首页 > 最新文献

Insect Molecular Biology最新文献

英文 中文
A role of epigenetic mechanisms in regulating female reproductive responses to temperature in a pest beetle 表观遗传机制在调节害虫雌性生殖对温度的反应中的作用。
IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-12 DOI: 10.1111/imb.12933
Beth A. McCaw, Aoife M. Leonard, Tyler J. Stevenson, Lesley T. Lancaster

Many species are threatened by climate change and must rapidly respond to survive in changing environments. Epigenetic modifications, such as DNA methylation, can facilitate plastic responses by regulating gene expression in response to environmental cues. Understanding epigenetic responses is therefore essential for predicting species' ability to rapidly adapt in the context of global environmental change. Here, we investigated the functional significance of different methylation-associated cellular processes on temperature-dependent life history in seed beetles, Callosobruchus maculatus Fabricius 1775 (Coleoptera: Bruchidae). We assessed changes under thermal stress in (1) DNA methyltransferase (Dnmt1 and Dnmt2) expression levels, (2) genome-wide methylation and (3) reproductive performance, with (2) and (3) following treatment with 3-aminobenzamide (3AB) and zebularine (Zeb) over two generations. These drugs are well-documented to alter DNA methylation across the tree of life. We found that Dnmt1 and Dnmt2 were expressed throughout the body in males and females, but were highly expressed in females compared with males and exhibited temperature dependence. However, whole-genome methylation did not significantly vary with temperature, and only marginally or inconclusively with drug treatment. Both 3AB and Zeb led to profound temperature-dependent shifts in female reproductive life history trade-off allocation, often increasing fitness compared with control beetles. Mismatch between magnitude of treatment effects on DNA methylation versus life history effects suggest potential of 3AB and Zeb to alter reproductive trade-offs via changes in DNA repair and recycling processes, rather than or in addition to (subtle) changes in DNA methylation. Together, our results suggest that epigenetic mechanisms relating to Dnmt expression, DNA repair and recycling pathways, and possibly DNA methylation, are strongly implicated in modulating insect life history trade-offs in response to temperature change.

许多物种受到气候变化的威胁,必须迅速做出反应才能在不断变化的环境中生存。表观遗传修饰(如 DNA 甲基化)可根据环境线索调节基因表达,从而促进可塑性反应。因此,了解表观遗传反应对于预测物种在全球环境变化中的快速适应能力至关重要。在这里,我们研究了与甲基化相关的不同细胞过程对种子甲虫(Callosobruchus maculatus Fabricius 1775,鞘翅目:Bruchidae)温度依赖性生活史的功能意义。我们评估了热胁迫下(1) DNA甲基转移酶(Dnmt1和Dnmt2)表达水平、(2) 全基因组甲基化和(3) 繁殖性能的变化,其中(2)和(3)是在使用3-氨基苯甲酰胺(3AB)和斑蝥素(Zeb)处理两代后发生的。这些药物可改变整个生命树的 DNA 甲基化。我们发现,Dnmt1和Dnmt2在雄性和雌性体内均有表达,但雌性的表达量比雄性高,而且表现出温度依赖性。然而,全基因组甲基化并不随温度的变化而显著变化,也不随药物治疗的变化而显著变化。3AB和Zeb都会导致雌性生殖生活史权衡分配发生深刻的温度依赖性变化,与对照甲虫相比,往往会提高其适应性。对 DNA 甲基化的处理效果与对生活史的处理效果之间的不匹配表明,3AB 和 Zeb 有可能通过改变 DNA 修复和循环过程来改变生殖权衡,而不是 DNA 甲基化的(微妙)变化。总之,我们的研究结果表明,与 Dnmt 表达、DNA 修复和再循环途径有关的表观遗传学机制,以及可能与 DNA 甲基化有关的表观遗传学机制,与调节昆虫对温度变化的生活史权衡有很大关系。
{"title":"A role of epigenetic mechanisms in regulating female reproductive responses to temperature in a pest beetle","authors":"Beth A. McCaw,&nbsp;Aoife M. Leonard,&nbsp;Tyler J. Stevenson,&nbsp;Lesley T. Lancaster","doi":"10.1111/imb.12933","DOIUrl":"10.1111/imb.12933","url":null,"abstract":"<p>Many species are threatened by climate change and must rapidly respond to survive in changing environments. Epigenetic modifications, such as DNA methylation, can facilitate plastic responses by regulating gene expression in response to environmental cues. Understanding epigenetic responses is therefore essential for predicting species' ability to rapidly adapt in the context of global environmental change. Here, we investigated the functional significance of different methylation-associated cellular processes on temperature-dependent life history in seed beetles, <i>Callosobruchus maculatus</i> Fabricius 1775 (Coleoptera: Bruchidae). We assessed changes under thermal stress in (1) DNA methyltransferase (<i>Dnmt1</i> and <i>Dnmt2</i>) expression levels, (2) genome-wide methylation and (3) reproductive performance, with (2) and (3) following treatment with 3-aminobenzamide (3AB) and zebularine (Zeb) over two generations. These drugs are well-documented to alter DNA methylation across the tree of life. We found that <i>Dnmt1</i> and <i>Dnmt2</i> were expressed throughout the body in males and females, but were highly expressed in females compared with males and exhibited temperature dependence. However, whole-genome methylation did not significantly vary with temperature, and only marginally or inconclusively with drug treatment. Both 3AB and Zeb led to profound temperature-dependent shifts in female reproductive life history trade-off allocation, often increasing fitness compared with control beetles. Mismatch between magnitude of treatment effects on DNA methylation versus life history effects suggest potential of 3AB and Zeb to alter reproductive trade-offs via changes in DNA repair and recycling processes, rather than or in addition to (subtle) changes in DNA methylation. Together, our results suggest that epigenetic mechanisms relating to <i>Dnmt</i> expression, DNA repair and recycling pathways, and possibly DNA methylation, are strongly implicated in modulating insect life history trade-offs in response to temperature change.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 5","pages":"516-533"},"PeriodicalIF":2.3,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imb.12933","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141305860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The RNA interference response to alphanodavirus replication in Phlebotomus papatasi sand fly cells RNA 干扰对 Phlebotomus papatasi 沙蝇细胞中阿尔汉诺达病毒复制的反应。
IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-07 DOI: 10.1111/imb.12932
Akira J. T. Alexander, Rhys H. Parry, Maxime Ratinier, Frédérick Arnaud, Alain Kohl

