applied during the upsampling process of each SDN unit, which enhances the discrimination of feature representations and benefits the network optimization. We carry out comprehensive experiments and achieve the new state-ofthe- art results on four datasets, including PASCAL VOC 2012, CamVid, GATECH, COCO Stuff. In particular, our best model without CRF post-processing achieves an intersection-over-union score of 86.6% in the test set.
最近在语义分割领域取得的进展主要是通过提高全卷积网络(FCN)的空间分辨率来实现的。为了解决这个问题,我们提出了一种用于语义分割的堆叠去卷积网络(SDN)。在 SDN 中,多个浅层去卷积网络(称为 SDN 单元)被逐个堆叠,以整合上下文信息,实现定位信息的精细恢复。同时,由于单元间和单元内的连接可以改善整个网络的信息流和梯度传播,因此设计了单元间和单元内的连接来帮助网络训练和增强特征融合。此外,在每个 SDN 单元的上采样过程中应用了分层监督,这增强了特征表示的辨别能力,有利于网络优化。我们在四个数据集(包括 PASCAL VOC 2012、CamVid、GATECH 和 COCO Stuff)上进行了全面实验,并取得了最新成果。其中,我们的最佳模型在测试集中的交集大于联合得分率达到了 86.6%,而没有经过 CRF 后处理。
{"title":"Stacked Deconvolutional Network for Semantic Segmentation.","authors":"Jun Fu, Jing Liu, Yuhang Wang, Jin Zhou, Changyong Wang, Hanqing Lu","doi":"10.1109/TIP.2019.2895460","DOIUrl":"10.1109/TIP.2019.2895460","url":null,"abstract":"<p><p>Recent progress in semantic segmentation has been driven by improving the spatial resolution under Fully Convolutional Networks (FCNs). To address this problem, we propose a Stacked Deconvolutional Network (SDN) for semantic segmentation. In SDN, multiple shallow deconvolutional networks, which are called as SDN units, are stacked one by one to integrate contextual information and bring the fine recovery of localization information. Meanwhile, inter-unit and intra-unit connections are designed to assist network training and enhance feature fusion since the connections improve the flow of information and gradient propagation throughout the network. Besides, hierarchical supervision is applied during the upsampling process of each SDN unit, which enhances the discrimination of feature representations and benefits the network optimization. We carry out comprehensive experiments and achieve the new state-ofthe- art results on four datasets, including PASCAL VOC 2012, CamVid, GATECH, COCO Stuff. In particular, our best model without CRF post-processing achieves an intersection-over-union score of 86.6% in the test set.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":" ","pages":""},"PeriodicalIF":10.6,"publicationDate":"2019-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36916270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Most existing algorithms for depth estimation from single monocular images need large quantities of metric groundtruth depths for supervised learning. We show that relative depth can be an informative cue for metric depth estimation and can be easily obtained from vast stereo videos. Acquiring metric depths from stereo videos is sometimes impracticable due to the absence of camera parameters. In this paper, we propose to improve the performance of metric depth estimation with relative depths collected from stereo movie videos using existing stereo matching algorithm.We introduce a new "Relative Depth in Stereo" (RDIS) dataset densely labelled with relative depths. We first pretrain a ResNet model on our RDIS dataset. Then we finetune the model on RGB-D datasets with metric ground-truth depths. During our finetuning, we formulate depth estimation as a classification task. This re-formulation scheme enables us to obtain the confidence of a depth prediction in the form of probability distribution. With this confidence, we propose an information gain loss to make use of the predictions that are close to ground-truth. We evaluate our approach on both indoor and outdoor benchmark RGB-D datasets and achieve state-of-the-art performance.
