Pub Date : 2011-12-01Epub Date: 2011-10-18DOI: 10.1109/TNN.2011.2167720
Sau Wai Tung, Chai Quek, Cuntai Guan
There are generally two approaches to the design of a neural fuzzy system: 1) design by human experts, and 2) design through a self-organization of the numerical training data. While the former approach is highly subjective, the latter is commonly plagued by one or more of the following major problems: 1) an inconsistent rulebase; 2) the need for prior knowledge such as the number of clusters to be computed; 3) heuristically designed knowledge acquisition methodologies; and 4) the stability-plasticity tradeoff of the system. This paper presents a novel self-organizing neural fuzzy system, named Self-Adaptive Fuzzy Inference Network (SaFIN), to address the aforementioned deficiencies. The proposed SaFIN model employs a new clustering technique referred to as categorical learning-induced partitioning (CLIP), which draws inspiration from the behavioral category learning process demonstrated by humans. By employing the one-pass CLIP, SaFIN is able to incorporate new clusters in each input-output dimension when the existing clusters are not able to give a satisfactory representation of the incoming training data. This not only avoids the need for prior knowledge regarding the number of clusters needed for each input-output dimension, but also allows SaFIN the flexibility to incorporate new knowledge with old knowledge in the system. In addition, the self-automated rule formation mechanism proposed within SaFIN ensures that it obtains a consistent resultant rulebase. Subsequently, the proposed SaFIN model is employed in a series of benchmark simulations to demonstrate its efficiency as a self-organizing neural fuzzy system, and excellent performances have been achieved.
{"title":"SaFIN: a self-adaptive fuzzy inference network.","authors":"Sau Wai Tung, Chai Quek, Cuntai Guan","doi":"10.1109/TNN.2011.2167720","DOIUrl":"https://doi.org/10.1109/TNN.2011.2167720","url":null,"abstract":"<p><p>There are generally two approaches to the design of a neural fuzzy system: 1) design by human experts, and 2) design through a self-organization of the numerical training data. While the former approach is highly subjective, the latter is commonly plagued by one or more of the following major problems: 1) an inconsistent rulebase; 2) the need for prior knowledge such as the number of clusters to be computed; 3) heuristically designed knowledge acquisition methodologies; and 4) the stability-plasticity tradeoff of the system. This paper presents a novel self-organizing neural fuzzy system, named Self-Adaptive Fuzzy Inference Network (SaFIN), to address the aforementioned deficiencies. The proposed SaFIN model employs a new clustering technique referred to as categorical learning-induced partitioning (CLIP), which draws inspiration from the behavioral category learning process demonstrated by humans. By employing the one-pass CLIP, SaFIN is able to incorporate new clusters in each input-output dimension when the existing clusters are not able to give a satisfactory representation of the incoming training data. This not only avoids the need for prior knowledge regarding the number of clusters needed for each input-output dimension, but also allows SaFIN the flexibility to incorporate new knowledge with old knowledge in the system. In addition, the self-automated rule formation mechanism proposed within SaFIN ensures that it obtains a consistent resultant rulebase. Subsequently, the proposed SaFIN model is employed in a series of benchmark simulations to demonstrate its efficiency as a self-organizing neural fuzzy system, and excellent performances have been achieved.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 12","pages":"1928-40"},"PeriodicalIF":0.0,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2167720","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30082437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-12-01Epub Date: 2011-09-26DOI: 10.1109/TNN.2011.2167686
Qiang Liu, Tianyou Chai, Hong Wang, Si-Zhao Joe Qin
The continuous annealing process line (CAPL) of cold rolling is an important unit to improve the mechanical properties of steel strips in steel making. In continuous annealing processes, strip tension is an important factor, which indicates whether the line operates steadily. Abnormal tension profile distribution along the production line can lead to strip break and roll slippage. Therefore, it is essential to estimate the whole tension profile in order to prevent the occurrence of faults. However, in real annealing processes, only a limited number of strip tension sensors are installed along the machine direction. Since the effects of strip temperature, gas flow, bearing friction, strip inertia, and roll eccentricity can lead to nonlinear tension dynamics, it is difficult to apply the first-principles induced model to estimate the tension profile distribution. In this paper, a novel data-based hybrid tension estimation and fault diagnosis method is proposed to estimate the unmeasured tension between two neighboring rolls. The main model is established by an observer-based method using a limited number of measured tensions, speeds, and currents of each roll, where the tension error compensation model is designed by applying neural networks principal component regression. The corresponding tension fault diagnosis method is designed using the estimated tensions. Finally, the proposed tension estimation and fault diagnosis method was applied to a real CAPL in a steel-making company, demonstrating the effectiveness of the proposed method.