In this study, we identified and assembled a strain of American nodavirus (ANV) in the Phlebotomus papatasi-derived PP9ad cell line. This strain most closely resembles Flock House virus and ANV identified in the Drosophila melanogaster S2/S2R cell line. Through small RNA sequencing and analysis, we demonstrate that ANV replication in PP9ad cells is primarily targeted by the exogenous small interfering RNA (exo-siRNA) pathway, with minimal engagement from the PIWI-interacting RNA (piRNA) pathway. In mosquitoes such as Aedes and Culex, the PIWI pathway is expanded and specialised, which actively limits virus replication. This is unlike in Drosophila spp., where the piRNA pathway does not restrict viral replication. In Lutzomyia sandflies (family Psychodidae), close relatives of Phlebotomus species and Drosophila, there appears to be an absence of virus-derived piRNAs. To investigate whether this absence is due to a lack of PIWI pathway proteins, we analysed the piRNA and siRNA diversity and repertoire in PP9ad cells. Previous assemblies of P. papatasi genome (Ppap_1.0) have revealed a patchy repertoire of the siRNA and piRNA pathways. Our analysis of the updated P. papatasi genome (Ppap_2.1) has shown no PIWI protein expansion in sandflies. We found that both siRNA and piRNA pathways are transcriptionally active in PP9ad cells, with genomic mapping of small RNAs generating typical piRNA signatures. Our results suggest that the piRNA pathway may not respond to virus replication in these cells, but an antiviral response is mounted via the exo-siRNA pathway.

在这项研究中,我们在Plebotomus papatasi衍生的PP9ad细胞系中鉴定并组装了一株美洲结核病毒(ANV)。该毒株与Flock House病毒和在黑腹果蝇S2/S2R细胞系中鉴定出的ANV最为相似。通过小 RNA 测序和分析,我们证明 ANV 在 PP9ad 细胞中的复制主要是通过外源小干扰 RNA(exo-siRNA)途径进行的,PIWI-interacting RNA(piRNA)途径的参与极少。在伊蚊和库蚊等蚊子中,PIWI 途径得到了扩展和专门化,从而积极限制了病毒的复制。这与果蝇不同,果蝇的 piRNA 途径不会限制病毒复制。在 Phlebotomus 和果蝇的近亲 Lutzomyia 沙蝇(Psychodidae 科)中,似乎不存在源自病毒的 piRNA。为了研究这种缺失是否是由于缺乏 PIWI 通路蛋白所致,我们分析了 PP9ad 细胞中 piRNA 和 siRNA 的多样性和种类。先前的 P. papatasi 基因组(Ppap_1.0)组装结果显示,siRNA 和 piRNA 通路的种类繁多。我们对更新的 P. papatasi 基因组(Ppap_2.1)的分析表明,沙蝇中的 PIWI 蛋白没有扩增。我们发现,在 PP9ad 细胞中,siRNA 和 piRNA 途径都具有转录活性,小 RNA 的基因组图谱产生了典型的 piRNA 标志。我们的研究结果表明,在这些细胞中,piRNA途径可能不会对病毒复制做出反应,但会通过exo-siRNA途径做出抗病毒反应。
{"title":"The RNA interference response to alphanodavirus replication in Phlebotomus papatasi sand fly cells","authors":"Akira J. T. Alexander,&nbsp;Rhys H. Parry,&nbsp;Maxime Ratinier,&nbsp;Frédérick Arnaud,&nbsp;Alain Kohl","doi":"10.1111/imb.12932","DOIUrl":"10.1111/imb.12932","url":null,"abstract":"<p>In this study, we identified and assembled a strain of American nodavirus (ANV) in the <i>Phlebotomus papatasi</i>-derived PP9ad cell line. This strain most closely resembles Flock House virus and ANV identified in the <i>Drosophila melanogaster</i> S2/S2R cell line. Through small RNA sequencing and analysis, we demonstrate that ANV replication in PP9ad cells is primarily targeted by the exogenous small interfering RNA (exo-siRNA) pathway, with minimal engagement from the PIWI-interacting RNA (piRNA) pathway. In mosquitoes such as <i>Aedes</i> and <i>Culex</i>, the PIWI pathway is expanded and specialised, which actively limits virus replication. This is unlike in <i>Drosophila</i> spp., where the piRNA pathway does not restrict viral replication. In <i>Lutzomyia</i> sandflies (family <i>Psychodidae</i>), close relatives of <i>Phlebotomus</i> species and <i>Drosophila</i>, there appears to be an absence of virus-derived piRNAs. To investigate whether this absence is due to a lack of PIWI pathway proteins, we analysed the piRNA and siRNA diversity and repertoire in PP9ad cells. Previous assemblies of <i>P. papatasi</i> genome (Ppap_1.0) have revealed a patchy repertoire of the siRNA and piRNA pathways. Our analysis of the updated <i>P. papatasi</i> genome (Ppap_2.1) has shown no PIWI protein expansion in sandflies. We found that both siRNA and piRNA pathways are transcriptionally active in PP9ad cells, with genomic mapping of small RNAs generating typical piRNA signatures. Our results suggest that the piRNA pathway may not respond to virus replication in these cells, but an antiviral response is mounted via the exo-siRNA pathway.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 6","pages":"687-696"},"PeriodicalIF":2.3,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imb.12932","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141283650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of arylalkylamine N-acetyltransferase 7 in reproduction and limb pigmentation of Aedes aegypti 芳基烷基胺 N-乙酰转移酶 7 在埃及伊蚊的繁殖和肢体色素沉着中的作用。
IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-31 DOI: 10.1111/imb.12930
Yu Tang, Linlong Jiang, Yuqi Huang, Zhaohui Chen, David J. Merkler, Lei Zhang, Qian Han

Arylalkylamine N-acetyltransferase (aaNAT) is a crucial enzyme that catalyses the transfer of acetyl groups from acetyl coenzyme A to arylalkylamines and arylamines. Evolutionary studies have identified a distinct class of aaNATs specific to mosquitoes, yet their functions remain elusive. This study focuses on Ae-aaNAT7, a mosquito-unique gene in Aedes aegypti (Diptera:Culicidae), to explore its functionality. Temporal and spatial expression analysis of Ae-aaNAT7 mRNA revealed high expression during embryonic development and in first-instar larvae, with notable expression in the limbs of adult mosquitoes based on tissue expression profiling. By further employing CRISPR/Cas9 technology for loss-of-function studies, our investigation revealed a reduction in the area of white spotting in the limbs of Ae-aaNAT7 mutant adult mosquitoes. Further investigation revealed a significant decrease in the fecundity and hatchability of the mutants. Dissection of the ovaries from Ae-aaNAT7 heterozygous mutants showed a noticeable reduction in the oocyte area compared with wild type. Dissection of the exochorion of the eggs from Ae-aaNAT7 homozygous mutants consistently revealed a striking absence of mature embryos. In addition, RNA interference experiments targeting Ae-aaNAT7 in males resulted in a reduction in fecundity, but no effect on hatchability was observed. These collective insights underscore the substantial impact of Ae-aaNAT7 on reproduction and its pivotal contribution to adult limb pigmentation in Ae. aegypti. These revelations offer insights pivotal for the strategic design of future insecticide targets.

