首页 > 最新文献

Biotechnology Journal最新文献

英文 中文
Development of a biotechnology process for the production of a novel hyperglycosylated long-acting recombinant bovine follicle-stimulating hormone 开发生产新型高糖基化长效重组牛卵泡刺激素的生物技术工艺。
IF 3.2 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-06-20 DOI: 10.1002/biot.202400260
Javier Villarraza, Sebastián Antuña, María Belén Tardivo, María Celeste Rodríguez, Pablo Uriel Díaz, Ulises Sebastián Notaro, Hugo Héctor Ortega, Claudio Prieto, Natalia Ceaglio

Follicle-stimulating hormone (FSH) is an important protein used for bovine ovarian hyperstimulation in multiple ovulation and embryo transfer technology (MOET). Several attempts to produce bovine FSH (bFSH) in recombinant systems have been reported, nonetheless, up to date, the most commonly used products are partially purified preparations derived from porcine or ovine (pFSH or oFSH) pituitaries. Here we describe the development of a biotechnology process to produce a novel, hyperglycosylated, long-acting recombinant bFSH (LA-rbFSH) by fusing copies of a highly O-glycosylated peptide. LA-rbFSH and a nonmodified version (rbFSH) were produced in suspension CHO cell cultures and purified by IMAC with high purity levels (>99%). LA-rbFSH presented a higher glycosylation degree and sialic acid content than rbFSH. It also demonstrated a notable improvement in pharmacokinetic properties after administration to rats, including a higher concentration in plasma and a significant (seven-fold) reduction in apparent clearance (CLapp). In addition, the in vivo specific bioactivity of LA-rbFSH in rats was 2.4-fold higher compared to rbFSH. These results postulate this new molecule as an attractive substitute for commercially available porcine pituitary-derived products.

卵泡刺激素(FSH)是多排卵和胚胎移植技术(MOET)中用于牛卵巢过度刺激的一种重要蛋白质。尽管迄今为止,最常用的产品是从猪或卵巢垂体(pFSH 或 oFSH)提取的部分纯化制剂。在这里,我们描述了一种生物技术的开发过程,通过融合高O-糖基化肽的拷贝来生产新型、高糖基化、长效重组bFSH(LA-rbFSH)。LA-rbFSH 和非修饰型(rbFSH)在悬浮 CHO 细胞培养物中产生,并通过 IMAC 方法纯化,纯度很高(>99%)。与 rbFSH 相比,LA-rbFSH 的糖基化程度和硅酸含量更高。给大鼠用药后,它的药代动力学特性也有明显改善,包括血浆浓度更高,表观清除率(CLapp)显著降低(7 倍)。此外,LA-rbFSH 在大鼠体内的特异性生物活性比 rbFSH 高 2.4 倍。这些结果表明,这种新分子可以替代市售的猪垂体衍生产品。
{"title":"Development of a biotechnology process for the production of a novel hyperglycosylated long-acting recombinant bovine follicle-stimulating hormone","authors":"Javier Villarraza,&nbsp;Sebastián Antuña,&nbsp;María Belén Tardivo,&nbsp;María Celeste Rodríguez,&nbsp;Pablo Uriel Díaz,&nbsp;Ulises Sebastián Notaro,&nbsp;Hugo Héctor Ortega,&nbsp;Claudio Prieto,&nbsp;Natalia Ceaglio","doi":"10.1002/biot.202400260","DOIUrl":"10.1002/biot.202400260","url":null,"abstract":"<p>Follicle-stimulating hormone (FSH) is an important protein used for bovine ovarian hyperstimulation in multiple ovulation and embryo transfer technology (MOET). Several attempts to produce bovine FSH (bFSH) in recombinant systems have been reported, nonetheless, up to date, the most commonly used products are partially purified preparations derived from porcine or ovine (pFSH or oFSH) pituitaries. Here we describe the development of a biotechnology process to produce a novel, hyperglycosylated, long-acting recombinant bFSH (LA-rbFSH) by fusing copies of a highly O-glycosylated peptide. LA-rbFSH and a nonmodified version (rbFSH) were produced in suspension CHO cell cultures and purified by IMAC with high purity levels (&gt;99%). LA-rbFSH presented a higher glycosylation degree and sialic acid content than rbFSH. It also demonstrated a notable improvement in pharmacokinetic properties after administration to rats, including a higher concentration in plasma and a significant (seven-fold) reduction in apparent clearance (<i>CL</i><sub>app</sub>). In addition, the in vivo specific bioactivity of LA-rbFSH in rats was 2.4-fold higher compared to rbFSH. These results postulate this new molecule as an attractive substitute for commercially available porcine pituitary-derived products.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 6","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141425822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking the formate utilization of wild-type Yarrowia lipolytica through adaptive laboratory evolution 通过适应性实验室进化揭示野生型脂溶性亚罗桿菌对甲酸盐的利用。
IF 3.2 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-06-20 DOI: 10.1002/biot.202400290
Qian Chen, Yunhong Chen, Zeming Hou, Yuyue Ma, Jianfeng Huang, Zhidan Zhang, Yefu Chen, Xue Yang, Yanfei Zhang, Guoping Zhao

Synthetic biology is contributing to the advancement of the global net-negative carbon economy, with emphasis on formate as a member of the one-carbon substrate garnering substantial attention. In this study, we employed base editing tools to facilitate adaptive evolution, achieving a formate tolerance of Yarrowia lipolytica to 1 M within 2 months. This effort resulted in two mutant strains, designated as M25-70 and M25-14, both exhibiting significantly enhanced formate utilization capabilities. Transcriptomic analysis revealed the upregulation of nine endogenous genes encoding formate dehydrogenases when cultivated utilizing formate as the sole carbon source. Furthermore, we uncovered the pivotal role of the glyoxylate and threonine-based serine pathway in enhancing glycine supply to promote formate assimilation. The full potential of Y. lipolytica to tolerate and utilize formate establishing the foundation for pyruvate carboxylase-based carbon sequestration pathways. Importantly, this study highlights the existence of a natural formate metabolic pathway in Y. lipolytica.

