首页 > 最新文献

IEEE Transactions on Terahertz Science and Technology最新文献

英文 中文
Experimental Study of Polarization Characteristics of Terahertz Emission 太赫兹发射偏振特性的实验研究
IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-11 DOI: 10.1109/TTHZ.2024.3496571
Takayoshi Yamada;Makito Kobayashi;Yuki Uchiyama;Yutaka Hasegawa;Hiroyuki Maezawa;Hideaki Miyamoto;Yasuko Kasai
In this article, we present an experimental study of the polarization characteristics of the emission intensity from the surface of a material using terahertz (THz) passive measurements. We developed an experimental system and method to measure the intensity of a sample at several emission angles with vertical and horizontal polarization relative to the plane of the sample surface within a 5 K error in the brightness temperature. Emissions at 280 and 490 GHz wavebands were measured using subharmonic mixer receivers with Schottky barrier diodes operating at room temperature. We measured the intensity of radiation from a magnetic substance-loading material called MF110, which is used as a calibration hot load of THz radiometers because of its low reflectivity and light weight. Although the experimental conditions limited the range of the emission angle and temperatures of the sample and experimental system, it was confirmed that the polarization characteristics of the emission at each emission angle were in accordance with the Fresnel equations. Because the optical system in the experiment used a polarization rotator and a movable ellipsoidal mirror that enabled the receiver to remain stable, a highly sensitive system to measure sample emission was developed.
在这篇文章中,我们提出了一个实验研究偏振特性的发射强度从材料表面使用太赫兹(THz)被动测量。我们开发了一种实验系统和方法,在相对于样品表面平面的垂直和水平偏振下测量样品在几个发射角度下的强度,亮度温度误差在5 K以内。利用室温下肖特基势垒二极管的亚谐波混频器接收器测量了280 GHz和490 GHz波段的发射。我们测量了一种名为MF110的磁性物质负载材料的辐射强度,由于其反射率低且重量轻,因此被用作太赫兹辐射计的校准热负载。虽然实验条件限制了样品和实验系统的发射角和温度范围,但证实了各发射角下发射的偏振特性符合菲涅耳方程。由于实验中的光学系统使用了一个偏振旋转器和一个可移动的椭球镜,使接收器保持稳定,因此开发了一个高灵敏度的测量样品发射的系统。
{"title":"Experimental Study of Polarization Characteristics of Terahertz Emission","authors":"Takayoshi Yamada;Makito Kobayashi;Yuki Uchiyama;Yutaka Hasegawa;Hiroyuki Maezawa;Hideaki Miyamoto;Yasuko Kasai","doi":"10.1109/TTHZ.2024.3496571","DOIUrl":"https://doi.org/10.1109/TTHZ.2024.3496571","url":null,"abstract":"In this article, we present an experimental study of the polarization characteristics of the emission intensity from the surface of a material using terahertz (THz) passive measurements. We developed an experimental system and method to measure the intensity of a sample at several emission angles with vertical and horizontal polarization relative to the plane of the sample surface within a 5 K error in the brightness temperature. Emissions at 280 and 490 GHz wavebands were measured using subharmonic mixer receivers with Schottky barrier diodes operating at room temperature. We measured the intensity of radiation from a magnetic substance-loading material called MF110, which is used as a calibration hot load of THz radiometers because of its low reflectivity and light weight. Although the experimental conditions limited the range of the emission angle and temperatures of the sample and experimental system, it was confirmed that the polarization characteristics of the emission at each emission angle were in accordance with the Fresnel equations. Because the optical system in the experiment used a polarization rotator and a movable ellipsoidal mirror that enabled the receiver to remain stable, a highly sensitive system to measure sample emission was developed.","PeriodicalId":13258,"journal":{"name":"IEEE Transactions on Terahertz Science and Technology","volume":"15 1","pages":"1-7"},"PeriodicalIF":3.9,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
D- and G-Band Correlating Radiometers
IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-07 DOI: 10.1109/TTHZ.2024.3492997
Theodore Reck;Jeffrey Hesler;Eric Bryerton
Correlating radiometers are presented at D-band (100–120 GHz) and G-band (160–185 GHz). The D-band system is a heterodyne receiver focused around the 118.75 GHz oxygen line and the G-band system is a direct-detection pseudocorrelating receiver focused around the 183.31 GHz water-vapor line. These systems are integrated into multiple waveguide blocks to facilitate troubleshooting and to enable different RF filters to be applied to the low noise amplifier (LNA)-based front ends. Discussion of the data-processing is presented for both systems. The D-band system has a noise temperature of 410 K at 120 GHz. The correlated output of this system increased the Allan time from 100 ms to 7 s. The G-band system has an average noise temperature of 780 K, with an increase in Allan time from 1 ms to 10 s.