芳基烷基胺 N-乙酰转移酶(aaNAT)是一种重要的酶,可催化乙酰辅酶 A 向芳基烷基胺和芳基胺转移乙酰基。进化研究发现了蚊子特有的一类独特的 aaNATs,但它们的功能仍然难以捉摸。本研究以埃及伊蚊(Diptera:Culicidae)的一个蚊子特有基因 Ae-aaNAT7 为研究对象,探讨其功能。对 Ae-aaNAT7 mRNA 的时空表达分析表明,该基因在胚胎发育和初孵幼虫中高表达,根据组织表达谱分析,在成蚊的四肢中也有显著表达。通过进一步利用 CRISPR/Cas9 技术进行功能缺失研究,我们的调查发现 Ae-aaNAT7 突变体成蚊四肢的白斑面积有所减少。进一步调查发现,突变体的繁殖力和孵化率明显下降。对 Ae-aaNAT7 杂合突变体卵巢的解剖显示,与野生型相比,卵母细胞面积明显缩小。对Ae-aaNAT7同源突变体卵子的外胚层进行解剖后发现,成熟胚胎明显缺失。此外,针对雄性 Ae-aaNAT7 的 RNA 干扰实验导致繁殖力下降,但未观察到对孵化率的影响。这些发现都强调了Ae-aaNAT7对埃及蚁繁殖的重大影响及其对成虫肢体色素沉着的关键作用。这些发现为未来杀虫剂目标的战略设计提供了重要的启示。
{"title":"Role of arylalkylamine N-acetyltransferase 7 in reproduction and limb pigmentation of Aedes aegypti","authors":"Yu Tang,&nbsp;Linlong Jiang,&nbsp;Yuqi Huang,&nbsp;Zhaohui Chen,&nbsp;David J. Merkler,&nbsp;Lei Zhang,&nbsp;Qian Han","doi":"10.1111/imb.12930","DOIUrl":"10.1111/imb.12930","url":null,"abstract":"<p>Arylalkylamine <i>N</i>-acetyltransferase (aaNAT) is a crucial enzyme that catalyses the transfer of acetyl groups from acetyl coenzyme A to arylalkylamines and arylamines. Evolutionary studies have identified a distinct class of aaNATs specific to mosquitoes, yet their functions remain elusive. This study focuses on <i>Ae-aaNAT7</i>, a mosquito-unique gene in <i>Aedes aegypti</i> (Diptera:Culicidae), to explore its functionality. Temporal and spatial expression analysis of Ae-aaNAT7 mRNA revealed high expression during embryonic development and in first-instar larvae, with notable expression in the limbs of adult mosquitoes based on tissue expression profiling. By further employing CRISPR/Cas9 technology for loss-of-function studies, our investigation revealed a reduction in the area of white spotting in the limbs of <i>Ae-aaNAT7</i> mutant adult mosquitoes. Further investigation revealed a significant decrease in the fecundity and hatchability of the mutants. Dissection of the ovaries from <i>Ae-aaNAT7</i> heterozygous mutants showed a noticeable reduction in the oocyte area compared with wild type. Dissection of the exochorion of the eggs from <i>Ae-aaNAT7</i> homozygous mutants consistently revealed a striking absence of mature embryos. In addition, RNA interference experiments targeting <i>Ae-aaNAT7</i> in males resulted in a reduction in fecundity, but no effect on hatchability was observed. These collective insights underscore the substantial impact of <i>Ae-aaNAT7</i> on reproduction and its pivotal contribution to adult limb pigmentation in <i>Ae. aegypti</i>. These revelations offer insights pivotal for the strategic design of future insecticide targets.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 6","pages":"678-686"},"PeriodicalIF":2.3,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141179320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA methylase 1 influences temperature responses and development in the invasive pest Tuta absoluta DNA 甲基化酶 1 影响入侵害虫 Tuta absoluta 的温度反应和发育。
IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-29 DOI: 10.1111/imb.12919
Yanhong Tang, Huifang Zhang, Huanqing Zhu, Siyan Bi, Xiaodi Wang, Shunxia Ji, Jianhang Ji, Dongfang Ma, Cong Huang, Guifen Zhang, Nianwan Yang, Fanghao Wan, Zhichuang Lü, Wanxue Liu

DNA methylase 1 (Dnmt1) is an important regulatory factor associated with biochemical signals required for insect development. It responds to changes in the environment and triggers phenotypic plasticity. Meanwhile, Tuta absoluta Meyrick (Lepidoptera: Gelechiidae)a destructive invasive pestcan rapidly invade and adapt to different habitats; however, the role of Dnmt1 in this organism has not been elucidated. Accordingly, this study investigates the mechanism(s) underlying the rapid adaptation of Tuta absoluta to temperature stress. Potential regulatory genes were screened via RNAi (RNA interference), and the DNA methylase in Tuta absoluta was cloned by RACE (Rapid amplification of cDNA ends). TaDnmt1 was identified as a potential regulatory gene via bioinformatics; its expression was evaluated in response to temperature stress and during different development stages using real-time polymerase chain reaction. Results revealed that TaDnmt1 participates in hot/cold tolerance, temperature preference and larval development. The full-length cDNA sequence of TaDnmt1 is 3765 bp and encodes a 1254 kDa protein with typical Dnmt1 node-conserved structural features and six conserved DNA-binding active motifs. Moreover, TaDnmt1 expression is significantly altered by temperature stress treatments and within different development stages. Hence, TaDnmt1 likely contributes to temperature responses and organismal development. Furthermore, after treating with double-stranded RNA and exposing Tuta absoluta to 35°C heat shock or −12°C cold shock for 1 h, the survival rate significantly decreases; the preferred temperature is 2°C lower than that of the control group. In addition, the epidermal segments become enlarged and irregularly folded while the surface dries up. This results in a significant increase in larval mortality (57%) and a decrease in pupation (49.3%) and eclosion (50.9%) rates. Hence, TaDnmt1 contributes to temperature stress responses and temperature perception, as well as organismal growth and development, via DNA methylation regulation. These findings suggest that the rapid geographic expansion of T absoluta has been closely associated with TaDnmt1-mediated temperature tolerance. This study advances the research on ‘thermos Dnmt’ and provides a potential target for RNAi-driven regulation of Tuta absoluta.