合成生物学有助于推动全球净负碳经济的发展,而甲酸盐作为单碳底物的一种,受到了广泛关注。在这项研究中,我们利用碱基编辑工具促进适应性进化,在两个月内实现了脂肪溶解亚罗菌对 1 M 甲酸盐的耐受性。这一努力产生了两个突变菌株,分别命名为 M25-70 和 M25-14,它们都表现出显著增强的甲酸利用能力。转录组分析表明,在利用甲酸作为唯一碳源进行培养时,九个编码甲酸脱氢酶的内源基因上调。此外,我们还发现了乙醛酸和苏氨酸丝氨酸途径在增加甘氨酸供应以促进甲酸同化方面的关键作用。脂溶性酵母菌耐受和利用甲酸盐的全部潜力为基于丙酮酸羧化酶的固碳途径奠定了基础。重要的是,这项研究强调了脂溶性酵母菌中存在天然的甲酸代谢途径。
{"title":"Unlocking the formate utilization of wild-type Yarrowia lipolytica through adaptive laboratory evolution","authors":"Qian Chen,&nbsp;Yunhong Chen,&nbsp;Zeming Hou,&nbsp;Yuyue Ma,&nbsp;Jianfeng Huang,&nbsp;Zhidan Zhang,&nbsp;Yefu Chen,&nbsp;Xue Yang,&nbsp;Yanfei Zhang,&nbsp;Guoping Zhao","doi":"10.1002/biot.202400290","DOIUrl":"10.1002/biot.202400290","url":null,"abstract":"<p>Synthetic biology is contributing to the advancement of the global net-negative carbon economy, with emphasis on formate as a member of the one-carbon substrate garnering substantial attention. In this study, we employed base editing tools to facilitate adaptive evolution, achieving a formate tolerance of <i>Yarrowia lipolytica</i> to 1 M within 2 months. This effort resulted in two mutant strains, designated as M25-70 and M25-14, both exhibiting significantly enhanced formate utilization capabilities. Transcriptomic analysis revealed the upregulation of nine endogenous genes encoding formate dehydrogenases when cultivated utilizing formate as the sole carbon source. Furthermore, we uncovered the pivotal role of the glyoxylate and threonine-based serine pathway in enhancing glycine supply to promote formate assimilation. The full potential of <i>Y. lipolytica</i> to tolerate and utilize formate establishing the foundation for pyruvate carboxylase-based carbon sequestration pathways. Importantly, this study highlights the existence of a natural formate metabolic pathway in <i>Y. lipolytica</i>.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 6","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141425825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional role of geminivirus encoded proteins in the host: Past and present geminivirus 编码蛋白在宿主体内的功能作用:过去与现在。
IF 3.2 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-06-20 DOI: 10.1002/biot.202300736
Hira Kamal, Muhammad Mubashar Zafar, Abdul Razzaq, Aqsa Parvaiz, Sezai Ercisli, Fei Qiao, Xuefei Jiang

During plant–pathogen interaction, plant exhibits a strong defense system utilizing diverse groups of proteins to suppress the infection and subsequent establishment of the pathogen. However, in response, pathogens trigger an anti-silencing mechanism to overcome the host defense machinery. Among plant viruses, geminiviruses are the second largest virus family with a worldwide distribution and continue to be production constraints to food, feed, and fiber crops. These viruses are spread by a diverse group of insects, predominantly by whiteflies, and are characterized by a single-stranded DNA (ssDNA) genome coding for four to eight proteins that facilitate viral infection. The most effective means to managing these viruses is through an integrated disease management strategy that includes virus-resistant cultivars, vector management, and cultural practices. Dynamic changes in this virus family enable the species to manipulate their genome organization to respond to external changes in the environment. Therefore, the evolutionary nature of geminiviruses leads to new and novel approaches for developing virus-resistant cultivars and it is essential to study molecular ecology and evolution of geminiviruses. This review summarizes the multifunctionality of each geminivirus-encoded protein. These protein-based interactions trigger the abrupt changes in the host methyl cycle and signaling pathways that turn over protein normal production and impair the plant antiviral defense system. Studying these geminivirus interactions localized at cytoplasm-nucleus could reveal a more clear picture of host–pathogen relation. Data collected from this antagonistic relationship among geminivirus, vector, and its host, will provide extensive knowledge on their virulence mode and diversity with climate change.