{"title":"D- and G-Band Correlating Radiometers","authors":"Theodore Reck;Jeffrey Hesler;Eric Bryerton","doi":"10.1109/TTHZ.2024.3492997","DOIUrl":"https://doi.org/10.1109/TTHZ.2024.3492997","url":null,"abstract":"Correlating radiometers are presented at D-band (100–120 GHz) and G-band (160–185 GHz). The D-band system is a heterodyne receiver focused around the 118.75 GHz oxygen line and the G-band system is a direct-detection pseudocorrelating receiver focused around the 183.31 GHz water-vapor line. These systems are integrated into multiple waveguide blocks to facilitate troubleshooting and to enable different RF filters to be applied to the low noise amplifier (LNA)-based front ends. Discussion of the data-processing is presented for both systems. The D-band system has a noise temperature of 410 K at 120 GHz. The correlated output of this system increased the Allan time from 100 ms to 7 s. The G-band system has an average noise temperature of 780 K, with an increase in Allan time from 1 ms to 10 s.","PeriodicalId":13258,"journal":{"name":"IEEE Transactions on Terahertz Science and Technology","volume":"15 2","pages":"200-209"},"PeriodicalIF":3.9,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143553164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Measurements of a 480 GHz Metamaterial Flat Lens
IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-07 DOI: 10.1109/TTHZ.2024.3492996
Cassandra N. Whitton;Daniel Lu;Adhitya B. Sriram;Philip D. Mauskopf;Christopher E. Groppi;Michael Marrs;Paul F. Goldsmith;Georgios C. Trichopoulos
There exist scientifically interesting molecular lines, such as the ground state transitions of water, that cannot be observed except from space. Observations of these lines can be made more cost-effective by lightweighting observation components, such as the primary optical aperture. This is particularly important for SmallSats and CubeSats which have highly limited weight budgets. Here, we present a flat lightweight metamaterial lens, which operates at 480 GHz, close to the 557 GHz ground state transition of ortho–H$_{2}$O. The lens is composed of alternating layers of spin-coated polyimide and patterned aluminum. The aluminum patterning was generated by optimization to a specific phase pattern. We have manufactured and tested the lens. The lens has an optical diameter of 124 mm. It weighs 3 grams and is less than 150 microns thick. It is also flexible. We have demonstrated using a near-field scan that the optical performance of the lens is nearly diffraction-limited. We have found the loss of the lens using radiometric techniques to be 2.5 dB. This loss is roughly 1.5 dB higher than expected, and we investigate possible reasons for this discrepancy.
{"title":"Design and Measurements of a 480 GHz Metamaterial Flat Lens","authors":"Cassandra N. Whitton;Daniel Lu;Adhitya B. Sriram;Philip D. Mauskopf;Christopher E. Groppi;Michael Marrs;Paul F. Goldsmith;Georgios C. Trichopoulos","doi":"10.1109/TTHZ.2024.3492996","DOIUrl":"https://doi.org/10.1109/TTHZ.2024.3492996","url":null,"abstract":"There exist scientifically interesting molecular lines, such as the ground state transitions of water, that cannot be observed except from space. Observations of these lines can be made more cost-effective by lightweighting observation components, such as the primary optical aperture. This is particularly important for SmallSats and CubeSats which have highly limited weight budgets. Here, we present a flat lightweight metamaterial lens, which operates at 480 GHz, close to the 557 GHz ground state transition of ortho–H<inline-formula><tex-math>$_{2}$</tex-math></inline-formula>O. The lens is composed of alternating layers of spin-coated polyimide and patterned aluminum. The aluminum patterning was generated by optimization to a specific phase pattern. We have manufactured and tested the lens. The lens has an optical diameter of 124 mm. It weighs 3 grams and is less than 150 microns thick. It is also flexible. We have demonstrated using a near-field scan that the optical performance of the lens is nearly diffraction-limited. We have found the loss of the lens using radiometric techniques to be 2.5 dB. This loss is roughly 1.5 dB higher than expected, and we investigate possible reasons for this discrepancy.","PeriodicalId":13258,"journal":{"name":"IEEE Transactions on Terahertz Science and Technology","volume":"15 2","pages":"218-227"},"PeriodicalIF":3.9,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143553165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Analysis of the Spectral Reflectivity of Metallic Blazed Diffraction Gratings in the THz Range for Space Instrumentation 空间仪器金属燃烧衍射光栅太赫兹波段光谱反射率的实验分析
IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-07 DOI: 10.1109/TTHZ.2024.3493001
Gonzalo García-Lozano;Guillermo Mercant;Marianela Fernández-Rodríguez;María Carmen Torquemada;Luis M. González;Tomás Belenguer;Alexander Cuadrado;Luis Miguel Sánchez-Brea;Javier Alda;Mahmoud Elshorbagy