DNA 甲基化酶 1(Dnmt1)是与昆虫发育所需的生化信号有关的重要调节因子。它能对环境变化做出反应,并引发表型可塑性。与此同时,Tuta absoluta Meyrick(鳞翅目:Gelechiidae)--一种破坏性入侵害虫--能迅速入侵并适应不同的生境;然而,Dnmt1 在该生物中的作用尚未阐明。因此,本研究调查了 Tuta absoluta 快速适应温度胁迫的机制。通过RNAi(RNA干扰)筛选了潜在的调控基因,并通过RACE(cDNA末端快速扩增)克隆了Tuta absoluta中的DNA甲基化酶。通过生物信息学确定 TaDnmt1 为潜在的调控基因;利用实时聚合酶链式反应评估了其在温度胁迫和不同发育阶段的表达情况。结果表明,TaDnmt1 参与了冷热耐受、温度偏好和幼虫发育。TaDnmt1 的全长 cDNA 序列长达 3765 bp,编码 1254 kDa 蛋白,具有典型的 Dnmt1 节点保守结构特征和六个保守的 DNA 结合活性基序。此外,TaDnmt1 的表达受温度胁迫处理和不同发育阶段的影响而发生显著变化。因此,TaDnmt1 很可能对温度反应和生物体的发育做出了贡献。此外,用双链 RNA 处理 Tuta absoluta 并将其暴露于 35°C 热休克或 -12°C 冷休克 1 小时后,其存活率会显著下降;首选温度比对照组低 2°C。此外,表皮片段变大,呈不规则折叠,表面干枯。这导致幼虫死亡率显著上升(57%),化蛹率下降(49.3%),羽化率下降(50.9%)。因此,TaDnmt1 通过 DNA 甲基化调控,有助于温度胁迫反应和温度感知,以及生物体的生长和发育。这些研究结果表明,TaDnmt1 介导的温度耐受性与 T absoluta 的快速地理扩张密切相关。这项研究推动了对 "耐温 Dnmt "的研究,并为 RNAi- 驱动的 Tuta absoluta 调控提供了潜在靶标。
{"title":"DNA methylase 1 influences temperature responses and development in the invasive pest Tuta absoluta","authors":"Yanhong Tang,&nbsp;Huifang Zhang,&nbsp;Huanqing Zhu,&nbsp;Siyan Bi,&nbsp;Xiaodi Wang,&nbsp;Shunxia Ji,&nbsp;Jianhang Ji,&nbsp;Dongfang Ma,&nbsp;Cong Huang,&nbsp;Guifen Zhang,&nbsp;Nianwan Yang,&nbsp;Fanghao Wan,&nbsp;Zhichuang Lü,&nbsp;Wanxue Liu","doi":"10.1111/imb.12919","DOIUrl":"10.1111/imb.12919","url":null,"abstract":"<p>DNA methylase 1 (<i>Dnmt1</i>) is an important regulatory factor associated with biochemical signals required for insect development. It responds to changes in the environment and triggers phenotypic plasticity. Meanwhile, <i>Tuta absoluta</i> Meyrick (Lepidoptera: Gelechiidae)<i>—</i>a destructive invasive pest<i>—</i>can rapidly invade and adapt to different habitats; however, the role of <i>Dnmt1</i> in this organism has not been elucidated. Accordingly, this study investigates the mechanism(s) underlying the rapid adaptation of <i>Tuta absoluta</i> to temperature stress. Potential regulatory genes were screened via RNAi (RNA interference), and the DNA methylase in <i>Tuta absoluta</i> was cloned by RACE (Rapid amplification of cDNA ends). <i>TaDnmt1</i> was identified as a potential regulatory gene via bioinformatics; its expression was evaluated in response to temperature stress and during different development stages using real-time polymerase chain reaction. Results revealed that <i>TaDnmt1</i> participates in hot/cold tolerance, temperature preference and larval development. The full-length cDNA sequence of <i>TaDnmt1</i> is 3765 bp and encodes a 1254 kDa protein with typical Dnmt1 node-conserved structural features and six conserved DNA-binding active motifs. Moreover, <i>TaDnmt1</i> expression is significantly altered by temperature stress treatments and within different development stages. Hence, <i>TaDnmt1</i> likely contributes to temperature responses and organismal development. Furthermore, after treating with double-stranded RNA and exposing <i>Tuta absoluta</i> to 35°C heat shock or −12°C cold shock for 1 h, the survival rate significantly decreases; the preferred temperature is 2°C lower than that of the control group. In addition, the epidermal segments become enlarged and irregularly folded while the surface dries up. This results in a significant increase in larval mortality (57%) and a decrease in pupation (49.3%) and eclosion (50.9%) rates. Hence, <i>TaDnmt1</i> contributes to temperature stress responses and temperature perception, as well as organismal growth and development, via DNA methylation regulation. These findings suggest that the rapid geographic expansion of <i>T absoluta</i> has been closely associated with <i>TaDnmt1-</i>mediated temperature tolerance. This study advances the research on ‘thermos Dnmt’ and provides a potential target for RNAi-driven regulation of <i>Tuta absoluta</i>.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 5","pages":"503-515"},"PeriodicalIF":2.3,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imb.12919","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141161149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bombyx mori RPL13 participates in UV-induced DNA damage repair of B. mori nucleopolyhedrovirus through interaction with Bm65 Bombyx mori RPL13 通过与 Bm65 相互作用参与紫外线诱导的 B. mori nucleopolyhedrovirus DNA 损伤修复。
IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-27 DOI: 10.1111/imb.12928
Qi Tang, Jingjing Tang, Ceru Chen, Feifei Zhu, Qian Yu, Huiqing Chen, Liang Chen, Shangshang Ma, Keping Chen, Guohui Li

Ribosomal protein L13 (RPL13) is highly conserved in evolution. At present, the properties and functions of RPL13 have not been characterised in insects. In this study, Bombyx mori RPL13 (BmRPL13) was first found to be specifically recruited to the sites of ultraviolet (UV)-induced DNA damage and contributed to UV damage repair. Escherichia coli expressing BmRPL13 showed better resistance to UV radiation. After knocking down the expression of BmRPL13 in BmN cells, the repair speed of UV-damaged DNA slowed down. The further results showed that BmRPL13 interacted with B. mori nucleopolyhedrovirus (BmNPV) ORF65 (Bm65) protein to locate at the UV-induced DNA damage sites of BmNPV and helped repair UV-damaged viral DNA.

