首页 > 最新文献

IEEE Transactions on Image Processing最新文献

英文 中文
HyperCASR: Spectral-spatial Open-Set Recognition With Category-Aware Semantic Reconstruction for Hyperspectral Imagery HyperCASR:基于类别感知语义重构的光谱空间开集识别
IF 10.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-13 DOI: 10.1109/tip.2025.3630327
Bobo Xi, Wenjie Zhang, Jiaojiao Li, Rui Song, Yunsong Li
{"title":"HyperCASR: Spectral-spatial Open-Set Recognition With Category-Aware Semantic Reconstruction for Hyperspectral Imagery","authors":"Bobo Xi, Wenjie Zhang, Jiaojiao Li, Rui Song, Yunsong Li","doi":"10.1109/tip.2025.3630327","DOIUrl":"https://doi.org/10.1109/tip.2025.3630327","url":null,"abstract":"","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"55 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2025-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145509609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local Alignment for Medical Vision-Language Pre-training 医学视觉语言预训练的局部对齐
IF 10.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-10 DOI: 10.1109/tip.2025.3628469
Huimin Yan, Xian Yang, Liang Bai, Jiye Liang
{"title":"Local Alignment for Medical Vision-Language Pre-training","authors":"Huimin Yan, Xian Yang, Liang Bai, Jiye Liang","doi":"10.1109/tip.2025.3628469","DOIUrl":"https://doi.org/10.1109/tip.2025.3628469","url":null,"abstract":"","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"140 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2025-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145484975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mutual Iterative Refinement Network for Scribble-Supervised Camouflaged Object Detection 涂鸦监督伪装目标检测的互迭代改进网络
IF 10.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-10 DOI: 10.1109/tip.2025.3629044
Chao Yin, Kequan Yang, Jide Li, Xiaoqiang Li
{"title":"Mutual Iterative Refinement Network for Scribble-Supervised Camouflaged Object Detection","authors":"Chao Yin, Kequan Yang, Jide Li, Xiaoqiang Li","doi":"10.1109/tip.2025.3629044","DOIUrl":"https://doi.org/10.1109/tip.2025.3629044","url":null,"abstract":"","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"39 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2025-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145484976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual Uncertainty-aware Correspondence Adapting and Retaining for Continual Composed Image Retrieval 连续组合图像检索中的双不确定性感知对应自适应与保留
IF 10.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-10 DOI: 10.1109/tip.2025.3628454
Haoliang Zhou, Feifei Zhang, Changsheng Xu
{"title":"Dual Uncertainty-aware Correspondence Adapting and Retaining for Continual Composed Image Retrieval","authors":"Haoliang Zhou, Feifei Zhang, Changsheng Xu","doi":"10.1109/tip.2025.3628454","DOIUrl":"https://doi.org/10.1109/tip.2025.3628454","url":null,"abstract":"","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"1 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2025-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145484977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Benchmarking Laryngeal Neoplasm Segmentation: A Multicenter Dataset and an Effective Method 喉部肿瘤的基准分割:一个多中心数据集和有效方法
IF 10.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-10 DOI: 10.1109/tip.2025.3628504
Guanghui Yue, Shangjie Wu, Ruxian Tian, Hanhe Lin, Jiaxuan Li, Ting Yuan, Huaiqing Lv, Zhenkun Yu, Ning Mao, Xicheng Song
{"title":"Benchmarking Laryngeal Neoplasm Segmentation: A Multicenter Dataset and an Effective Method","authors":"Guanghui Yue, Shangjie Wu, Ruxian Tian, Hanhe Lin, Jiaxuan Li, Ting Yuan, Huaiqing Lv, Zhenkun Yu, Ning Mao, Xicheng Song","doi":"10.1109/tip.2025.3628504","DOIUrl":"https://doi.org/10.1109/tip.2025.3628504","url":null,"abstract":"","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"31 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2025-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145484974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncertainty Quantification for Semi-Supervised Object Detection in Remote Sensing Images 遥感图像中半监督目标检测的不确定性量化
IF 10.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-10 DOI: 10.1109/tip.2025.3629033
Xi Yang, Penghui Li, Qiubai Zhou, Nannan Wang, Xinbo Gao
{"title":"Uncertainty Quantification for Semi-Supervised Object Detection in Remote Sensing Images","authors":"Xi Yang, Penghui Li, Qiubai Zhou, Nannan Wang, Xinbo Gao","doi":"10.1109/tip.2025.3629033","DOIUrl":"https://doi.org/10.1109/tip.2025.3629033","url":null,"abstract":"","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"48 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2025-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145484978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Informative Sample Selection Model for Skeleton-based Action Recognition with Limited Training Samples 有限训练样本下基于骨骼的动作识别的信息样本选择模型
IF 10.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-07 DOI: 10.1109/tip.2025.3627418
Zhigang Tu, Zhengbo Zhang, Jia Gong, Junsong Yuan, Bo Du
{"title":"Informative Sample Selection Model for Skeleton-based Action Recognition with Limited Training Samples","authors":"Zhigang Tu, Zhengbo Zhang, Jia Gong, Junsong Yuan, Bo Du","doi":"10.1109/tip.2025.3627418","DOIUrl":"https://doi.org/10.1109/tip.2025.3627418","url":null,"abstract":"","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"10 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2025-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145461388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SketchAging: Face Photo-Sketch Synthesis and Aging with Multi-Scale Feature Extraction 素描老化:基于多尺度特征提取的人脸照片素描合成与老化