{"title":"Monocular Depth Estimation with Augmented Ordinal Depth Relationships.","authors":"Yuanzhouhan Cao, Tianqi Zhao, Ke Xian, Chunhua Shen, Zhiguo Cao, Shugong Xu","doi":"10.1109/TIP.2018.2877944","DOIUrl":"10.1109/TIP.2018.2877944","url":null,"abstract":"<p><p>Most existing algorithms for depth estimation from single monocular images need large quantities of metric groundtruth depths for supervised learning. We show that relative depth can be an informative cue for metric depth estimation and can be easily obtained from vast stereo videos. Acquiring metric depths from stereo videos is sometimes impracticable due to the absence of camera parameters. In this paper, we propose to improve the performance of metric depth estimation with relative depths collected from stereo movie videos using existing stereo matching algorithm.We introduce a new \"Relative Depth in Stereo\" (RDIS) dataset densely labelled with relative depths. We first pretrain a ResNet model on our RDIS dataset. Then we finetune the model on RGB-D datasets with metric ground-truth depths. During our finetuning, we formulate depth estimation as a classification task. This re-formulation scheme enables us to obtain the confidence of a depth prediction in the form of probability distribution. With this confidence, we propose an information gain loss to make use of the predictions that are close to ground-truth. We evaluate our approach on both indoor and outdoor benchmark RGB-D datasets and achieve state-of-the-art performance.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":" ","pages":""},"PeriodicalIF":10.6,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36624481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Image aesthetic quality assessment has becoming an indispensable technique that facilitates a variety of image applications, e.g., photo retargeting and non-realistic rendering. Conventional approaches suffer from the following limitations: 1) the inefficiency of semantically describing images due to the inherent tag noise and incompletion, 2) the difficulty of accurately reflecting how humans actively perceive various regions inside each image, and 3) the challenge of incorporating the aesthetic experiences of multiple users. To solve these problems, we propose a novel semi-supervised deep active learning (SDAL) algorithm, which discovers how humans perceive semantically important regions from a large quantity of images partially assigned with contaminated tags. More specifically, as humans usually attend to the foreground objects before understanding them, we extract a succinct set of BING (binarized normed gradients) [60]-based object patches from each image. To simulate human visual perception, we propose SDAL which hierarchically learns human gaze shifting path (GSP) by sequentially linking semantically important object patches from each scenery. Noticeably, SDLA unifies the semantically important regions discovery and deep GSP feature learning into a principled framework, wherein only a small proportion of tagged images are adopted. Moreover, based on the sparsity penalty, SDLA can optimally abandon the noisy or redundant low-level image features. Finally, by leveraging the deeply-learned GSP features, a probabilistic model is developed for image aesthetics assessment, where the experience of multiple professional photographers can be encoded. Besides, auxiliary quality-related features can be conveniently integrated into our probabilistic model. Comprehensive experiments on a series of benchmark image sets have demonstrated the superiority of our method. As a byproduct, eye tracking experiments have shown that GSPs generated by our SDAL are about 93% consistent with real human gaze shifting paths.
{"title":"Deep Active Learning with Contaminated Tags for Image Aesthetics Assessment.","authors":"Zhenguang Liu, Zepeng Wang, Yiyang Yao, Luming Zhang, Ling Shao","doi":"10.1109/TIP.2018.2828326","DOIUrl":"10.1109/TIP.2018.2828326","url":null,"abstract":"<p><p>Image aesthetic quality assessment has becoming an indispensable technique that facilitates a variety of image applications, e.g., photo retargeting and non-realistic rendering. Conventional approaches suffer from the following limitations: 1) the inefficiency of semantically describing images due to the inherent tag noise and incompletion, 2) the difficulty of accurately reflecting how humans actively perceive various regions inside each image, and 3) the challenge of incorporating the aesthetic experiences of multiple users. To solve these problems, we propose a novel semi-supervised deep active learning (SDAL) algorithm, which discovers how humans perceive semantically important regions from a large quantity of images partially assigned with contaminated tags. More specifically, as humans usually attend to the foreground objects before understanding them, we extract a succinct set of BING (binarized normed gradients) [60]-based object patches from each image. To simulate human visual perception, we propose SDAL which hierarchically learns human gaze shifting path (GSP) by sequentially linking semantically important object patches from each scenery. Noticeably, SDLA unifies the semantically important regions discovery and deep GSP feature learning into a principled framework, wherein only a small proportion of tagged images are adopted. Moreover, based on the sparsity penalty, SDLA can optimally abandon the noisy or redundant low-level image features. Finally, by leveraging the deeply-learned GSP features, a probabilistic model is developed for image aesthetics assessment, where the experience of multiple professional photographers can be encoded. Besides, auxiliary quality-related features can be conveniently integrated into our probabilistic model. Comprehensive experiments on a series of benchmark image sets have demonstrated the superiority of our method. As a byproduct, eye tracking experiments have shown that GSPs generated by our SDAL are about 93% consistent with real human gaze shifting paths.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":" ","pages":""},"PeriodicalIF":10.6,"publicationDate":"2018-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36302732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-07-01DOI: 10.1109/SAMPTA.2017.8024369
Zhihua Che, X. Zhuang
Affine shear tight frames with 2-layer structure are introduced. Characterizations and constructions of smooth affine shear tight frames with 2-layer structure are provided. Digital affine shear banks with 2-layer structure are then constructed. The implementation of digital affine shear transforms using the transition and subdivision operators are given. Numerical experiments on image denoising demonstrate the advantage of our digital affine shear filter banks with 2-layer structure.