核糖体蛋白 L13(RPL13)在进化过程中高度保守。目前,RPL13在昆虫中的特性和功能尚未得到表征。在这项研究中,首次发现森蝽 RPL13(BmRPL13)被特异性地招募到紫外线(UV)诱导的 DNA 损伤位点,并有助于紫外线损伤的修复。表达 BmRPL13 的大肠杆菌对紫外线辐射有更好的抵抗力。在 BmN 细胞中敲除 BmRPL13 的表达后,紫外线损伤 DNA 的修复速度减慢。进一步的研究结果表明,BmRPL13与B. mori nucleopolyhedrovirus(BmNPV)ORF65(Bm65)蛋白相互作用,定位于BmNPV的紫外线诱导DNA损伤位点,帮助修复紫外线损伤的病毒DNA。
{"title":"Bombyx mori RPL13 participates in UV-induced DNA damage repair of B. mori nucleopolyhedrovirus through interaction with Bm65","authors":"Qi Tang,&nbsp;Jingjing Tang,&nbsp;Ceru Chen,&nbsp;Feifei Zhu,&nbsp;Qian Yu,&nbsp;Huiqing Chen,&nbsp;Liang Chen,&nbsp;Shangshang Ma,&nbsp;Keping Chen,&nbsp;Guohui Li","doi":"10.1111/imb.12928","DOIUrl":"10.1111/imb.12928","url":null,"abstract":"<p>Ribosomal protein L13 (RPL13) is highly conserved in evolution. At present, the properties and functions of RPL13 have not been characterised in insects. In this study, <i>Bombyx mori</i> RPL13 (BmRPL13) was first found to be specifically recruited to the sites of ultraviolet (UV)-induced DNA damage and contributed to UV damage repair. <i>Escherichia coli</i> expressing BmRPL13 showed better resistance to UV radiation. After knocking down the expression of BmRPL13 in BmN cells, the repair speed of UV-damaged DNA slowed down. The further results showed that BmRPL13 interacted with <i>B. mori</i> nucleopolyhedrovirus (BmNPV) ORF65 (Bm65) protein to locate at the UV-induced DNA damage sites of BmNPV and helped repair UV-damaged viral DNA.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 6","pages":"638-649"},"PeriodicalIF":2.3,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141154648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A critical role for the nuclear protein Akirin in larval development in Henosepilachna vigintioctopunctata 核蛋白 Akirin 在 Henosepilachna vigintioctopunctata 幼虫发育过程中的关键作用。
IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-23 DOI: 10.1111/imb.12929
Ahmad Ali Anjum, Meng-Jiao Lin, Lin Jin, Guo-Qing Li

Akirin is a nuclear protein that controls development in vertebrates and invertebrates. The function of Akirin has not been assessed in any Coleopteran insects. We found that high levels of akirin transcripts in Henosepilachna vigintioctopunctata, a serious Coleopteran potato defoliator (hereafter Hvakirin), were present at prepupal, pupal and adult stages, especially in larval foregut and fat body. RNA interference (RNAi) targeting Hvakirin impaired larval development. The Hvakirin RNAi larvae arrested development at the final larval instar stage. They remained as stunted larvae, gradually blackened and finally died. Moreover, the remodelling of gut and fat body was inhibited in the Hvakirin depleted larvae. Two layers of cuticles, old and newly formed, were noted in the dsegfp-injected animals. In contrast, only a layer of cuticle was found in the dsakirin-injected beetles, indicating the arrest of larval development. Furthermore, the expression of three transforming growth factor-β cascade genes (Hvsmox, Hvmyo and Hvbabo), a 20-hydroxyecdysone (20E) receptor gene (HvEcR) and six 20E response genes (HvHR3, HvHR4, HvE75, HvBrC, HvE93 and Hvftz-f1) was significantly repressed, consistent with decreased 20E signalling. Conversely, the transcription of a juvenile hormone (JH) biosynthesis gene (Hvjhamt), a JH receptor gene (HvMet) and two JH response genes (HvKr-h1 and HvHairy) was greatly enhanced. Our findings suggest a critical role of Akirin in larval development in H. vigintioctopunctata.

Akirin 是一种控制脊椎动物和无脊椎动物发育的核蛋白。Akirin的功能尚未在任何鞘翅目昆虫中进行过评估。我们发现,一种严重的鞘翅目马铃薯脱叶害虫 Henosepilachna vigintioctopunctata(以下简称 Hvakirin)在蛹前期、蛹期和成虫期,尤其是在幼虫前肠和脂肪体中都存在高水平的 Akirin 转录本。针对 Hvakirin 的 RNA 干扰(RNAi)会影响幼虫的发育。Hvakirin RNAi 幼虫在幼虫末龄阶段停止发育。幼虫发育迟缓,逐渐变黑,最后死亡。此外,Hvakirin缺失幼虫的肠道和脂肪体重塑受到抑制。在注射了 dsegfp 的动物身上发现了新旧两层角质层。相比之下,注射了 dsakirin 的甲虫只有一层角质层,表明幼虫发育停止。此外,三个转化生长因子-β级联基因(Hvsmox、Hvmyo 和 Hvbabo)、一个 20-hydroxyecdysone (20E) 受体基因(HvEcR)和六个 20E 响应基因(HvHR3、HvHR4、HvE75、HvBrC、HvE93 和 Hvftz-f1)的表达受到显著抑制,这与 20E 信号的减少一致。相反,一个幼年激素(JH)生物合成基因(Hvjhamt)、一个 JH 受体基因(HvMet)和两个 JH 响应基因(HvKr-h1 和 HvHairy)的转录大大增强。我们的研究结果表明,Akirin 在 H. vigintioctopunctata 的幼虫发育过程中起着关键作用。
{"title":"A critical role for the nuclear protein Akirin in larval development in Henosepilachna vigintioctopunctata","authors":"Ahmad Ali Anjum,&nbsp;Meng-Jiao Lin,&nbsp;Lin Jin,&nbsp;Guo-Qing Li","doi":"10.1111/imb.12929","DOIUrl":"10.1111/imb.12929","url":null,"abstract":"<p>Akirin is a nuclear protein that controls development in vertebrates and invertebrates. The function of Akirin has not been assessed in any Coleopteran insects. We found that high levels of <i>akirin</i> transcripts in <i>Henosepilachna vigintioctopunctata</i>, a serious Coleopteran potato defoliator (hereafter <i>Hvakirin</i>), were present at prepupal, pupal and adult stages, especially in larval foregut and fat body. RNA interference (RNAi) targeting <i>Hvakirin</i> impaired larval development. The <i>Hvakirin</i> RNAi larvae arrested development at the final larval instar stage. They remained as stunted larvae, gradually blackened and finally died. Moreover, the remodelling of gut and fat body was inhibited in the <i>Hvakirin</i> depleted larvae. Two layers of cuticles, old and newly formed, were noted in the ds<i>egfp</i>-injected animals. In contrast, only a layer of cuticle was found in the ds<i>akirin</i>-injected beetles, indicating the arrest of larval development. Furthermore, the expression of three transforming growth factor-β cascade genes (<i>Hvsmox</i>, <i>Hvmyo</i> and <i>Hvbabo</i>), a 20-hydroxyecdysone (20E) receptor gene (<i>HvEcR</i>) and six 20E response genes (<i>HvHR3</i>, <i>HvHR4</i>, <i>HvE75</i>, <i>HvBrC</i>, <i>HvE93</i> and <i>Hvftz-f1</i>) was significantly repressed, consistent with decreased 20E signalling. Conversely, the transcription of a juvenile hormone (JH) biosynthesis gene (<i>Hvjhamt</i>), a JH receptor gene (<i>HvMet</i>) and two JH response genes (<i>HvKr-h1</i> and <i>HvHairy</i>) was greatly enhanced. Our findings suggest a critical role of Akirin in larval development in <i>H. vigintioctopunctata</i>.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 6","pages":"650-661"},"PeriodicalIF":2.3,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141086746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ame-miR-1-3p of bee venom reduced cell viability through the AZIN1/OAZ1-ODC1-polyamines pathway and enhanced the defense ability of honeybee (Apis mellifera L.) 蜂毒中的Ame-miR-1-3p通过AZIN1/OAZ1-ODC1-多胺途径降低细胞活力,增强蜜蜂(Apis mellifera L.)的防御能力。
IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-20 DOI: 10.1111/imb.12899
Haifeng Liu, Xue Tian, Jie Wen, Jie Liu, Yunfei Huo, Kangqi Yuan, Jiazhong Guo, Xun Wang, Mingxian Yang, Anan Jiang, Quanquan Cao, Jun Jiang