在植物与病原体相互作用的过程中,植物表现出强大的防御系统,利用各种蛋白质抑制病原体的感染和随后的建立。然而,作为回应,病原体会触发反抑制机制来克服宿主防御机制。在植物病毒中,geminiviruses 是第二大病毒家族,分布于世界各地,并一直制约着粮食、饲料和纤维作物的生产。这些病毒由不同种类的昆虫传播,主要是粉虱,其特点是单链 DNA(ssDNA)基因组编码四到八种促进病毒感染的蛋白质。管理这些病毒的最有效方法是采取综合病害管理策略,包括抗病毒栽培品种、病媒管理和栽培措施。该病毒家族的动态变化使该物种能够操纵其基因组组织,以应对外部环境的变化。因此, geminiviruses 的进化特性导致了开发抗病毒栽培品种的新方法,研究 geminiviruses 的分子生态学和进化至关重要。本综述总结了每种 geminivirus编码蛋白的多功能性。这些基于蛋白质的相互作用会引发宿主甲基循环和信号通路的突然变化,从而使蛋白质的正常生产发生逆转并损害植物的抗病毒防御系统。研究这些定位于细胞质-细胞核的 geminivirus 相互作用可以更清楚地揭示宿主与病原体的关系。从 geminivirus、病媒及其宿主之间的这种拮抗关系中收集到的数据,将为了解它们的致病模式和随着气候变化的多样性提供广泛的知识。
{"title":"Functional role of geminivirus encoded proteins in the host: Past and present","authors":"Hira Kamal,&nbsp;Muhammad Mubashar Zafar,&nbsp;Abdul Razzaq,&nbsp;Aqsa Parvaiz,&nbsp;Sezai Ercisli,&nbsp;Fei Qiao,&nbsp;Xuefei Jiang","doi":"10.1002/biot.202300736","DOIUrl":"10.1002/biot.202300736","url":null,"abstract":"<p>During plant–pathogen interaction, plant exhibits a strong defense system utilizing diverse groups of proteins to suppress the infection and subsequent establishment of the pathogen. However, in response, pathogens trigger an anti-silencing mechanism to overcome the host defense machinery. Among plant viruses, geminiviruses are the second largest virus family with a worldwide distribution and continue to be production constraints to food, feed, and fiber crops. These viruses are spread by a diverse group of insects, predominantly by whiteflies, and are characterized by a single-stranded DNA (ssDNA) genome coding for four to eight proteins that facilitate viral infection. The most effective means to managing these viruses is through an integrated disease management strategy that includes virus-resistant cultivars, vector management, and cultural practices. Dynamic changes in this virus family enable the species to manipulate their genome organization to respond to external changes in the environment. Therefore, the evolutionary nature of geminiviruses leads to new and novel approaches for developing virus-resistant cultivars and it is essential to study molecular ecology and evolution of geminiviruses. This review summarizes the multifunctionality of each geminivirus-encoded protein. These protein-based interactions trigger the abrupt changes in the host methyl cycle and signaling pathways that turn over protein normal production and impair the plant antiviral defense system. Studying these geminivirus interactions localized at cytoplasm-nucleus could reveal a more clear picture of host–pathogen relation. Data collected from this antagonistic relationship among geminivirus, vector, and its host, will provide extensive knowledge on their virulence mode and diversity with climate change.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 6","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141425823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular design of controllable recombinant adeno-associated virus (AAV) expression systems for enhanced vector production 可控重组腺相关病毒(AAV)表达系统的分子设计,以提高载体产量。
IF 3.2 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-06-20 DOI: 10.1002/biot.202300685
Yusuf B. Johari, Thilo H. Pohle, Jared Whitehead, Joseph M. Scarrott, Ping Liu, Ayda Mayer, David C. James

Recombinant adeno-associated virus (rAAV) is the leading vector for the delivery of gene therapies. However, low viral genome (VG) titers are common and the proportion of “full” capsids containing the therapeutic gene payload can be highly variable. The coordinated molecular design of plasmids encoding viral components and Helper functions remains a major challenge for rAAV manufacturing. Here we present the design of improved Rep/Cap and Helper plasmids for rAAV2/8 production, (i) a Rep/Cap expression vector harboring independently controllable rep and cap genes and (ii) an improved Helper plasmid harboring E4 gene deletion variants. First, an optimized Rep/Cap vector utilized a truncated p5 promoter, a p5 cis-regulatory element at the 3′ end in combination with a heterologous promoter to drive Cap expression and an additional copy of the rep52/40 gene to overexpress short Rep proteins. We demonstrate that Rep78 is essential for efficient rAAV2/8 production in HEK293 cells, and a higher ratio of short Rep to long Rep proteins enhances genome packaging. Second, we identified regulators and open reading frames within the Helper plasmid that contribute to increased rAAV2/8 production. While L4-33k/22k is integral to optimal production, the use of E4orf6–6/7 subset significantly enhanced VG titer. Together, an optimal combination of engineered Rep/Cap and Helper plasmid variants increased VG titer by 3.1-fold. This study demonstrates that configuring and controlling the expression of the different AAV genetic elements contributes toward high rAAV production and product quality (full/empty capsid ratio).

重组腺相关病毒(rAAV)是基因疗法的主要载体。然而,病毒基因组(VG)滴度低的情况很常见,而且含有治疗基因有效载荷的 "完整 "囊壳的比例也可能变化很大。编码病毒成分和辅助功能的质粒的协调分子设计仍然是 rAAV 生产的一大挑战。在此,我们介绍了用于 rAAV2/8 生产的 Rep/Cap 和 Helper 质粒的改良设计:(i) 包含可独立控制的 Rep 和 cap 基因的 Rep/Cap 表达载体;(ii) 包含 E4 基因缺失变体的改良 Helper 质粒。首先,优化的 Rep/Cap 载体利用截短的 p5 启动子、3'端的 p5 顺式调控元件与异源启动子相结合来驱动 Cap 的表达,并利用额外的 rep52/40 基因拷贝来过量表达短 Rep 蛋白。我们证明,Rep78 是在 HEK293 细胞中高效生产 rAAV2/8 的必要条件,而较高的短 Rep 蛋白与长 Rep 蛋白的比例会增强基因组包装。其次,我们确定了有助于提高 rAAV2/8 产量的辅助质粒内的调节因子和开放阅读框。虽然 L4-33k/22k 对优化生产不可或缺,但使用 E4orf6-6/7 子集可显著提高 VG 滴度。工程化 Rep/Cap 和辅助质粒变体的最佳组合可将 VG 滴度提高 3.1 倍。这项研究表明,配置和控制不同 AAV 遗传元件的表达有助于提高 rAAV 产量和产品质量(全/空囊壳比)。
{"title":"Molecular design of controllable recombinant adeno-associated virus (AAV) expression systems for enhanced vector production","authors":"Yusuf B. Johari,&nbsp;Thilo H. Pohle,&nbsp;Jared Whitehead,&nbsp;Joseph M. Scarrott,&nbsp;Ping Liu,&nbsp;Ayda Mayer,&nbsp;David C. James","doi":"10.1002/biot.202300685","DOIUrl":"10.1002/biot.202300685","url":null,"abstract":"<p>Recombinant adeno-associated virus (rAAV) is the leading vector for the delivery of gene therapies. However, low viral genome (VG) titers are common and the proportion of “full” capsids containing the therapeutic gene payload can be highly variable. The coordinated molecular design of plasmids encoding viral components and Helper functions remains a major challenge for rAAV manufacturing. Here we present the design of improved Rep/Cap and Helper plasmids for rAAV2/8 production, (i) a Rep/Cap expression vector harboring independently controllable <i>rep</i> and <i>cap</i> genes and (ii) an improved Helper plasmid harboring E4 gene deletion variants. First, an optimized Rep/Cap vector utilized a truncated p5 promoter, a p5 <i>cis</i>-regulatory element at the 3′ end in combination with a heterologous promoter to drive Cap expression and an additional copy of the <i>rep52/40</i> gene to overexpress short Rep proteins. We demonstrate that Rep78 is essential for efficient rAAV2/8 production in HEK293 cells, and a higher ratio of short Rep to long Rep proteins enhances genome packaging. Second, we identified regulators and open reading frames within the Helper plasmid that contribute to increased rAAV2/8 production. While L4-33k/22k is integral to optimal production, the use of E4orf6–6/7 subset significantly enhanced VG titer. Together, an optimal combination of engineered Rep/Cap and Helper plasmid variants increased VG titer by 3.1-fold. This study demonstrates that configuring and controlling the expression of the different AAV genetic elements contributes toward high rAAV production and product quality (full/empty capsid ratio).</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 6","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biot.202300685","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141425824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced three-dimensional in vitro liver models to study the activity of anticancer drugs 研究抗癌药物活性的先进三维体外肝脏模型。
IF 4.7 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-06-19 DOI: 10.1002/biot.202400159
Agnieszka Zuchowska, Sonia Frojdenfal, Maciej Trzaskowski, Elzbieta Jastrzebska

