This study focuses on the motion planning and risk evaluation of unprotected left turns at occluded intersections for autonomous vehicles. In this paper, we present an interactive motion planning controller that combines Cross-Observability Optimistic-Pessimistic Safe Reinforcement Learning (COOP-SRL) and Nonlinear Model Predictive Control (NMPC), with consideration of the uncertain potential risk of occluded zone, the trade-off between safety and efficiency, and the dynamic interaction between vehicles. The proposed COOP-SRL algorithm integrates fully and partially observable policies through cross-observability soft imitation learning to leverage the expert guidance and improve learning efficiency. Moreover, the optimistic exploration policy and pessimism safe constraint are adopted to provide an adaptive safe strategy without hindering the exploration during learning process. Finally, the evaluations of the proposed controller were conducted in occluded intersection scenarios with various traffic density level, which indicate that the proposed method outperforms both the optimization-based and learning-based baselines in qualitative and quantitative indexes.
{"title":"Cross-Observability Optimistic-Pessimistic Safe Reinforcement Learning for Interactive Motion Planning With Visual Occlusion","authors":"Xiaohui Hou;Minggang Gan;Wei Wu;Yuan Ji;Shiyue Zhao;Jie Chen","doi":"10.1109/TITS.2024.3443397","DOIUrl":"https://doi.org/10.1109/TITS.2024.3443397","url":null,"abstract":"This study focuses on the motion planning and risk evaluation of unprotected left turns at occluded intersections for autonomous vehicles. In this paper, we present an interactive motion planning controller that combines Cross-Observability Optimistic-Pessimistic Safe Reinforcement Learning (COOP-SRL) and Nonlinear Model Predictive Control (NMPC), with consideration of the uncertain potential risk of occluded zone, the trade-off between safety and efficiency, and the dynamic interaction between vehicles. The proposed COOP-SRL algorithm integrates fully and partially observable policies through cross-observability soft imitation learning to leverage the expert guidance and improve learning efficiency. Moreover, the optimistic exploration policy and pessimism safe constraint are adopted to provide an adaptive safe strategy without hindering the exploration during learning process. Finally, the evaluations of the proposed controller were conducted in occluded intersection scenarios with various traffic density level, which indicate that the proposed method outperforms both the optimization-based and learning-based baselines in qualitative and quantitative indexes.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"25 11","pages":"17602-17613"},"PeriodicalIF":7.9,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-23DOI: 10.1109/TITS.2024.3424808
Junfeng Zhang;Cheng Xie;Hongming Cai;Weiming Shen;Rui Yang
Real-Time Traffic Flow Prediction (RT-TFP) is one of the critical technologies for implementing the Intelligent Transportation System (ITS), enabling rapid and accurate prediction of real-time traffic flow at intersections. RT-TFP typically needs to be deployed on-site edge devices for real-time traffic flow calculation that requires low inference latency and minimal computational resources. However, the existing Traffic Flow Prediction (TFP) models are generally based on spatiotemporal graph neural networks (STGNNs), which are complex and require high computational resources and relatively high inference times that can hardly be deployed on edge devices. To this end, this work proposes a simple RT-TFP model, SpatioTemporal-MultiLayer Perceptron (ST-MLP), which requires low computational resources and inference times. The base idea of this work is to establish a spatio-temporal MLP model to replace the STGNN model for conducting the TFP, which is much faster and simpler. Specifically, first, a TempEncoder is proposed to encode the temporal information into the MLP features. Then, a Spatiotemporal Mixer is proposed to mix spatial information into the temporal-enriched MLP features. After, MLP features are distilled from a complex STGNN model to obtain a simple MLP that inherits complete Spatial-Temporal information of the traffic graph. The experimental results on four real-world datasets show the proposed model achieves competitive prediction accuracy with STGNN models in much fewer computational resources and lower prediction time costs. It is worth noting that, the proposed method is faster than the compared STGNNs by an average of 21.62 times (~10.81s $rightsquigarrow ~sim 0.50$