Bee venom serves as an essential defensive weapon for bees and also finds application as a medicinal drug. MicroRNAs (miRNAs) serve as critical regulators and have been demonstrated to perform a variety of biological functions. However, the presence of miRNAs in bee venom needs to be confirmed. Therefore, we conducted small RNA sequencing and identified 158 known miRNAs, 15 conserved miRNAs and 4 novel miRNAs. It is noteworthy that ame-miR-1-3p, the most abundant among them, accounted for over a quarter of all miRNA reads. To validate the function of ame-miR-1-3p, we screened 28 candidate target genes using transcriptome sequencing and three target gene prediction software (miRanda, PITA and TargetScan) for ame-miR-1-3p. Subsequently, we employed real-time quantitative reverse transcription PCR (qRT-PCR), Western blot and other technologies to confirm that ame-miR-1-3p inhibits the relative expression of antizyme inhibitor 1 (AZIN1) by targeting the 3′ untranslated region (UTR) of AZIN1. This, in turn, caused ODC antizyme 1 (OAZ1) to bind to ornithine decarboxylase 1 (ODC1) and mark ODC1 for proteolytic destruction. The reduction in functional ODC1 ultimately resulted in a decrease in polyamine biosynthesis. Furthermore, we determined that ame-miR-1-3p accelerates cell death through the AZIN1/OAZ1-ODC1-polyamines pathway. Our studies demonstrate that ame-miR-1-3p diminishes cell viability and it may collaborate with sPLA2 to enhance the defence capabilities of honeybees (Apis mellifera L.). Collectively, these data further elucidate the defence mechanism of bee venom and expand the potential applications of bee venom in medical treatment.

蜂毒是蜜蜂的重要防御武器,也可用作药物。微小核糖核酸(miRNA)是一种重要的调节因子,已被证明具有多种生物功能。然而,miRNAs 在蜂毒中的存在还有待证实。因此,我们进行了小核糖核酸测序,发现了 158 个已知的 miRNAs、15 个保守的 miRNAs 和 4 个新型 miRNAs。值得注意的是,其中含量最高的是ame-miR-1-3p,占所有miRNA读数的四分之一以上。为了验证ame-miR-1-3p的功能,我们利用转录组测序和三种靶基因预测软件(miRanda、PITA和TargetScan)对ame-miR-1-3p的28个候选靶基因进行了筛选。随后,我们利用实时定量反转录 PCR(qRT-PCR)、Western 印迹等技术证实,ame-miR-1-3p 通过靶向 AZIN1 的 3' 非翻译区(UTR),抑制了抗酶抑制剂 1(AZIN1)的相对表达。这反过来又导致 ODC 抗酶 1(OAZ1)与鸟氨酸脱羧酶 1(ODC1)结合,并标志着 ODC1 被蛋白水解破坏。功能性 ODC1 的减少最终导致多胺生物合成的减少。此外,我们还确定,ame-miR-1-3p 可通过 AZIN1/OAZ1-ODC1- 多胺途径加速细胞死亡。我们的研究表明,ame-miR-1-3p 会降低细胞活力,它可能与 sPLA2 协作增强蜜蜂(Apis mellifera L.)的防御能力。总之,这些数据进一步阐明了蜂毒的防御机制,并拓展了蜂毒在医疗方面的潜在应用。
{"title":"Ame-miR-1-3p of bee venom reduced cell viability through the AZIN1/OAZ1-ODC1-polyamines pathway and enhanced the defense ability of honeybee (Apis mellifera L.)","authors":"Haifeng Liu,&nbsp;Xue Tian,&nbsp;Jie Wen,&nbsp;Jie Liu,&nbsp;Yunfei Huo,&nbsp;Kangqi Yuan,&nbsp;Jiazhong Guo,&nbsp;Xun Wang,&nbsp;Mingxian Yang,&nbsp;Anan Jiang,&nbsp;Quanquan Cao,&nbsp;Jun Jiang","doi":"10.1111/imb.12899","DOIUrl":"10.1111/imb.12899","url":null,"abstract":"<p>Bee venom serves as an essential defensive weapon for bees and also finds application as a medicinal drug. MicroRNAs (miRNAs) serve as critical regulators and have been demonstrated to perform a variety of biological functions. However, the presence of miRNAs in bee venom needs to be confirmed. Therefore, we conducted small RNA sequencing and identified 158 known miRNAs, 15 conserved miRNAs and 4 novel miRNAs. It is noteworthy that ame-miR-1-3p, the most abundant among them, accounted for over a quarter of all miRNA reads. To validate the function of ame-miR-1-3p, we screened 28 candidate target genes using transcriptome sequencing and three target gene prediction software (miRanda, PITA and TargetScan) for ame-miR-1-3p. Subsequently, we employed real-time quantitative reverse transcription PCR (qRT-PCR), Western blot and other technologies to confirm that ame-miR-1-3p inhibits the relative expression of antizyme inhibitor 1 (AZIN1) by targeting the 3′ untranslated region (UTR) of AZIN1. This, in turn, caused ODC antizyme 1 (OAZ1) to bind to ornithine decarboxylase 1 (ODC1) and mark ODC1 for proteolytic destruction. The reduction in functional ODC1 ultimately resulted in a decrease in polyamine biosynthesis. Furthermore, we determined that ame-miR-1-3p accelerates cell death through the AZIN1/OAZ1-ODC1-polyamines pathway. Our studies demonstrate that ame-miR-1-3p diminishes cell viability and it may collaborate with sPLA2 to enhance the defence capabilities of honeybees (<i>Apis mellifera</i> L.). Collectively, these data further elucidate the defence mechanism of bee venom and expand the potential applications of bee venom in medical treatment.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 4","pages":"312-322"},"PeriodicalIF":2.3,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141065265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GASZ is indispensable for gametogenesis in the silkworm, Bombyx mori GASZ是家蚕配子发生过程中不可或缺的物质。
IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-10 DOI: 10.1111/imb.12921
Peilin Guo, Ye Yu, Hongxia Kang, Yutong Liu, Dalin Zhu, Chenxin Sun, Zhiping Xing, Ziyue Tang, Kai Chen, Anjiang Tan