The liver is one of the most important organs in the human body. It performs many important functions, including being responsible for the metabolism of most drugs, which is often associated with its drug-induced damage. Currently, there are no ideal pharmacological models that would allow the evaluation of the effect of newly tested drugs on the liver in preclinical studies. Moreover, the influence of hepatic metabolism on the effectiveness of the tested drugs is rarely evaluated. Therefore, in this work we present an advanced model of the liver, which reflects most of the morphologically and metabolically important features of the liver in vivo, namely: three-dimensionality, cellular composition, presence of extracellular matrix, distribution of individual cell types in the structure of the liver model, high urea and albumin synthesis efficiency, high cytochrome p450 activity. In addition, the work, based on the example of commonly used anticancer drugs, shows how important it is to take into account hepatic metabolism in the effective assessment of their impact on the target organ, in this case cancer. In our research, we have shown that the most similar to liver in vivo are 3D cellular aggregates composed of three important liver cells, namely hepatocytes (HepG2), hepatic stellate cells (HSCs), and hepatic sinusoidal endothelial cells (HSECs). Moreover, we showed that the cells in 3D aggregate structure need time (cell–cell interactions) to improve proper liver characteristic. The triculture model additionally showed the greatest ability to metabolize selected anticancer drugs.

肝脏是人体最重要的器官之一。它有许多重要的功能,包括负责大多数药物的代谢,而这往往与药物引起的肝损伤有关。目前,还没有理想的药理学模型可以在临床前研究中评估新测试药物对肝脏的影响。此外,肝脏代谢对受试药物疗效的影响也很少得到评估。因此,在这项工作中,我们提出了一种先进的肝脏模型,它反映了体内肝脏在形态和代谢方面的大部分重要特征,即:三维性、细胞组成、细胞外基质的存在、肝脏模型结构中单个细胞类型的分布、高尿素和白蛋白合成效率、高细胞色素 p450 活性。此外,这项工作还以常用抗癌药物为例,说明在有效评估这些药物对靶器官(此处指癌症)的影响时,考虑肝脏代谢是多么重要。我们的研究表明,与体内肝脏最相似的是由三种重要肝细胞(即肝细胞(HepG2)、肝星状细胞(HSCs)和肝窦状内皮细胞(HSECs))组成的三维细胞聚集体。此外,我们还发现三维聚合结构中的细胞需要时间(细胞与细胞之间的相互作用)来改善适当的肝脏特征。此外,三维培养模型还显示出最大的代谢选定抗癌药物的能力。
{"title":"Advanced three-dimensional in vitro liver models to study the activity of anticancer drugs","authors":"Agnieszka Zuchowska,&nbsp;Sonia Frojdenfal,&nbsp;Maciej Trzaskowski,&nbsp;Elzbieta Jastrzebska","doi":"10.1002/biot.202400159","DOIUrl":"10.1002/biot.202400159","url":null,"abstract":"<p>The liver is one of the most important organs in the human body. It performs many important functions, including being responsible for the metabolism of most drugs, which is often associated with its drug-induced damage. Currently, there are no ideal pharmacological models that would allow the evaluation of the effect of newly tested drugs on the liver in preclinical studies. Moreover, the influence of hepatic metabolism on the effectiveness of the tested drugs is rarely evaluated. Therefore, in this work we present an advanced model of the liver, which reflects most of the morphologically and metabolically important features of the liver in vivo, namely: three-dimensionality, cellular composition, presence of extracellular matrix, distribution of individual cell types in the structure of the liver model, high urea and albumin synthesis efficiency, high cytochrome p450 activity. In addition, the work, based on the example of commonly used anticancer drugs, shows how important it is to take into account hepatic metabolism in the effective assessment of their impact on the target organ, in this case cancer. In our research, we have shown that the most similar to liver in vivo are 3D cellular aggregates composed of three important liver cells, namely hepatocytes (HepG2), hepatic stellate cells (HSCs), and hepatic sinusoidal endothelial cells (HSECs). Moreover, we showed that the cells in 3D aggregate structure need time (cell–cell interactions) to improve proper liver characteristic. The triculture model additionally showed the greatest ability to metabolize selected anticancer drugs.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 6","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141416814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ER stress-induced transcriptional response reveals tolerance genes in yeast ER应激诱导的转录反应揭示了酵母中的耐受基因。
IF 4.7 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-06-19 DOI: 10.1002/biot.202400082
Jingrong Xie, Chufan Xiao, Yuyang Pan, Songlyu Xue, Mingtao Huang

