Ming-Xing Xu, Yu-Ling He, Wen Zhang, De-Rui Dai, Zi-Xiang Fu, Yu-Song Zhang, David Gerada
This paper provides an in-depth study of the winding mechanical properties in generators under rotor interturn short circuit (RISC) cases. Unlike previous studies, this research investigates not only the influence of RISC degrees, but also the RISC positions and the eccentricity on the winding mechanical properties. The electromagnetic force (EF) formulas as well as the electromagnetic-structure coupling model are first proposed to derive the mechanical winding response characteristics, such as the vibration, deformation, the strain, and the stress. Subsequently, both finite element analysis (FEA) and experimental investigations are conducted to validate the theoretical findings. The results reveal that RISC introduces additional harmonics to the EF. Furthermore, as the eccentricity/RISC degree or the distance between the short circuit position and the N -pole increases, the end winding vibrations become more pronounced. When comparing single eccentricity and RISC faults to cases where both faults occur simultaneously, it is observed that the combined faults have a more detrimental impact on the end winding mechanical properties. © 2024 Institute of Electrical Engineers of Japan and Wiley Periodicals LLC.
求助PDF
{"title":"Comprehensive Investigation of Winding Mechanical Properties in Generators under RISC: Impact of Position, Degree, and Eccentricity","authors":"Ming-Xing Xu, Yu-Ling He, Wen Zhang, De-Rui Dai, Zi-Xiang Fu, Yu-Song Zhang, David Gerada","doi":"10.1002/tee.24143","DOIUrl":"10.1002/tee.24143","url":null,"abstract":"<p>This paper provides an in-depth study of the winding mechanical properties in generators under rotor interturn short circuit (RISC) cases. Unlike previous studies, this research investigates not only the influence of RISC degrees, but also the RISC positions and the eccentricity on the winding mechanical properties. The electromagnetic force (EF) formulas as well as the electromagnetic-structure coupling model are first proposed to derive the mechanical winding response characteristics, such as the vibration, deformation, the strain, and the stress. Subsequently, both finite element analysis (FEA) and experimental investigations are conducted to validate the theoretical findings. The results reveal that RISC introduces additional harmonics to the EF. Furthermore, as the eccentricity/RISC degree or the distance between the short circuit position and the <i>N</i>-pole increases, the end winding vibrations become more pronounced. When comparing single eccentricity and RISC faults to cases where both faults occur simultaneously, it is observed that the combined faults have a more detrimental impact on the end winding mechanical properties. © 2024 Institute of Electrical Engineers of Japan and Wiley Periodicals LLC.</p>","PeriodicalId":13435,"journal":{"name":"IEEJ Transactions on Electrical and Electronic Engineering","volume":"19 11","pages":"1842-1857"},"PeriodicalIF":1.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141361524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
引用
批量引用