IF 10.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-06 DOI: 10.1109/tip.2025.3627854
Chunlei Peng, Zhuang Tang, Decheng Liu, Nannan Wang, Ruimin Hu, Xinbo Gao
{"title":"SketchAging: Face Photo-Sketch Synthesis and Aging with Multi-Scale Feature Extraction","authors":"Chunlei Peng, Zhuang Tang, Decheng Liu, Nannan Wang, Ruimin Hu, Xinbo Gao","doi":"10.1109/tip.2025.3627854","DOIUrl":"https://doi.org/10.1109/tip.2025.3627854","url":null,"abstract":"","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"168 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2025-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145455295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Food3D: Text-Driven Customizable 3D Food Generation with Gaussian Splatting Food3D:文本驱动的可定制的3D食物生成与高斯飞溅
IF 10.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-05 DOI: 10.1109/tip.2025.3627408
Dongjian Yu, Weiqing Min, Xin Jin, Qian Jiang, Shaowen Yao, Shuqiang Jiang
{"title":"Food3D: Text-Driven Customizable 3D Food Generation with Gaussian Splatting","authors":"Dongjian Yu, Weiqing Min, Xin Jin, Qian Jiang, Shaowen Yao, Shuqiang Jiang","doi":"10.1109/tip.2025.3627408","DOIUrl":"https://doi.org/10.1109/tip.2025.3627408","url":null,"abstract":"","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"5 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2025-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145447361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ViMoE: An Empirical Study of Designing Vision Mixture-of-Experts. ViMoE:设计专家视觉组合的实证研究。
IF 10.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-04 DOI: 10.1109/tip.2025.3626887
Xumeng Han,Longhui Wei,Zhiyang Dou,Yingfei Sun,Zhenjun Han,Qi Tian
Mixture-of-Experts (MoE) models embody the divide-and-conquer concept and are a promising approach for increasing model capacity, demonstrating excellent scalability across multiple domains. In this paper, we integrate the MoE structure into the classic Vision Transformer (ViT), naming it ViMoE, and explore the potential of applying MoE to vision through a comprehensive study on image classification and semantic segmentation. However, we observe that the performance is sensitive to the configuration of MoE layers, making it challenging to obtain optimal results without careful design. The underlying cause is that inappropriate MoE layers lead to unreliable routing and hinder experts from effectively acquiring helpful information. To address this, we introduce a shared expert to learn and capture common knowledge, serving as an effective way to construct a stable ViMoE. Furthermore, we demonstrate how to analyze expert routing behavior, revealing which MoE layers are capable of specializing in handling specific information and which are not. This provides guidance for retaining the critical layers while removing redundancies, thereby advancing ViMoE to be more efficient without sacrificing accuracy. We aspire for this work to offer new insights into the design of vision MoE models and provide valuable empirical guidance for future research.
专家混合(MoE)模型体现了分而治之的概念,是增加模型容量的一种很有前途的方法,展示了跨多个领域的出色可伸缩性。本文将MoE结构整合到经典视觉转换器(Vision Transformer, ViT)中,命名为ViMoE,并通过对图像分类和语义分割的综合研究,探索MoE在视觉领域的应用潜力。然而,我们观察到性能对MoE层的配置很敏感,如果不仔细设计,很难获得最佳结果。其根本原因是不合适的MoE层导致路由不可靠,阻碍了专家有效获取有用的信息。为了解决这个问题,我们引入了一个共享专家来学习和捕获共同知识,作为构建稳定ViMoE的有效方法。此外,我们还演示了如何分析专家路由行为,揭示哪些MoE层能够专门处理特定信息,哪些不能。这为在删除冗余的同时保留关键层提供了指导,从而在不牺牲准确性的情况下提高ViMoE的效率。我们希望本研究能为视觉MoE模型的设计提供新的见解,并为未来的研究提供有价值的实证指导。
{"title":"ViMoE: An Empirical Study of Designing Vision Mixture-of-Experts.","authors":"Xumeng Han,Longhui Wei,Zhiyang Dou,Yingfei Sun,Zhenjun Han,Qi Tian","doi":"10.1109/tip.2025.3626887","DOIUrl":"https://doi.org/10.1109/tip.2025.3626887","url":null,"abstract":"Mixture-of-Experts (MoE) models embody the divide-and-conquer concept and are a promising approach for increasing model capacity, demonstrating excellent scalability across multiple domains. In this paper, we integrate the MoE structure into the classic Vision Transformer (ViT), naming it ViMoE, and explore the potential of applying MoE to vision through a comprehensive study on image classification and semantic segmentation. However, we observe that the performance is sensitive to the configuration of MoE layers, making it challenging to obtain optimal results without careful design. The underlying cause is that inappropriate MoE layers lead to unreliable routing and hinder experts from effectively acquiring helpful information. To address this, we introduce a shared expert to learn and capture common knowledge, serving as an effective way to construct a stable ViMoE. Furthermore, we demonstrate how to analyze expert routing behavior, revealing which MoE layers are capable of specializing in handling specific information and which are not. This provides guidance for retaining the critical layers while removing redundancies, thereby advancing ViMoE to be more efficient without sacrificing accuracy. We aspire for this work to offer new insights into the design of vision MoE models and provide valuable empirical guidance for future research.","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"86 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2025-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145440721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Image Processing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1