Saccharomyces cerevisiae is important for protein secretion studies, yet the complexities of protein synthesis and secretion under endoplasmic reticulum (ER) stress conditions remain not fully understood. ER stress, triggered by alterations in the ER protein folding environment, poses substantial challenges to cells, especially during heterologous protein production. In this study, we used RNA-seq to analyze the transcriptional responses of yeast strains to ER stress induced by reagents such as tunicamycin (Tm) or dithiothreitol (DTT). Our gene expression analysis revealed several crucial genes, such as HMO1 and BIO5, that are involved in ER-stress tolerance. Through metabolic engineering, the best engineered strain R23 with HMO1 overexpression and BIO5 deletion, showed enhanced ER stress tolerance and improved protein folding efficiency, leading to a 2.14-fold increase in α-amylase production under Tm treatment and a 2.04-fold increase in cell density under DTT treatment. Our findings contribute to the understanding of cellular responses to ER stress and provide a basis for further investigations into the mechanisms of ER stress at the cellular level.

酿酒酵母对蛋白质分泌研究非常重要,但人们对内质网(ER)应激条件下蛋白质合成和分泌的复杂性仍不完全了解。由内质网蛋白质折叠环境改变引发的内质网应激给细胞带来了巨大挑战,尤其是在异源蛋白质生产过程中。在这项研究中,我们利用 RNA-seq 分析了酵母菌株对由曲尼霉素(Tm)或二硫苏糖醇(DTT)等试剂诱导的 ER 应激的转录反应。我们的基因表达分析发现了几个参与ER应激耐受性的关键基因,如HMO1和BIO5。通过代谢工程,HMO1过表达和BIO5缺失的最佳工程菌株R23表现出更强的ER胁迫耐受性和更高的蛋白质折叠效率,在Tm处理下α-淀粉酶产量增加了2.14倍,在DTT处理下细胞密度增加了2.04倍。我们的发现有助于理解细胞对ER应激的反应,并为进一步研究细胞水平的ER应激机制提供了基础。
{"title":"ER stress-induced transcriptional response reveals tolerance genes in yeast","authors":"Jingrong Xie,&nbsp;Chufan Xiao,&nbsp;Yuyang Pan,&nbsp;Songlyu Xue,&nbsp;Mingtao Huang","doi":"10.1002/biot.202400082","DOIUrl":"10.1002/biot.202400082","url":null,"abstract":"<p><i>Saccharomyces cerevisiae</i> is important for protein secretion studies, yet the complexities of protein synthesis and secretion under endoplasmic reticulum (ER) stress conditions remain not fully understood. ER stress, triggered by alterations in the ER protein folding environment, poses substantial challenges to cells, especially during heterologous protein production. In this study, we used RNA-seq to analyze the transcriptional responses of yeast strains to ER stress induced by reagents such as tunicamycin (Tm) or dithiothreitol (DTT). Our gene expression analysis revealed several crucial genes, such as <i>HMO1</i> and <i>BIO5</i>, that are involved in ER-stress tolerance. Through metabolic engineering, the best engineered strain R23 with <i>HMO1</i> overexpression <i>and BIO5</i> deletion, showed enhanced ER stress tolerance and improved protein folding efficiency, leading to a 2.14-fold increase in α-amylase production under Tm treatment and a 2.04-fold increase in cell density under DTT treatment. Our findings contribute to the understanding of cellular responses to ER stress and provide a basis for further investigations into the mechanisms of ER stress at the cellular level.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 6","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141416817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of hydrolyzed cheese whey medium for enhanced bacterial cellulose production by Komagataeibacter rhaeticus MSCL 1463 评估水解干酪乳清培养基对提高 Komagataeibacter rhaeticus MSCL 1463 细菌纤维素产量的作用。
IF 4.7 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-06-19 DOI: 10.1002/biot.202300529
Sergejs Kolesovs, Kristaps Neiberts, Pavels Semjonovs, Sergejs Beluns, Oskars Platnieks, Sergejs Gaidukovs

Industrial production of bacterial cellulose (BC) remains challenging due to significant production costs, including the choice of appropriate growth media. This research focuses on optimization of cheese whey (CW) based media for enhanced production of BC. Two modifications were made for CW medium for BC production with Komagataeibacter rhaeticus MSCL 1463. BC production in a medium of enzymatically hydrolyzed CW (final concentration of monosaccharides: glucose 0.13 g L−1, galactose 1.24 g L−1) was significantly enhanced, achieving a yield of 4.95 ± 0.25 g L−1, which markedly surpasses the yields obtained with the standard Hestrin-Schramm (HS) medium containing 20 g L−1 glucose and acid-hydrolyzed CW (final concentration of monosaccharides: glucose 1.15 g L−1, galactose 2.01 g L−1), which yielded 3.29 ± 0.12 g L−1 and 1.01 ± 0.14 g L−1, respectively. We explored the synergistic effects of combining CW with various agricultural by-products (corn steep liquor (CSL), apple juice, and sugar beet molasses). Notably, the supplementation with 15% corn steep liquor significantly enhanced BC productivity, achieving 6.97 ± 0.17 g L−1. A comprehensive analysis of the BC's physical and mechanical properties indicated significant alterations in fiber diameter (62–167 nm), crystallinity index (71.1–85.9%), and specific strength (35–82 MPa × cm3 g−1), as well as changes in the density (1.1–1.4 g cm−3). Hydrolyzed CW medium supplemented by CSL could be used for effective production of BC.