{"title":"Data-based hybrid tension estimation and fault diagnosis of cold rolling continuous annealing processes.","authors":"Qiang Liu, Tianyou Chai, Hong Wang, Si-Zhao Joe Qin","doi":"10.1109/TNN.2011.2167686","DOIUrl":"https://doi.org/10.1109/TNN.2011.2167686","url":null,"abstract":"<p><p>The continuous annealing process line (CAPL) of cold rolling is an important unit to improve the mechanical properties of steel strips in steel making. In continuous annealing processes, strip tension is an important factor, which indicates whether the line operates steadily. Abnormal tension profile distribution along the production line can lead to strip break and roll slippage. Therefore, it is essential to estimate the whole tension profile in order to prevent the occurrence of faults. However, in real annealing processes, only a limited number of strip tension sensors are installed along the machine direction. Since the effects of strip temperature, gas flow, bearing friction, strip inertia, and roll eccentricity can lead to nonlinear tension dynamics, it is difficult to apply the first-principles induced model to estimate the tension profile distribution. In this paper, a novel data-based hybrid tension estimation and fault diagnosis method is proposed to estimate the unmeasured tension between two neighboring rolls. The main model is established by an observer-based method using a limited number of measured tensions, speeds, and currents of each roll, where the tension error compensation model is designed by applying neural networks principal component regression. The corresponding tension fault diagnosis method is designed using the estimated tensions. Finally, the proposed tension estimation and fault diagnosis method was applied to a real CAPL in a steel-making company, demonstrating the effectiveness of the proposed method.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 12","pages":"2284-95"},"PeriodicalIF":0.0,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2167686","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30026910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-12-01Epub Date: 2011-10-06DOI: 10.1109/TNN.2011.2168537
Simone Fiori
This brief tackles the problem of learning over the complex-valued matrix-hypersphere S(α)(n,p)(C). The developed learning theory is formulated in terms of Riemannian-gradient-based optimization of a regular criterion function and is implemented by a geodesic-stepping method. The stepping method is equipped with a geodesic-search sub-algorithm to compute the optimal learning stepsize at any step. Numerical results show the effectiveness of the developed learning method and of its implementation.
{"title":"Riemannian-gradient-based learning on the complex matrix-hypersphere.","authors":"Simone Fiori","doi":"10.1109/TNN.2011.2168537","DOIUrl":"https://doi.org/10.1109/TNN.2011.2168537","url":null,"abstract":"<p><p>This brief tackles the problem of learning over the complex-valued matrix-hypersphere S(α)(n,p)(C). The developed learning theory is formulated in terms of Riemannian-gradient-based optimization of a regular criterion function and is implemented by a geodesic-stepping method. The stepping method is equipped with a geodesic-search sub-algorithm to compute the optimal learning stepsize at any step. Numerical results show the effectiveness of the developed learning method and of its implementation.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 12","pages":"2132-8"},"PeriodicalIF":0.0,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2168537","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30196885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-12-01Epub Date: 2011-11-24DOI: 10.1109/TNN.2011.2175947
Dong Shen, Zhongsheng Hou
Iterative learning control (ILC) is considered for both deterministic and stochastic systems with unknown control direction. To deal with the unknown control direction, a novel switching mechanism, based only on available system tracking error data, is first proposed. Then two ILC algorithms combined with the novel switching mechanism are designed for both deterministic and stochastic systems. It is proved that the ILC algorithms would switch to the right control direction and stick to it after a finite number of cycles. Moreover, the input sequence converges to the desired one under the deterministic case. The input sequence converges to the optimal one with probability 1 under stochastic case and the resulting tracking error tends to its minimal value.