The core of spectrometers for deep space exploration in the far-infrared spectral range is a diffraction grating optimized for a defined range of wavelengths. This contribution presents an in-depth analysis of the fabrication, morphological characterization, and spectral efficiency verification of this type of gratings operating in the THz range. Two different manufacturing techniques were used: the first one was laser ablation and microstructuring with a five-axis femtosecond laser system, and the second one was a traditional micromachining technique using milling tools. The gratings have a blazed geometry with saw-tooth profiles that enhances the efficiency of the diffracted order of interest, $m=1$, at the TM polarization mode, and within a spectral range between 70 and 114 $mu$m. The morphological features of the fabricated gratings were measured by confocal microscopy and analyzed using topographic parameters. The measured averaged profiles were used to compute the diffraction efficiency of the fabricated gratings and to compare the actual manufactured profiles against the experimental results. Our measurement setup fixes the wavelength of the illuminating source to six values between 60 and 120 $mu$m (2.5 and 4.7 THz). At each of these spectral lines, we have scanned the angle of incidence between 20$^circ$ and 75$^circ$. This angular range includes the nominal value of the angle of incidence, $theta _mathrm{inc}=57^circ$. The experimental values of efficiency can be easily compared with those resulting from computation, where the efficiency is calculated for each one of the available wavelengths as a function of the angle of incidence. This approach has allowed us to validate the design and conclude that gratings fabricated using femtosecond laser ablation perform better than those obtained through micromachining processes. In any case, both manufacturing techniques generate gratings above the validation threshold for diffraction efficiency, $eta > 0.65$.
深空探测远红外光谱仪的核心是在一定波长范围内优化的衍射光栅。这篇文章深入分析了在太赫兹范围内工作的这种类型光栅的制造、形态表征和光谱效率验证。采用两种不同的制造技术:第一种是利用五轴飞秒激光系统进行激光烧蚀和微结构加工,第二种是利用铣刀进行传统的微加工技术。光栅具有锯齿形的几何形状,在TM偏振模式下,在70到114 $mu$ m的光谱范围内,提高了感兴趣的衍射顺序$m=1$的效率。用共聚焦显微镜测量了制造光栅的形态特征,并使用地形参数进行了分析。用测量的平均轮廓计算了光栅的衍射效率,并将实际制造的轮廓与实验结果进行了比较。我们的测量装置将照明光源的波长固定在60和120 $mu$ m(2.5和4.7太赫兹)之间的六个值。在每条光谱线上,我们扫描了20 $^circ$到75 $^circ$之间的入射角。这个角度范围包括入射角的标称值$theta _mathrm{inc}=57^circ$。效率的实验值可以很容易地与计算结果进行比较,计算结果是计算每个可用波长的效率作为入射角的函数。这种方法使我们能够验证设计,并得出结论,使用飞秒激光烧蚀制作的光栅比通过微加工工艺获得的光栅性能更好。在任何情况下,两种制造技术产生的光栅都高于衍射效率的验证阈值$eta > 0.65$。
{"title":"Experimental Analysis of the Spectral Reflectivity of Metallic Blazed Diffraction Gratings in the THz Range for Space Instrumentation","authors":"Gonzalo García-Lozano;Guillermo Mercant;Marianela Fernández-Rodríguez;María Carmen Torquemada;Luis M. González;Tomás Belenguer;Alexander Cuadrado;Luis Miguel Sánchez-Brea;Javier Alda;Mahmoud Elshorbagy","doi":"10.1109/TTHZ.2024.3493001","DOIUrl":"https://doi.org/10.1109/TTHZ.2024.3493001","url":null,"abstract":"The core of spectrometers for deep space exploration in the far-infrared spectral range is a diffraction grating optimized for a defined range of wavelengths. This contribution presents an in-depth analysis of the fabrication, morphological characterization, and spectral efficiency verification of this type of gratings operating in the THz range. Two different manufacturing techniques were used: the first one was laser ablation and microstructuring with a five-axis femtosecond laser system, and the second one was a traditional micromachining technique using milling tools. The gratings have a blazed geometry with saw-tooth profiles that enhances the efficiency of the diffracted order of interest, \u0000<inline-formula><tex-math>$m=1$</tex-math></inline-formula>\u0000, at the TM polarization mode, and within a spectral range between 70 and 114 \u0000<inline-formula><tex-math>$mu$</tex-math></inline-formula>\u0000m. The morphological features of the fabricated gratings were measured by confocal microscopy and analyzed using topographic parameters. The measured averaged profiles were used to compute the diffraction efficiency of the fabricated gratings and to compare the actual manufactured profiles against the experimental results. Our measurement setup fixes the wavelength of the illuminating source to six values between 60 and 120 \u0000<inline-formula><tex-math>$mu$</tex-math></inline-formula>\u0000m (2.5 and 4.7 THz). At each of these spectral lines, we have scanned the angle of incidence between 20\u0000<inline-formula><tex-math>$^circ$</tex-math></inline-formula>\u0000 and 75\u0000<inline-formula><tex-math>$^circ$</tex-math></inline-formula>\u0000. This angular range includes the nominal value of the angle of incidence, \u0000<inline-formula><tex-math>$theta _mathrm{inc}=57^circ$</tex-math></inline-formula>\u0000. The experimental values of efficiency can be easily compared with those resulting from computation, where the efficiency is calculated for each one of the available wavelengths as a function of the angle of incidence. This approach has allowed us to validate the design and conclude that gratings fabricated using femtosecond laser ablation perform better than those obtained through micromachining processes. In any case, both manufacturing techniques generate gratings above the validation threshold for diffraction efficiency, \u0000<inline-formula><tex-math>$eta &gt; 0.65$</tex-math></inline-formula>\u0000.","PeriodicalId":13258,"journal":{"name":"IEEE Transactions on Terahertz Science and Technology","volume":"15 1","pages":"8-16"},"PeriodicalIF":3.9,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10746638","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2024 Index IEEE Transactions on Terahertz Science and Technology Vol. 14 2024 Index IEEE Transactions on Terahertz Science and Technology Vol.
IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-06 DOI: 10.1109/TTHZ.2024.3492893
{"title":"2024 Index IEEE Transactions on Terahertz Science and Technology Vol. 14","authors":"","doi":"10.1109/TTHZ.2024.3492893","DOIUrl":"https://doi.org/10.1109/TTHZ.2024.3492893","url":null,"abstract":"","PeriodicalId":13258,"journal":{"name":"IEEE Transactions on Terahertz Science and Technology","volume":"14 6","pages":"893-917"},"PeriodicalIF":3.9,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10746425","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Women in Engineering 电气和电子工程师学会工程界妇女
IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-04 DOI: 10.1109/TTHZ.2024.3486590
{"title":"IEEE Women in Engineering","authors":"","doi":"10.1109/TTHZ.2024.3486590","DOIUrl":"https://doi.org/10.1109/TTHZ.2024.3486590","url":null,"abstract":"","PeriodicalId":13258,"journal":{"name":"IEEE Transactions on Terahertz Science and Technology","volume":"14 6","pages":"890-890"},"PeriodicalIF":3.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10742499","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Open Access Publishing IEEE 开放存取出版
IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-04 DOI: 10.1109/TTHZ.2024.3486594
{"title":"IEEE Open Access Publishing","authors":"","doi":"10.1109/TTHZ.2024.3486594","DOIUrl":"https://doi.org/10.1109/TTHZ.2024.3486594","url":null,"abstract":"","PeriodicalId":13258,"journal":{"name":"IEEE Transactions on Terahertz Science and Technology","volume":"14 6","pages":"891-891"},"PeriodicalIF":3.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10742497","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TechRxiv: Share Your Preprint Research with the World! TechRxiv:与世界分享您的预印本研究成果!
IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-04 DOI: 10.1109/TTHZ.2024.3486592
{"title":"TechRxiv: Share Your Preprint Research with the World!","authors":"","doi":"10.1109/TTHZ.2024.3486592","DOIUrl":"https://doi.org/10.1109/TTHZ.2024.3486592","url":null,"abstract":"","PeriodicalId":13258,"journal":{"name":"IEEE Transactions on Terahertz Science and Technology","volume":"14 6","pages":"892-892"},"PeriodicalIF":3.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10742496","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Terahertz Science and Technology Publication Information 电气和电子工程师学会太赫兹科学与技术论文集》出版信息
IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-04 DOI: 10.1109/TTHZ.2024.3482636
{"title":"IEEE Transactions on Terahertz Science and Technology Publication Information","authors":"","doi":"10.1109/TTHZ.2024.3482636","DOIUrl":"https://doi.org/10.1109/TTHZ.2024.3482636","url":null,"abstract":"","PeriodicalId":13258,"journal":{"name":"IEEE Transactions on Terahertz Science and Technology","volume":"14 6","pages":"C3-C3"},"PeriodicalIF":3.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10742495","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Microwave Theory and Techniques Society Information 电气和电子工程师学会微波理论与技术协会信息
IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-04 DOI: 10.1109/TTHZ.2024.3482632
{"title":"IEEE Microwave Theory and Techniques Society Information","authors":"","doi":"10.1109/TTHZ.2024.3482632","DOIUrl":"https://doi.org/10.1109/TTHZ.2024.3482632","url":null,"abstract":"","PeriodicalId":13258,"journal":{"name":"IEEE Transactions on Terahertz Science and Technology","volume":"14 6","pages":"C2-C2"},"PeriodicalIF":3.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10742500","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Terahertz Science and Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1