由于生产成本高昂,包括选择合适的生长培养基,细菌纤维素(BC)的工业化生产仍具有挑战性。本研究的重点是优化基于奶酪乳清(CW)的培养基,以提高 BC 的产量。为利用 Komagataeibacter rhaeticus MSCL 1463 生产 BC,对 CW 培养基进行了两处改良。在酶水解 CW(单糖最终浓度:葡萄糖 0.13 g L-1,半乳糖 1.24 g L-1)培养基中,BC 的产量显著提高,达到 4.95 ± 0.25 g L-1。25 g L-1,明显超过了含有 20 g L-1 葡萄糖和酸水解 CW(单糖最终浓度:葡萄糖 1.15 g L-1,半乳糖 2.01 g L-1)的标准 Hestrin-Schramm (HS) 培养基的产量,后者的产量分别为 3.29 ± 0.12 g L-1 和 1.01 ± 0.14 g L-1。我们探讨了将化武与各种农副产品(玉米浸出液(CSL)、苹果汁和甜菜糖蜜)结合使用的协同效应。值得注意的是,添加 15% 的玉米浸出液可显著提高 BC 的生产率,达到 6.97 ± 0.17 g L-1。对萃取物物理和机械性能的综合分析表明,纤维直径(62-167 nm)、结晶度指数(71.1-85.9%)和比强度(35-82 MPa × cm3 g-1)发生了显著变化,密度(1.1-1.4 g cm-3)也发生了变化。添加 CSL 的水解 CW 培养基可用于有效生产 BC。
{"title":"Evaluation of hydrolyzed cheese whey medium for enhanced bacterial cellulose production by Komagataeibacter rhaeticus MSCL 1463","authors":"Sergejs Kolesovs,&nbsp;Kristaps Neiberts,&nbsp;Pavels Semjonovs,&nbsp;Sergejs Beluns,&nbsp;Oskars Platnieks,&nbsp;Sergejs Gaidukovs","doi":"10.1002/biot.202300529","DOIUrl":"10.1002/biot.202300529","url":null,"abstract":"<p>Industrial production of bacterial cellulose (BC) remains challenging due to significant production costs, including the choice of appropriate growth media. This research focuses on optimization of cheese whey (CW) based media for enhanced production of BC. Two modifications were made for CW medium for BC production with <i>Komagataeibacter rhaeticus</i> MSCL 1463. BC production in a medium of enzymatically hydrolyzed CW (final concentration of monosaccharides: glucose 0.13 g L<sup>−1</sup>, galactose 1.24 g L<sup>−1</sup>) was significantly enhanced, achieving a yield of 4.95 ± 0.25 g L<sup>−1</sup>, which markedly surpasses the yields obtained with the standard Hestrin-Schramm (HS) medium containing 20 g L<sup>−1</sup> glucose and acid-hydrolyzed CW (final concentration of monosaccharides: glucose 1.15 g L<sup>−1</sup>, galactose 2.01 g L<sup>−1</sup>), which yielded 3.29 ± 0.12 g L<sup>−1</sup> and 1.01 ± 0.14 g L<sup>−1</sup>, respectively. We explored the synergistic effects of combining CW with various agricultural by-products (corn steep liquor (CSL), apple juice, and sugar beet molasses). Notably, the supplementation with 15% corn steep liquor significantly enhanced BC productivity, achieving 6.97 ± 0.17 g L<sup>−1</sup>. A comprehensive analysis of the BC's physical and mechanical properties indicated significant alterations in fiber diameter (62–167 nm), crystallinity index (71.1–85.9%), and specific strength (35–82 MPa × cm<sup>3</sup> g<sup>−1</sup>), as well as changes in the density (1.1–1.4 g cm<sup>−3</sup>). Hydrolyzed CW medium supplemented by CSL could be used for effective production of BC.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 6","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141416894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
All-in-one platform: Versatile, Easy, and User-friendly System (VEUS) based on automated and expert-independent antibody immobilization and immunoassay by utilizing customized movement of magnetic particles 一体化平台:多功能、简单易用的系统(VEUS),利用磁性微粒的定制运动,自动固定抗体并进行免疫测定,无需专家操作。
IF 4.7 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-06-19 DOI: 10.1002/biot.202400074
Jinsik Yoon, Jiyeong Kim, Sujeong Lim, Heelak Choi, Junghyun Bae, Kibeom Kim, Suk-Heung Song, Yoo-Bok Cho, Wook Park, Yong-Gyun Jung

The ELISA is the most worldwide method for immunoassay. However, the ELISA is losing ground due to low reproducibility of manual experimental processes in both R&D and IVD areas. An automated platform is a good solution, but there are still limitations owning to extremely high cost and requiring large space to set up especially for a small size laboratory. Here, we present a novel all-in-one platform called “VEUS” settable on the laboratory table that offers comprehensive automation of the entire multiplex immunoassay process by exploiting antibody conjugated magnetic particles, quality control and then immunoanalytical reaction, thereby enhancing detection sensitivity and high reproducibility. As a proof of concept, the system exhibits a sensitive LOD of 0.6 and 3.1 pg mL−1 within 1 h run, comparable precision that of molecular diagnostic systems based on PCR method, enabling rapid multiplex diagnosis of Influenza A, Influenza B, and COVID-19 viruses with similar symptoms. Through automation by the all-in-one system, it can be used by novice users, something innovative for immunoassays, relying heavily on user experience. Furthermore, it can contribute to streamline entire immunoassay processes of diverse biomarkers with high reproducibility and convenience in laboratories.