{"title":"Iterative learning control with unknown control direction: a novel data-based approach.","authors":"Dong Shen, Zhongsheng Hou","doi":"10.1109/TNN.2011.2175947","DOIUrl":"https://doi.org/10.1109/TNN.2011.2175947","url":null,"abstract":"<p><p>Iterative learning control (ILC) is considered for both deterministic and stochastic systems with unknown control direction. To deal with the unknown control direction, a novel switching mechanism, based only on available system tracking error data, is first proposed. Then two ILC algorithms combined with the novel switching mechanism are designed for both deterministic and stochastic systems. It is proved that the ILC algorithms would switch to the right control direction and stick to it after a finite number of cycles. Moreover, the input sequence converges to the desired one under the deterministic case. The input sequence converges to the optimal one with probability 1 under stochastic case and the resulting tracking error tends to its minimal value.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 12","pages":"2237-49"},"PeriodicalIF":0.0,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2175947","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30290088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-12-01Epub Date: 2011-10-31DOI: 10.1109/TNN.2011.2171991
Junping Zhang, Qi Wang, Li He, Zhi-Hua Zhou
A lot of nonlinear embedding techniques have been developed to recover the intrinsic low-dimensional manifolds embedded in the high-dimensional space. However, the quantitative evaluation criteria are less studied in literature. The embedding quality is usually evaluated by visualization which is subjective and qualitative. The few existing evaluation methods to estimate the embedding quality, neighboring preservation rate for example, are not widely applicable. In this paper, we propose several novel criteria for quantitative evaluation, by considering the global smoothness and co-directional consistence of the nonlinear embedding algorithms. The proposed criteria are geometrically intuitive, simple, and easy to implement with a low computational cost. Experiments show that our criteria capture some new geometrical properties of the nonlinear embedding algorithms, and can be used as a guidance to deal with the embedding of the out-of-samples.
{"title":"Quantitative analysis of nonlinear embedding.","authors":"Junping Zhang, Qi Wang, Li He, Zhi-Hua Zhou","doi":"10.1109/TNN.2011.2171991","DOIUrl":"https://doi.org/10.1109/TNN.2011.2171991","url":null,"abstract":"<p><p>A lot of nonlinear embedding techniques have been developed to recover the intrinsic low-dimensional manifolds embedded in the high-dimensional space. However, the quantitative evaluation criteria are less studied in literature. The embedding quality is usually evaluated by visualization which is subjective and qualitative. The few existing evaluation methods to estimate the embedding quality, neighboring preservation rate for example, are not widely applicable. In this paper, we propose several novel criteria for quantitative evaluation, by considering the global smoothness and co-directional consistence of the nonlinear embedding algorithms. The proposed criteria are geometrically intuitive, simple, and easy to implement with a low computational cost. Experiments show that our criteria capture some new geometrical properties of the nonlinear embedding algorithms, and can be used as a guidance to deal with the embedding of the out-of-samples.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":" ","pages":"1987-98"},"PeriodicalIF":0.0,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2171991","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40131703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-12-01Epub Date: 2011-09-29DOI: 10.1109/TNN.2011.2168423
Qing Song
In this paper, we propose a robust initialization of a Jordan network with a recurrent constrained learning (RIJNRCL) algorithm for multilayered recurrent neural networks (RNNs). This novel algorithm is based on the constrained learning concept of the Jordan network with a recurrent sensitivity and weight convergence analysis, which is used to obtain a tradeoff between the training and testing errors. In addition to using classical techniques for the adaptive learning rate and the adaptive dead zone, RIJNRCL employs a recurrent constrained parameter matrix to switch off excessive contributions from the hidden layer neurons based on weight convergence and stability conditions of the multilayered RNNs. It is well known that a good response from the hidden layer neurons and proper initialization play a dominant role in avoiding local minima in multilayered RNNs. The new RIJNRCL algorithm solves the twin problems of weight initialization and selection of the hidden layer neurons via a novel recurrent sensitivity ratio analysis. We provide the detailed steps for using RIJNRCL in a few benchmark time-series prediction problems and show that the proposed algorithm achieves superior generalization performance.
{"title":"Robust initialization of a Jordan network with recurrent constrained learning.","authors":"Qing Song","doi":"10.1109/TNN.2011.2168423","DOIUrl":"https://doi.org/10.1109/TNN.2011.2168423","url":null,"abstract":"<p><p>In this paper, we propose a robust initialization of a Jordan network with a recurrent constrained learning (RIJNRCL) algorithm for multilayered recurrent neural networks (RNNs). This novel algorithm is based on the constrained learning concept of the Jordan network with a recurrent sensitivity and weight convergence analysis, which is used to obtain a tradeoff between the training and testing errors. In addition to using classical techniques for the adaptive learning rate and the adaptive dead zone, RIJNRCL employs a recurrent constrained parameter matrix to switch off excessive contributions from the hidden layer neurons based on weight convergence and stability conditions of the multilayered RNNs. It is well known that a good response from the hidden layer neurons and proper initialization play a dominant role in avoiding local minima in multilayered RNNs. The new RIJNRCL algorithm solves the twin problems of weight initialization and selection of the hidden layer neurons via a novel recurrent sensitivity ratio analysis. We provide the detailed steps for using RIJNRCL in a few benchmark time-series prediction problems and show that the proposed algorithm achieves superior generalization performance.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 12","pages":"2460-73"},"PeriodicalIF":0.0,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2168423","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30181111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-12-01Epub Date: 2011-10-06DOI: 10.1109/TNN.2011.2169497
Stelios D Bekiros
Reliable forecasting techniques for financial applications are important for investors either to make profit by trading or hedge against potential market risks. In this paper the efficiency of a trading strategy based on the utilization of a neurofuzzy model is investigated, in order to predict the direction of the market in case of FTSE100 and New York stock exchange returns. Moreover, it is demonstrated that the incorporation of the estimates of the conditional volatility changes, according to the theory of Bekaert and Wu (2000), strongly enhances the predictability of the neurofuzzy model, as it provides valid information for a potential turning point on the next trading day. The total return of the proposed volatility-based neurofuzzy model including transaction costs is consistently superior to that of a Markov-switching model, a feedforward neural network as well as of a buy & hold strategy. The findings can be justified by invoking either the "volatility feedback" theory or the existence of portfolio insurance schemes in the equity markets and are also consistent with the view that volatility dependence produces sign dependence. Thus, a trading strategy based on the proposed neurofuzzy model might allow investors to earn higher returns than the passive portfolio management strategy.
