Caitlyn M. McColeman, Fumeng Yang, S. Franconeri, Timothy F. Brady
Data can be visually represented using visual channels like position, length or luminance. An existing ranking of these visual channels is based on how accurately participants could report the ratio between two depicted values. There is an assumption that this ranking should hold for different tasks and for different numbers of marks. However, there is surprisingly little existing work that tests this assumption, especially given that visually computing ratios is relatively unimportant in real-world visualizations, compared to seeing, remembering, and comparing trends and motifs, across displays that almost universally depict more than two values. To simulate the information extracted from a glance at a visualization, we instead asked participants to immediately reproduce a set of values from memory after they were shown the visualization. These values could be shown in a bar graph (position (bar)), line graph (position (line)), heat map (luminance), bubble chart (area), misaligned bar graph (length), or ‘wind map’ (angle). With a Bayesian multilevel modeling approach, we show how the rank positions of visual channels shift across different numbers of marks (2, 4 or 8) and for bias, precision, and error measures. The ranking did not hold, even for reproductions of only 2 marks, and the new probabilistic ranking was highly inconsistent for reproductions of different numbers of marks. Other factors besides channel choice had an order of magnitude more influence on performance, such as the number of values in the series (e.g., more marks led to larger errors), or the value of each mark (e.g., small values were systematically overestimated). Every visual channel was worse for displays with 8 marks than 4, consistent with established limits on visual memory. These results point to the need for a body of empirical studies that move beyond two-value ratio judgments as a baseline for reliably ranking the quality of a visual channel, including testing new tasks (detection of trends or motifs), timescales (immediate computation, or later comparison), and the number of values (from a handful, to thousands).
{"title":"Rethinking the Ranks of Visual Channels","authors":"Caitlyn M. McColeman, Fumeng Yang, S. Franconeri, Timothy F. Brady","doi":"10.31219/osf.io/n7kxu","DOIUrl":"https://doi.org/10.31219/osf.io/n7kxu","url":null,"abstract":"Data can be visually represented using visual channels like position, length or luminance. An existing ranking of these visual channels is based on how accurately participants could report the ratio between two depicted values. There is an assumption that this ranking should hold for different tasks and for different numbers of marks. However, there is surprisingly little existing work that tests this assumption, especially given that visually computing ratios is relatively unimportant in real-world visualizations, compared to seeing, remembering, and comparing trends and motifs, across displays that almost universally depict more than two values. To simulate the information extracted from a glance at a visualization, we instead asked participants to immediately reproduce a set of values from memory after they were shown the visualization. These values could be shown in a bar graph (position (bar)), line graph (position (line)), heat map (luminance), bubble chart (area), misaligned bar graph (length), or ‘wind map’ (angle). With a Bayesian multilevel modeling approach, we show how the rank positions of visual channels shift across different numbers of marks (2, 4 or 8) and for bias, precision, and error measures. The ranking did not hold, even for reproductions of only 2 marks, and the new probabilistic ranking was highly inconsistent for reproductions of different numbers of marks. Other factors besides channel choice had an order of magnitude more influence on performance, such as the number of values in the series (e.g., more marks led to larger errors), or the value of each mark (e.g., small values were systematically overestimated). Every visual channel was worse for displays with 8 marks than 4, consistent with established limits on visual memory. These results point to the need for a body of empirical studies that move beyond two-value ratio judgments as a baseline for reliably ranking the quality of a visual channel, including testing new tasks (detection of trends or motifs), timescales (immediate computation, or later comparison), and the number of values (from a handful, to thousands).","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":"28 1","pages":"707-717"},"PeriodicalIF":5.2,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46952789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Devin Lange, Edward R. Polanco, R. Judson-Torres, T. Zangle, A. Lex
Which drug is most promising for a cancer patient? A new microscopy-based approach for measuring the mass of individual cancer cells treated with different drugs promises to answer this question in only a few hours. However, the analysis pipeline for extracting data from these images is still far from complete automation: human intervention is necessary for quality control for preprocessing steps such as segmentation, adjusting filters, removing noise, and analyzing the result. To address this workflow, we developed Loon, a visualization tool for analyzing drug screening data based on quantitative phase microscopy imaging. Loon visualizes both derived data such as growth rates and imaging data. Since the images are collected automatically at a large scale, manual inspection of images and segmentations is infeasible. However, reviewing representative samples of cells is essential, both for quality control and for data analysis. We introduce a new approach for choosing and visualizing representative exemplar cells that retain a close connection to the low-level data. By tightly integrating the derived data visualization capabilities with the novel exemplar visualization and providing selection and filtering capabilities, Loon is well suited for making decisions about which drugs are suitable for a specific patient.