The prominent role of the P-element induced wimpy testis (PIWI)-interacting RNA (piRNA) pathway in animals is to silence transposable elements and maintain genome stability, ensuring proper gametogenesis in gonads. GASZ (Germ cell protein with Ankyrin repeats, Sterile alpha motif, and leucine Zipper) is an evolutionarily conserved protein located on the outer mitochondrial membrane of germ cells and plays vital roles in the piRNA pathway and spermatogenesis in mammals. In the model insect Drosophila melanogaster, GASZ is essential for piRNA biogenesis and oogenesis, whereas its biological functions in non-drosophilid insects are still unknown. Here, we describe a comprehensive investigation of GASZ functions in the silkworm, Bombyx mori, a lepidopteran model insect, by using a binary transgenic CRISPR/Cas9 system. The BmGASZ mutation did not affect growth and development, but led to sterility in both males and females. Eupyrene sperm bundles of mutant males exhibited developmental defects, while the apyrene sperm bundles were normal, which were further confirmed through double copulation experiments with sex-lethal mutants, which males possess functional eupyrene sperm and abnormal apyrene sperm. In female mutant moths, ovarioles were severely degenerated and the eggs in ovarioles were deformed compared with that of wild type (WT). Further RNA-seq and RT-qPCR analysis revealed that amounts of piRNAs and transposon expression were dysregulated in gonads of mutants. In summary, this study has demonstrated vital roles of BmGASZ in gametogenesis through regulating the piRNA pathway in B. mori.

在动物体内,P-元件诱导睾丸萎缩(PIWI)-RNA(piRNA)相互作用途径的主要作用是沉默转座元件和维持基因组的稳定性,从而确保性腺的正常配子发生。GASZ(具有Ankyrin重复序列、不育α基序和亮氨酸拉链的生殖细胞蛋白)是一种位于生殖细胞线粒体外膜上的进化保守蛋白,在哺乳动物的piRNA通路和精子发生过程中发挥着重要作用。在模式昆虫黑腹果蝇中,GASZ 对 piRNA 的生物发生和卵子发生至关重要,而其在非果蝇类昆虫中的生物学功能尚不清楚。在这里,我们描述了利用二元转基因CRISPR/Cas9系统对鳞翅目模式昆虫家蚕GASZ功能的全面研究。BmGASZ突变不影响生长发育,但会导致雌雄不育。突变雄蛾的芘精子束表现出发育缺陷,而芘精子束正常,这一点通过与性致死突变体的双交配实验得到了进一步证实,突变雄蛾具有功能性芘精子和异常的芘精子。与野生型相比,突变体雌蛾的卵巢严重退化,卵巢中的卵畸形。进一步的 RNA-seq 和 RT-qPCR 分析显示,突变体性腺中 piRNAs 和转座子的表达量失调。综上所述,本研究证明了 BmGASZ 通过调控 piRNA 通路在森蛙配子发生过程中的重要作用。
{"title":"GASZ is indispensable for gametogenesis in the silkworm, Bombyx mori","authors":"Peilin Guo,&nbsp;Ye Yu,&nbsp;Hongxia Kang,&nbsp;Yutong Liu,&nbsp;Dalin Zhu,&nbsp;Chenxin Sun,&nbsp;Zhiping Xing,&nbsp;Ziyue Tang,&nbsp;Kai Chen,&nbsp;Anjiang Tan","doi":"10.1111/imb.12921","DOIUrl":"10.1111/imb.12921","url":null,"abstract":"<p>The prominent role of the P-element induced wimpy testis (PIWI)-interacting RNA (piRNA) pathway in animals is to silence transposable elements and maintain genome stability, ensuring proper gametogenesis in gonads. GASZ (Germ cell protein with Ankyrin repeats, Sterile alpha motif, and leucine Zipper) is an evolutionarily conserved protein located on the outer mitochondrial membrane of germ cells and plays vital roles in the piRNA pathway and spermatogenesis in mammals. In the model insect <i>Drosophila melanogaster</i>, GASZ is essential for piRNA biogenesis and oogenesis, whereas its biological functions in non-drosophilid insects are still unknown. Here, we describe a comprehensive investigation of GASZ functions in the silkworm, <i>Bombyx mori</i>, a lepidopteran model insect, by using a binary transgenic CRISPR/Cas9 system. The <i>BmGASZ</i> mutation did not affect growth and development, but led to sterility in both males and females. Eupyrene sperm bundles of mutant males exhibited developmental defects, while the apyrene sperm bundles were normal, which were further confirmed through double copulation experiments with <i>sex-lethal</i> mutants, which males possess functional eupyrene sperm and abnormal apyrene sperm. In female mutant moths, ovarioles were severely degenerated and the eggs in ovarioles were deformed compared with that of wild type (WT). Further RNA-seq and RT-qPCR analysis revealed that amounts of piRNAs and transposon expression were dysregulated in gonads of mutants. In summary, this study has demonstrated vital roles of <i>BmGASZ</i> in gametogenesis through regulating the piRNA pathway in <i>B. mori</i>.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 6","pages":"626-637"},"PeriodicalIF":2.3,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140904122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Rhythmic change of adipokinetic hormones diurnally regulates locust vitellogenesis and egg development 更正:脂肪代谢激素昼夜节律性变化调节蝗虫卵黄发生和卵子发育。
IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-08 DOI: 10.1111/imb.12920

Zheng, H., Chen, C., Liu, C., Song, Q. and Zhou, S. (2020) Rhythmic change of adipokinetic hormones diurnally regulates locust vitellogenesis and egg development. Insect Molecular Biology, 29, 283–292. Available from: https://doi.org/10.1111/imb.12633

In the article by Zheng et al. (2020), an incorrect grant number was given in the Acknowledgments.

The correct text should be:

This work was supported by the National Natural Science Foundation of China (NSFC) (U1804232 and 31630070) and the 111 project of China (D16014).

We apologize for this error.