{"title":"Digital affine shear filter banks with 2-layer structure","authors":"Zhihua Che, X. Zhuang","doi":"10.1109/SAMPTA.2017.8024369","DOIUrl":"https://doi.org/10.1109/SAMPTA.2017.8024369","url":null,"abstract":"Affine shear tight frames with 2-layer structure are introduced. Characterizations and constructions of smooth affine shear tight frames with 2-layer structure are provided. Digital affine shear banks with 2-layer structure are then constructed. The implementation of digital affine shear transforms using the transition and subdivision operators are given. Numerical experiments on image denoising demonstrate the advantage of our digital affine shear filter banks with 2-layer structure.","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"1 1","pages":"575-579"},"PeriodicalIF":10.6,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/SAMPTA.2017.8024369","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62542429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-04-01DOI: 10.1109/TIP.2017.2651365
Jiachao Zhang, Keigo Hirakawa
This paper describes a study aimed at comparing the real image sensor noise distribution to the models of noise often assumed in image denoising designs. A quantile analysis in pixel, wavelet transform, and variance stabilization domains reveal that the tails of Poisson, signal-dependent Gaussian, and Poisson–Gaussian models are too short to capture real sensor noise behavior. A new Poisson mixture noise model is proposed to correct the mismatch of tail behavior. Based on the fact that noise model mismatch results in image denoising that undersmoothes real sensor data, we propose a mixture of Poisson denoising method to remove the denoising artifacts without affecting image details, such as edge and textures. Experiments with real sensor data verify that denoising for real image sensor data is indeed improved by this new technique.
{"title":"Improved Denoising via Poisson Mixture Modeling of Image Sensor Noise","authors":"Jiachao Zhang, Keigo Hirakawa","doi":"10.1109/TIP.2017.2651365","DOIUrl":"https://doi.org/10.1109/TIP.2017.2651365","url":null,"abstract":"This paper describes a study aimed at comparing the real image sensor noise distribution to the models of noise often assumed in image denoising designs. A quantile analysis in pixel, wavelet transform, and variance stabilization domains reveal that the tails of Poisson, signal-dependent Gaussian, and Poisson–Gaussian models are too short to capture real sensor noise behavior. A new Poisson mixture noise model is proposed to correct the mismatch of tail behavior. Based on the fact that noise model mismatch results in image denoising that undersmoothes real sensor data, we propose a mixture of Poisson denoising method to remove the denoising artifacts without affecting image details, such as edge and textures. Experiments with real sensor data verify that denoising for real image sensor data is indeed improved by this new technique.","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"26 1","pages":"1565-1578"},"PeriodicalIF":10.6,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TIP.2017.2651365","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62582187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-03-01DOI: 10.1109/TIP.2016.2621414
Fares Graba, F. Comby, O. Strauss
The most effective superresolution methods proposed in the literature require precise knowledge of the so-called point spread function of the imager, while in practice its accurate estimation is nearly impossible. This paper presents a new superresolution method, whose main feature is its ability to account for the scant knowledge of the imager point spread function. This ability is based on representing this imprecise knowledge via a non-additive neighborhood function. The superresolution reconstruction algorithm transfers this imprecise knowledge to output by producing an imprecise (interval-valued) high-resolution image. We propose some experiments illustrating the robustness of the proposed method with respect to the imager point spread function. These experiments also highlight its high performance compared with very competitive earlier approaches. Finally, we show that the imprecision of the high-resolution interval-valued reconstructed image is a reconstruction error marker.
{"title":"Non-Additive Imprecise Image Super-Resolution in a Semi-Blind Context","authors":"Fares Graba, F. Comby, O. Strauss","doi":"10.1109/TIP.2016.2621414","DOIUrl":"https://doi.org/10.1109/TIP.2016.2621414","url":null,"abstract":"The most effective superresolution methods proposed in the literature require precise knowledge of the so-called point spread function of the imager, while in practice its accurate estimation is nearly impossible. This paper presents a new superresolution method, whose main feature is its ability to account for the scant knowledge of the imager point spread function. This ability is based on representing this imprecise knowledge via a non-additive neighborhood function. The superresolution reconstruction algorithm transfers this imprecise knowledge to output by producing an imprecise (interval-valued) high-resolution image. We propose some experiments illustrating the robustness of the proposed method with respect to the imager point spread function. These experiments also highlight its high performance compared with very competitive earlier approaches. Finally, we show that the imprecision of the high-resolution interval-valued reconstructed image is a reconstruction error marker.","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"26 1","pages":"1379-1392"},"PeriodicalIF":10.6,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TIP.2016.2621414","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62575631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}