{"title":"Loon: Using Exemplars to Visualize Large-Scale Microscopy Data","authors":"Devin Lange, Edward R. Polanco, R. Judson-Torres, T. Zangle, A. Lex","doi":"10.31219/osf.io/dfajc","DOIUrl":"https://doi.org/10.31219/osf.io/dfajc","url":null,"abstract":"Which drug is most promising for a cancer patient? A new microscopy-based approach for measuring the mass of individual cancer cells treated with different drugs promises to answer this question in only a few hours. However, the analysis pipeline for extracting data from these images is still far from complete automation: human intervention is necessary for quality control for preprocessing steps such as segmentation, adjusting filters, removing noise, and analyzing the result. To address this workflow, we developed Loon, a visualization tool for analyzing drug screening data based on quantitative phase microscopy imaging. Loon visualizes both derived data such as growth rates and imaging data. Since the images are collected automatically at a large scale, manual inspection of images and segmentations is infeasible. However, reviewing representative samples of cells is essential, both for quality control and for data analysis. We introduce a new approach for choosing and visualizing representative exemplar cells that retain a close connection to the low-level data. By tightly integrating the derived data visualization capabilities with the novel exemplar visualization and providing selection and filtering capabilities, Loon is well suited for making decisions about which drugs are suitable for a specific patient.","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":" ","pages":"1-1"},"PeriodicalIF":5.2,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44644774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Eckelt, A. Hinterreiter, Patrick Adelberger, C. Walchshofer, V. Dhanoa, C. Humer, Moritz Heckmann, C. Steinparz, M. Streit
In this work, we propose an interactive visual approach for the exploration and formation of structural relationships in embeddings of high-dimensional data. These structural relationships, such as item sequences, associations of items with groups, and hierarchies between groups of items, are defining properties of many real-world datasets. Nevertheless, most existing methods for the visual exploration of embeddings treat these structures as second-class citizens or do not take them into account at all. In our proposed analysis workflow, users explore enriched scatterplots of the embedding, in which relationships between items and/or groups are visually highlighted. The original high-dimensional data for single items, groups of items, or differences between connected items and groups is accessible through additional summary visualizations. We carefully tailored these summary and difference visualizations to the various data types and semantic contexts. During their exploratory analysis, users can externalize their insights by setting up additional groups and relationships between items and/or groups. We demonstrate the utility and potential impact of our approach by means of two use cases and multiple examples from various domains.
{"title":"Visual Exploration of Relationships and Structure in Low-Dimensional Embeddings","authors":"K. Eckelt, A. Hinterreiter, Patrick Adelberger, C. Walchshofer, V. Dhanoa, C. Humer, Moritz Heckmann, C. Steinparz, M. Streit","doi":"10.31219/osf.io/ujbrs","DOIUrl":"https://doi.org/10.31219/osf.io/ujbrs","url":null,"abstract":"In this work, we propose an interactive visual approach for the exploration and formation of structural relationships in embeddings of high-dimensional data. These structural relationships, such as item sequences, associations of items with groups, and hierarchies between groups of items, are defining properties of many real-world datasets. Nevertheless, most existing methods for the visual exploration of embeddings treat these structures as second-class citizens or do not take them into account at all. In our proposed analysis workflow, users explore enriched scatterplots of the embedding, in which relationships between items and/or groups are visually highlighted. The original high-dimensional data for single items, groups of items, or differences between connected items and groups is accessible through additional summary visualizations. We carefully tailored these summary and difference visualizations to the various data types and semantic contexts. During their exploratory analysis, users can externalize their insights by setting up additional groups and relationships between items and/or groups. We demonstrate the utility and potential impact of our approach by means of two use cases and multiple examples from various domains.","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":" ","pages":"1-1"},"PeriodicalIF":5.2,"publicationDate":"2021-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48757984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-01DOI: 10.1109/tvcg.2020.3033686
{"title":"INFOVIS 2020 Program Committee","authors":"","doi":"10.1109/tvcg.2020.3033686","DOIUrl":"https://doi.org/10.1109/tvcg.2020.3033686","url":null,"abstract":"","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":" ","pages":""},"PeriodicalIF":5.2,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48986798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-01DOI: 10.1109/tvcg.2020.3035922