酶联免疫吸附试验(ELISA)是世界上最常用的免疫测定方法。然而,在研发和 IVD 领域,由于手工实验过程的可重复性较低,ELISA 的地位正在逐渐下降。自动化平台是一个很好的解决方案,但由于成本极高,需要很大的空间来安装,尤其是对于小型实验室来说,仍然存在局限性。在这里,我们展示了一种名为 "VEUS "的新型一体化平台,该平台可安装在实验室工作台上,通过利用抗体共轭磁性颗粒、质量控制和免疫分析反应,实现整个多重免疫分析过程的全面自动化,从而提高检测灵敏度和重现性。作为概念验证,该系统在 1 小时内的灵敏度 LOD 分别为 0.6 和 3.1 pg mL-1,与基于 PCR 方法的分子诊断系统的精度相当,可对症状相似的甲型流感、乙型流感和 COVID-19 病毒进行快速多重诊断。通过一体化系统的自动化,新用户也能使用该系统,这对于主要依赖用户经验的免疫测定来说是一项创新。此外,它还有助于简化各种生物标记物的整个免疫测定过程,具有高重现性和便利性。
{"title":"All-in-one platform: Versatile, Easy, and User-friendly System (VEUS) based on automated and expert-independent antibody immobilization and immunoassay by utilizing customized movement of magnetic particles","authors":"Jinsik Yoon,&nbsp;Jiyeong Kim,&nbsp;Sujeong Lim,&nbsp;Heelak Choi,&nbsp;Junghyun Bae,&nbsp;Kibeom Kim,&nbsp;Suk-Heung Song,&nbsp;Yoo-Bok Cho,&nbsp;Wook Park,&nbsp;Yong-Gyun Jung","doi":"10.1002/biot.202400074","DOIUrl":"10.1002/biot.202400074","url":null,"abstract":"<p>The ELISA is the most worldwide method for immunoassay. However, the ELISA is losing ground due to low reproducibility of manual experimental processes in both R&amp;D and IVD areas. An automated platform is a good solution, but there are still limitations owning to extremely high cost and requiring large space to set up especially for a small size laboratory. Here, we present a novel all-in-one platform called “VEUS” settable on the laboratory table that offers comprehensive automation of the entire multiplex immunoassay process by exploiting antibody conjugated magnetic particles, quality control and then immunoanalytical reaction, thereby enhancing detection sensitivity and high reproducibility. As a proof of concept, the system exhibits a sensitive LOD of 0.6 and 3.1 pg mL<sup>−1</sup> within 1 h run, comparable precision that of molecular diagnostic systems based on PCR method, enabling rapid multiplex diagnosis of Influenza A, Influenza B, and COVID-19 viruses with similar symptoms. Through automation by the all-in-one system, it can be used by novice users, something innovative for immunoassays, relying heavily on user experience. Furthermore, it can contribute to streamline entire immunoassay processes of diverse biomarkers with high reproducibility and convenience in laboratories.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 6","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biot.202400074","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141416815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A machine learning-based approach for improving plasmid DNA production in Escherichia coli fed-batch fermentations 一种基于机器学习的方法,用于提高大肠杆菌间歇发酵过程中质粒 DNA 的产量。
IF 4.7 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-06-19 DOI: 10.1002/biot.202400140
Zhixian Xu, Xiaofeng Zhu, Ali Mohsin, Jianfei Guo, Yingping Zhuang, Ju Chu, Meijin Guo, Guan Wang

Artificial Intelligence (AI) technology is spearheading a new industrial revolution, which provides ample opportunities for the transformational development of traditional fermentation processes. During plasmid fermentation, traditional subjective process control leads to highly unstable plasmid yields. In this study, a multi-parameter correlation analysis was first performed to discover a dynamic metabolic balance among the oxygen uptake rate, temperature, and plasmid yield, whilst revealing the heating rate and timing as the most important optimization factor for balanced cell growth and plasmid production. Then, based on the acquired on-line parameters as well as outputs of kinetic models constructed for describing process dynamics of biomass concentration, plasmid yield, and substrate concentration, a machine learning (ML) model with Random Forest (RF) as the best machine learning algorithm was established to predict the optimal heating strategy. Finally, the highest plasmid yield and specific productivity of 1167.74 mg L−1 and 8.87 mg L−1/OD600 were achieved with the optimal heating strategy predicted by the RF model in the 50 L bioreactor, respectively, which was 71% and 21% higher than those obtained in the control cultures where a traditional one-step temperature upshift strategy was applied. In addition, this study transformed empirical fermentation process optimization into a more efficient and rational self-optimization method. The methodology employed in this study is equally applicable to predict the regulation of process dynamics for other products, thereby facilitating the potential for furthering the intelligent automation of fermentation processes.