Zheng, H., Chen, C., Liu, C., Song, Q. and Zhou, S. (2020) Rhythmic change of adipokinetic hormones diurnally regulates locust vitellogenesis and egg development.昆虫分子生物学》,29,283-292。Available from: https://doi.org/10.1111/imb.12633In Zheng et al. (2020)的文章,在致谢中给出了一个错误的基金号。正确的文字应该是:这项工作得到了国家自然科学基金(NSFC)(U1804232 和 31630070)和国家 "111 "项目(D16014)的支持。我们对这一错误表示歉意。
{"title":"Correction to: Rhythmic change of adipokinetic hormones diurnally regulates locust vitellogenesis and egg development","authors":"","doi":"10.1111/imb.12920","DOIUrl":"10.1111/imb.12920","url":null,"abstract":"<p>Zheng, H., Chen, C., Liu, C., Song, Q. and Zhou, S. (2020) Rhythmic change of adipokinetic hormones diurnally regulates locust vitellogenesis and egg development. <i>Insect Molecular Biology</i>, 29, 283–292. Available from: https://doi.org/10.1111/imb.12633</p><p>In the article by Zheng et al. (2020), an incorrect grant number was given in the Acknowledgments.</p><p>The correct text should be:</p><p>This work was supported by the National Natural Science Foundation of China (NSFC) (U1804232 and 31630070) and the 111 project of China (D16014).</p><p>We apologize for this error.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 4","pages":"427"},"PeriodicalIF":2.3,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imb.12920","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140876286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The composition and function of bacterial communities in Bombyx mori (Lepidoptera: Bombycidae) changed dramatically with infected fungi: A new potential to culture Cordyceps cicadae 鳞翅目:蝠科)细菌群落的组成和功能随感染真菌而发生显著变化:培养虫草蝉的新潜力。
IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-06 DOI: 10.1111/imb.12918
Ye-Ming Zhou, Lin Duan, Li Luo, Jing-Qiang Guan, Zheng-Kai Yang, Jiao-Jiao Qu, Xiao Zou

Cordyceps cicadae (Hypocreales: Cordycipitaceae) is a renowned entomopathogenic fungus used as herbal medicine in China. However, wild C. cicadae resources have been threatened by heavy harvesting. We hypothesised that Bombyx mori L. (Lepidoptera: Bombycidae) could be a new alternative to cultivate C. cicadae due to the low cost of rearing. Bacterial communities are crucial for the formation of Cordyceps and for promoting the production of metabolites. To better understand the bacterial community structure associated with Cordyceps, three Claviciptaceae fungi were used to explore the pathogenicity of the silkworms. Here, fifth-instar silkworms were infected with C. cicadae, Cordyceps cateniannulata (Hypocreales: Cordycipitaceae) and Beauveria bassiana (Hypocreales: Cordycipitaceae). Subsequently, we applied high-throughput sequencing to explore the composition of bacterial communities in silkworms. Our results showed that all three fungi were highly pathogenic to silkworms, which suggests that silkworms have the potential to cultivate Cordyceps. After fungal infection, the diversity of bacterial communities in silkworms decreased significantly, and the abundance of Staphylococcus increased in mummified larvae, which may play a role in the death process when the host suffers infection by entomopathogenic fungi. Furthermore, there were high similarities in the bacterial community composition and function in the C. cicadae and C. cateniannulata infected samples, and the phylogenetic analysis suggested that these similarities may be related to the fungal phylogenetic relationship. Our findings reveal that infection with different entomopathogenic fungi affects the composition and function of bacterial communities in silkworms and that the bacterial species associated with Cordyceps are primarily host dependent, while fungal infection affects bacterial abundance.

冬虫夏草(Cordyceps cicadae,Hypocreales: Cordycipitaceae)是一种著名的昆虫病原真菌,在中国被用作中药材。然而,野生冬虫夏草资源已受到大量采挖的威胁。我们推测,由于饲养成本较低,桑蚕(鳞翅目:蚕蛾科)可能是培育蝉的新替代品。细菌群落对冬虫夏草的形成和促进代谢产物的产生至关重要。为了更好地了解与冬虫夏草相关的细菌群落结构,研究人员使用了三种棒曲霉科真菌来探索蚕的致病性。在这里,五龄蚕感染了 C. cicadae、Cordyceps cateniannulata(Hypocreales: Cordycipitaceae)和 Beauveria bassiana(Hypocreales: Cordycipitaceae)。随后,我们应用高通量测序技术探讨了蚕体内细菌群落的组成。结果表明,这三种真菌对家蚕都具有很强的致病性,这表明家蚕具有栽培冬虫夏草的潜力。真菌感染后,蚕体内细菌群落的多样性显著下降,木乃伊幼虫中葡萄球菌的数量增加,这可能与寄主感染昆虫病原真菌后的死亡过程有关。此外,在蝉属真菌和猫蝉属真菌感染的样本中,细菌群落的组成和功能具有高度的相似性,系统发育分析表明这些相似性可能与真菌的系统发育关系有关。我们的研究结果表明,感染不同的昆虫病原真菌会影响家蚕体内细菌群落的组成和功能,与冬虫夏草相关的细菌种类主要依赖于宿主,而真菌感染会影响细菌的丰度。
{"title":"The composition and function of bacterial communities in Bombyx mori (Lepidoptera: Bombycidae) changed dramatically with infected fungi: A new potential to culture Cordyceps cicadae","authors":"Ye-Ming Zhou,&nbsp;Lin Duan,&nbsp;Li Luo,&nbsp;Jing-Qiang Guan,&nbsp;Zheng-Kai Yang,&nbsp;Jiao-Jiao Qu,&nbsp;Xiao Zou","doi":"10.1111/imb.12918","DOIUrl":"10.1111/imb.12918","url":null,"abstract":"<p><i>Cordyceps cicadae</i> (Hypocreales: Cordycipitaceae) is a renowned entomopathogenic fungus used as herbal medicine in China. However, wild <i>C. cicadae</i> resources have been threatened by heavy harvesting. We hypothesised that <i>Bombyx mori</i> L. (Lepidoptera: Bombycidae) could be a new alternative to cultivate <i>C. cicadae</i> due to the low cost of rearing. Bacterial communities are crucial for the formation of <i>Cordyceps</i> and for promoting the production of metabolites. To better understand the bacterial community structure associated with <i>Cordyceps</i>, three Claviciptaceae fungi were used to explore the pathogenicity of the silkworms. Here, fifth-instar silkworms were infected with <i>C. cicadae</i>, <i>Cordyceps cateniannulata</i> (Hypocreales: Cordycipitaceae) and <i>Beauveria bassiana</i> (Hypocreales: Cordycipitaceae). Subsequently, we applied high-throughput sequencing to explore the composition of bacterial communities in silkworms. Our results showed that all three fungi were highly pathogenic to silkworms, which suggests that silkworms have the potential to cultivate <i>Cordyceps</i>. After fungal infection, the diversity of bacterial communities in silkworms decreased significantly, and the abundance of <i>Staphylococcus</i> increased in mummified larvae, which may play a role in the death process when the host suffers infection by entomopathogenic fungi. Furthermore, there were high similarities in the bacterial community composition and function in the <i>C. cicadae</i> and <i>C. cateniannulata</i> infected samples, and the phylogenetic analysis suggested that these similarities may be related to the fungal phylogenetic relationship. Our findings reveal that infection with different entomopathogenic fungi affects the composition and function of bacterial communities in silkworms and that the bacterial species associated with <i>Cordyceps</i> are primarily host dependent, while fungal infection affects bacterial abundance.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 6","pages":"613-625"},"PeriodicalIF":2.3,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140862710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Insect Molecular Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1