{"title":"Sign prediction and volatility dynamics with hybrid neurofuzzy approaches.","authors":"Stelios D Bekiros","doi":"10.1109/TNN.2011.2169497","DOIUrl":"https://doi.org/10.1109/TNN.2011.2169497","url":null,"abstract":"<p><p>Reliable forecasting techniques for financial applications are important for investors either to make profit by trading or hedge against potential market risks. In this paper the efficiency of a trading strategy based on the utilization of a neurofuzzy model is investigated, in order to predict the direction of the market in case of FTSE100 and New York stock exchange returns. Moreover, it is demonstrated that the incorporation of the estimates of the conditional volatility changes, according to the theory of Bekaert and Wu (2000), strongly enhances the predictability of the neurofuzzy model, as it provides valid information for a potential turning point on the next trading day. The total return of the proposed volatility-based neurofuzzy model including transaction costs is consistently superior to that of a Markov-switching model, a feedforward neural network as well as of a buy & hold strategy. The findings can be justified by invoking either the \"volatility feedback\" theory or the existence of portfolio insurance schemes in the equity markets and are also consistent with the view that volatility dependence produces sign dependence. Thus, a trading strategy based on the proposed neurofuzzy model might allow investors to earn higher returns than the passive portfolio management strategy.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 12","pages":"2353-62"},"PeriodicalIF":0.0,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2169497","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30196888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-12-01Epub Date: 2011-10-13DOI: 10.1109/TNN.2011.2168538
Huaguang Zhang, Lili Cui, Xin Zhang, Yanhong Luo
In this paper, a novel data-driven robust approximate optimal tracking control scheme is proposed for unknown general nonlinear systems by using the adaptive dynamic programming (ADP) method. In the design of the controller, only available input-output data is required instead of known system dynamics. A data-driven model is established by a recurrent neural network (NN) to reconstruct the unknown system dynamics using available input-output data. By adding a novel adjustable term related to the modeling error, the resultant modeling error is first guaranteed to converge to zero. Then, based on the obtained data-driven model, the ADP method is utilized to design the approximate optimal tracking controller, which consists of the steady-state controller and the optimal feedback controller. Further, a robustifying term is developed to compensate for the NN approximation errors introduced by implementing the ADP method. Based on Lyapunov approach, stability analysis of the closed-loop system is performed to show that the proposed controller guarantees the system state asymptotically tracking the desired trajectory. Additionally, the obtained control input is proven to be close to the optimal control input within a small bound. Finally, two numerical examples are used to demonstrate the effectiveness of the proposed control scheme.