人工智能(AI)技术正在引领一场新的工业革命,为传统发酵工艺的转型发展提供了大量机遇。在质粒发酵过程中,传统的主观过程控制导致质粒产量极不稳定。在本研究中,首先进行了多参数相关分析,发现了氧气吸收率、温度和质粒产量之间的动态代谢平衡,同时揭示了加热速率和时间是实现细胞生长和质粒产量平衡的最重要优化因素。然后,根据获得的在线参数以及为描述生物质浓度、质粒产量和底物浓度的过程动态而构建的动力学模型的输出结果,建立了一个以随机森林(RF)为最佳机器学习算法的机器学习(ML)模型,以预测最佳加热策略。最后,在 50 L 生物反应器中,采用 RF 模型预测的最佳加热策略获得了最高的质粒产量和比生产率,分别为 1167.74 mg L-1 和 8.87 mg L-1/OD600,比采用传统的一步升温策略的对照培养物分别高出 71% 和 21%。此外,本研究还将经验发酵过程优化转化为一种更高效、更合理的自我优化方法。本研究采用的方法同样适用于预测其他产品的过程动态调节,从而为进一步实现发酵过程的智能自动化提供了可能。
{"title":"A machine learning-based approach for improving plasmid DNA production in Escherichia coli fed-batch fermentations","authors":"Zhixian Xu,&nbsp;Xiaofeng Zhu,&nbsp;Ali Mohsin,&nbsp;Jianfei Guo,&nbsp;Yingping Zhuang,&nbsp;Ju Chu,&nbsp;Meijin Guo,&nbsp;Guan Wang","doi":"10.1002/biot.202400140","DOIUrl":"10.1002/biot.202400140","url":null,"abstract":"<p>Artificial Intelligence (AI) technology is spearheading a new industrial revolution, which provides ample opportunities for the transformational development of traditional fermentation processes. During plasmid fermentation, traditional subjective process control leads to highly unstable plasmid yields. In this study, a multi-parameter correlation analysis was first performed to discover a dynamic metabolic balance among the oxygen uptake rate, temperature, and plasmid yield, whilst revealing the heating rate and timing as the most important optimization factor for balanced cell growth and plasmid production. Then, based on the acquired on-line parameters as well as outputs of kinetic models constructed for describing process dynamics of biomass concentration, plasmid yield, and substrate concentration, a machine learning (ML) model with Random Forest (RF) as the best machine learning algorithm was established to predict the optimal heating strategy. Finally, the highest plasmid yield and specific productivity of 1167.74 mg L<sup>−1</sup> and 8.87 mg L<sup>−1</sup>/OD<sub>600</sub> were achieved with the optimal heating strategy predicted by the RF model in the 50 L bioreactor, respectively, which was 71% and 21% higher than those obtained in the control cultures where a traditional one-step temperature upshift strategy was applied. In addition, this study transformed empirical fermentation process optimization into a more efficient and rational self-optimization method. The methodology employed in this study is equally applicable to predict the regulation of process dynamics for other products, thereby facilitating the potential for furthering the intelligent automation of fermentation processes.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 6","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141416813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering of the start condensation domain with improved N-decanoyl catalytic activity for daptomycin biosynthesis 工程设计起始缩合结构域,提高 N-癸酰催化活性,促进达托霉素的生物合成。
IF 4.7 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-06-19 DOI: 10.1002/biot.202400202
Wenjie Fan, Lyubin Hu, Yu Yang, Panpan Liu, Yan Feng, Ruo-Xu Gu, Qian Liu

Daptomycin, a lipopeptide comprising an N-decanoyl fatty acyl chain and a peptide core, is used clinically as an antimicrobial agent. The start condensation domain (dptC1) is an enzyme that catalyzes the lipoinitiation step of the daptomycin synthesis. In this study, we integrated enzymology, protein engineering, and computer simulation to study the substrate selectivity of the start condensation domain (dptC1) and to screen mutants with improved activity for decanoyl loading. Through molecular docking and computer simulation, the fatty acyl substrate channel and the protein–protein interaction interface of dptC1 are analyzed. Key residues at the protein–protein interface between dptC1 and the acyl carrier were mutated, and a single-point mutant showed more than three-folds improved catalytic efficiency of the target n-decanoyl substrate in comparing with the wild type. Moreover, molecular dynamics simulations suggested that mutants with increased catalytic activity may correlated with a more “open” and contracted substrate binding channel. Our work provides a new perspective for the elucidation of lipopeptide natural products biosynthesis, and also provides new resources to enrich its diversity and optimize the production of important components.

达托霉素是一种由 N-癸酰基脂肪酰基链和肽核心组成的脂肽,在临床上被用作抗菌剂。起始缩合结构域(dptC1)是一种催化达托霉素合成过程中脂肪引发步骤的酶。在这项研究中,我们综合运用酶学、蛋白质工程学和计算机模拟技术,研究了起始缩合结构域(dptC1)的底物选择性,并筛选出癸酰负载活性更高的突变体。通过分子对接和计算机模拟,分析了 dptC1 的脂肪酰基底物通道和蛋白质-蛋白质相互作用界面。对 dptC1 与酰基载体之间蛋白质-蛋白质相互作用界面上的关键残基进行了突变,结果表明,与野生型相比,单点突变体对目标 n-癸酰底物的催化效率提高了三倍以上。此外,分子动力学模拟表明,催化活性提高的突变体可能与底物结合通道更加 "开放 "和收缩有关。我们的工作为阐明脂肽天然产物的生物合成提供了一个新的视角,也为丰富其多样性和优化重要成分的生产提供了新的资源。
{"title":"Engineering of the start condensation domain with improved N-decanoyl catalytic activity for daptomycin biosynthesis","authors":"Wenjie Fan,&nbsp;Lyubin Hu,&nbsp;Yu Yang,&nbsp;Panpan Liu,&nbsp;Yan Feng,&nbsp;Ruo-Xu Gu,&nbsp;Qian Liu","doi":"10.1002/biot.202400202","DOIUrl":"10.1002/biot.202400202","url":null,"abstract":"<p>Daptomycin, a lipopeptide comprising an <i>N</i>-decanoyl fatty acyl chain and a peptide core, is used clinically as an antimicrobial agent. The start condensation domain (dptC1) is an enzyme that catalyzes the lipoinitiation step of the daptomycin synthesis. In this study, we integrated enzymology, protein engineering, and computer simulation to study the substrate selectivity of the start condensation domain (dptC1) and to screen mutants with improved activity for decanoyl loading. Through molecular docking and computer simulation, the fatty acyl substrate channel and the protein–protein interaction interface of dptC1 are analyzed. Key residues at the protein–protein interface between dptC1 and the acyl carrier were mutated, and a single-point mutant showed more than three-folds improved catalytic efficiency of the target <i>n</i>-decanoyl substrate in comparing with the wild type. Moreover, molecular dynamics simulations suggested that mutants with increased catalytic activity may correlated with a more “open” and contracted substrate binding channel. Our work provides a new perspective for the elucidation of lipopeptide natural products biosynthesis, and also provides new resources to enrich its diversity and optimize the production of important components.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 6","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141416816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biotechnology Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1