{"title":"Copyright notice","authors":"","doi":"10.1109/tvcg.2020.3035922","DOIUrl":"https://doi.org/10.1109/tvcg.2020.3035922","url":null,"abstract":"","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":" ","pages":""},"PeriodicalIF":5.2,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/tvcg.2020.3035922","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48791118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-01DOI: 10.1109/tvcg.2020.3033677
{"title":"Contents","authors":"","doi":"10.1109/tvcg.2020.3033677","DOIUrl":"https://doi.org/10.1109/tvcg.2020.3033677","url":null,"abstract":"","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":" ","pages":""},"PeriodicalIF":5.2,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/tvcg.2020.3033677","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43763541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-01DOI: 10.1109/tvcg.2020.3033652
{"title":"Info Vis Reviewers","authors":"","doi":"10.1109/tvcg.2020.3033652","DOIUrl":"https://doi.org/10.1109/tvcg.2020.3033652","url":null,"abstract":"","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":" ","pages":""},"PeriodicalIF":5.2,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45990745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-01DOI: 10.1109/tvcg.2020.3033682
{"title":"SciVis Program Committee","authors":"","doi":"10.1109/tvcg.2020.3033682","DOIUrl":"https://doi.org/10.1109/tvcg.2020.3033682","url":null,"abstract":"","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":" ","pages":""},"PeriodicalIF":5.2,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44210914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Dhanoa, C. Walchshofer, A. Hinterreiter, E. Gröller, M. Streit
Spreadsheet-based tools provide a simple yet effective way of calculating values, which makes them the number-one choice for building and formalizing simple models for budget planning and many other applications. A cell in a spreadsheet holds one specific value and gives a discrete, overprecise view of the underlying model. Therefore, spreadsheets are of limited use when investigating the inherent uncertainties of such models and answering what-if questions. Existing extensions typically require a complex modeling process that cannot easily be embedded in a tabular layout. In Fuzzy Spreadsheet, a cell can hold and display a distribution of values. This integrated uncertainty-handling immediately conveys sensitivity and robustness information. The fuzzification of the cells enables calculations not only with precise values but also with distributions, and probabilities. We conservatively added and carefully crafted visuals to maintain the look and feel of a traditional spreadsheet while facilitating what-if analyses. Given a user-specified reference cell, Fuzzy Spreadsheet automatically extracts and visualizes contextually relevant information, such as impact, uncertainty, and degree of neighborhood, for the selected and related cells. To evaluate its usability and the perceived mental effort required, we conducted a user study. The results show that our approach outperforms traditional spreadsheets in terms of answer correctness, response time, and perceived mental effort in almost all tasks tested.
{"title":"Fuzzy Spreadsheet: Understanding and Exploring Uncertainties in Tabular Calculations","authors":"V. Dhanoa, C. Walchshofer, A. Hinterreiter, E. Gröller, M. Streit","doi":"10.31219/osf.io/j5g4b","DOIUrl":"https://doi.org/10.31219/osf.io/j5g4b","url":null,"abstract":"Spreadsheet-based tools provide a simple yet effective way of calculating values, which makes them the number-one choice for building and formalizing simple models for budget planning and many other applications. A cell in a spreadsheet holds one specific value and gives a discrete, overprecise view of the underlying model. Therefore, spreadsheets are of limited use when investigating the inherent uncertainties of such models and answering what-if questions. Existing extensions typically require a complex modeling process that cannot easily be embedded in a tabular layout. In Fuzzy Spreadsheet, a cell can hold and display a distribution of values. This integrated uncertainty-handling immediately conveys sensitivity and robustness information. The fuzzification of the cells enables calculations not only with precise values but also with distributions, and probabilities. We conservatively added and carefully crafted visuals to maintain the look and feel of a traditional spreadsheet while facilitating what-if analyses. Given a user-specified reference cell, Fuzzy Spreadsheet automatically extracts and visualizes contextually relevant information, such as impact, uncertainty, and degree of neighborhood, for the selected and related cells. To evaluate its usability and the perceived mental effort required, we conducted a user study. The results show that our approach outperforms traditional spreadsheets in terms of answer correctness, response time, and perceived mental effort in almost all tasks tested.","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":" ","pages":"1-1"},"PeriodicalIF":5.2,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48176786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}