{"title":"Data-driven robust approximate optimal tracking control for unknown general nonlinear systems using adaptive dynamic programming method.","authors":"Huaguang Zhang, Lili Cui, Xin Zhang, Yanhong Luo","doi":"10.1109/TNN.2011.2168538","DOIUrl":"https://doi.org/10.1109/TNN.2011.2168538","url":null,"abstract":"<p><p>In this paper, a novel data-driven robust approximate optimal tracking control scheme is proposed for unknown general nonlinear systems by using the adaptive dynamic programming (ADP) method. In the design of the controller, only available input-output data is required instead of known system dynamics. A data-driven model is established by a recurrent neural network (NN) to reconstruct the unknown system dynamics using available input-output data. By adding a novel adjustable term related to the modeling error, the resultant modeling error is first guaranteed to converge to zero. Then, based on the obtained data-driven model, the ADP method is utilized to design the approximate optimal tracking controller, which consists of the steady-state controller and the optimal feedback controller. Further, a robustifying term is developed to compensate for the NN approximation errors introduced by implementing the ADP method. Based on Lyapunov approach, stability analysis of the closed-loop system is performed to show that the proposed controller guarantees the system state asymptotically tracking the desired trajectory. Additionally, the obtained control input is proven to be close to the optimal control input within a small bound. Finally, two numerical examples are used to demonstrate the effectiveness of the proposed control scheme.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 12","pages":"2226-36"},"PeriodicalIF":0.0,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2168538","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30205845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-12-01Epub Date: 2011-11-10DOI: 10.1109/TNN.2011.2173804
Mircea-Bogdan Rădac, Radu-Emil Precup, Emil M Petriu, Stefan Preitl
This paper treats the application of two data-based model-free gradient-based stochastic optimization techniques, i.e., iterative feedback tuning (IFT) and simultaneous perturbation stochastic approximation (SPSA), to servo system control. The representative case of controlled processes modeled by second-order systems with an integral component is discussed. New IFT and SPSA algorithms are suggested to tune the parameters of the state feedback controllers with an integrator in the linear-quadratic-Gaussian (LQG) problem formulation. An implementation case study concerning the LQG-based design of an angular position controller for a direct current servo system laboratory equipment is included to highlight the pros and cons of IFT and SPSA from an application's point of view. The comparison of IFT and SPSA algorithms is focused on an insight into their implementation.
{"title":"Application of IFT and SPSA to servo system control.","authors":"Mircea-Bogdan Rădac, Radu-Emil Precup, Emil M Petriu, Stefan Preitl","doi":"10.1109/TNN.2011.2173804","DOIUrl":"https://doi.org/10.1109/TNN.2011.2173804","url":null,"abstract":"<p><p>This paper treats the application of two data-based model-free gradient-based stochastic optimization techniques, i.e., iterative feedback tuning (IFT) and simultaneous perturbation stochastic approximation (SPSA), to servo system control. The representative case of controlled processes modeled by second-order systems with an integral component is discussed. New IFT and SPSA algorithms are suggested to tune the parameters of the state feedback controllers with an integrator in the linear-quadratic-Gaussian (LQG) problem formulation. An implementation case study concerning the LQG-based design of an angular position controller for a direct current servo system laboratory equipment is included to highlight the pros and cons of IFT and SPSA from an application's point of view. The comparison of IFT and SPSA algorithms is focused on an insight into their implementation.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 12","pages":"2363-75"},"PeriodicalIF":0.0,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2173804","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30254569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-12-01Epub Date: 2011-11-14DOI: 10.1109/TNN.2011.2165853
Gang Li, Baosheng Liu, S Joe Qin, Donghua Zhou
In data-based monitoring field, the nonlinear iterative partial least squares procedure has been a useful tool for process data modeling, which is also the foundation of projection to latent structures (PLS) models. To describe the dynamic processes properly, a dynamic PLS algorithm is proposed in this paper for dynamic process modeling, which captures the dynamic correlation between the measurement block and quality data block. For the purpose of process monitoring, a dynamic total PLS (T-PLS) model is presented to decompose the measurement block into four subspaces. The new model is the dynamic extension of the T-PLS model, which is efficient for detecting quality-related abnormal situation. Several examples are given to show the effectiveness of dynamic T-PLS models and the corresponding fault detection methods.
{"title":"Quality relevant data-driven modeling and monitoring of multivariate dynamic processes: the dynamic T-PLS approach.","authors":"Gang Li, Baosheng Liu, S Joe Qin, Donghua Zhou","doi":"10.1109/TNN.2011.2165853","DOIUrl":"https://doi.org/10.1109/TNN.2011.2165853","url":null,"abstract":"<p><p>In data-based monitoring field, the nonlinear iterative partial least squares procedure has been a useful tool for process data modeling, which is also the foundation of projection to latent structures (PLS) models. To describe the dynamic processes properly, a dynamic PLS algorithm is proposed in this paper for dynamic process modeling, which captures the dynamic correlation between the measurement block and quality data block. For the purpose of process monitoring, a dynamic total PLS (T-PLS) model is presented to decompose the measurement block into four subspaces. The new model is the dynamic extension of the T-PLS model, which is efficient for detecting quality-related abnormal situation. Several examples are given to show the effectiveness of dynamic T-PLS models and the corresponding fault detection methods.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 12","pages":"2262-71"},"PeriodicalIF":0.0,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2165853","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30272516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}