首页 > 最新文献

Insect Molecular Biology最新文献

英文 中文
Function analysis and characterisation of a novel chitinase, MdCht9, in Musca domestica 家蝇中一种新型几丁质酶 MdCht9 的功能分析和特征描述
IF 2.6 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-12-31 DOI: 10.1111/imb.12887
Wen-Jing Zhao, Yan Li, Zhen-Long Jiao, Pei-Pei Su, Long-Bing Yang, Chao-Qin Sun, Jiang-Fan Xiu, Xiao-Li Shang, Guo Guo

Insect chitinases have been proposed as potential targets for pest control. In this work, a novel group IV chitinase gene, MdCht9, from Musca domestica was found to have multiple functions in the physiological activity, including chitin regulation, development and antifungal immunity. The MdCht9 gene was cloned and sequenced, its phylogeny was analysed and its expression was determined in normal and 20E treated larvae. Subsequently, RNA interference (RNAi)-mediated MdCht9 knockdown was performed, followed by biochemical assays, morphological observations and transcriptome analysis. Finally, the recombinant protein MdCht9 (rMdCht9) was purified and tested for anti-microbial activity and enzyme characteristics. The results showed that MdCht9 consists of three domains, highly expressed in a larval salivary gland. RNAi silencing of MdCht9 resulted in significant down-regulation of chitin content and expression of 15 chitin-binding protein (CBP) genes, implying a new insight that MdCht9 might regulate chitin content by influencing the expression of CBPs. In addition, more than half of the lethality and partial wing deformity appeared due to the dsMdCht9 treatment. In addition, the rMdCht9 exhibited anti-microbial activity towards Candida albicans (fungus) but not towards Escherichia coli (G−) or Staphylococcus aureus (G+). Our work expands on previous studies of chitinase while providing a potential target for pest management.

昆虫几丁质酶被认为是害虫控制的潜在目标。在这项工作中,研究人员发现来自家蝇的一种新型第 IV 组几丁质酶基因 MdCht9 在生理活动中具有多种功能,包括几丁质调节、发育和抗真菌免疫。对 MdCht9 基因进行了克隆和测序,分析了其系统发育,并测定了其在正常幼虫和 20E 处理幼虫中的表达。随后,进行了 RNA 干扰(RNAi)介导的 MdCht9 基因敲除,并进行了生化检测、形态观察和转录组分析。最后,纯化重组蛋白 MdCht9(rMdCht9),并检测其抗微生物活性和酶特性。结果表明,MdCht9由三个结构域组成,在幼虫唾液腺中高度表达。RNAi沉默MdCht9可显著下调几丁质含量和15个几丁质结合蛋白(CBP)基因的表达,这意味着MdCht9可能通过影响CBP的表达来调控几丁质含量。此外,一半以上的致死和翅膀部分畸形是由于dsMdCht9处理造成的。此外,rMdCht9 对白色念珠菌(真菌)具有抗微生物活性,但对大肠杆菌(G-)或金黄色葡萄球菌(G+)没有抗微生物活性。我们的工作拓展了以往对几丁质酶的研究,同时为害虫管理提供了一个潜在的目标。
{"title":"Function analysis and characterisation of a novel chitinase, MdCht9, in Musca domestica","authors":"Wen-Jing Zhao,&nbsp;Yan Li,&nbsp;Zhen-Long Jiao,&nbsp;Pei-Pei Su,&nbsp;Long-Bing Yang,&nbsp;Chao-Qin Sun,&nbsp;Jiang-Fan Xiu,&nbsp;Xiao-Li Shang,&nbsp;Guo Guo","doi":"10.1111/imb.12887","DOIUrl":"10.1111/imb.12887","url":null,"abstract":"<p>Insect chitinases have been proposed as potential targets for pest control. In this work, a novel group IV chitinase gene, <i>MdCht9</i>, from <i>Musca domestica</i> was found to have multiple functions in the physiological activity, including chitin regulation, development and antifungal immunity. The <i>MdCht9</i> gene was cloned and sequenced, its phylogeny was analysed and its expression was determined in normal and 20E treated larvae. Subsequently, RNA interference (RNAi)-mediated <i>MdCht9</i> knockdown was performed, followed by biochemical assays, morphological observations and transcriptome analysis. Finally, the recombinant protein <i>MdCht9</i> (rMdCht9) was purified and tested for anti-microbial activity and enzyme characteristics. The results showed that <i>MdCht9</i> consists of three domains, highly expressed in a larval salivary gland. RNAi silencing of <i>MdCht9</i> resulted in significant down-regulation of chitin content and expression of 15 chitin-binding protein (CBP) genes, implying a new insight that <i>MdCht9</i> might regulate chitin content by influencing the expression of CBPs. In addition, more than half of the lethality and partial wing deformity appeared due to the <i>dsMdCht9</i> treatment. In addition, the rMdCht9 exhibited anti-microbial activity towards <i>Candida albicans</i> (fungus) but not towards <i>Escherichia coli</i> (G−) or <i>Staphylococcus aureus</i> (G+). Our work expands on previous studies of chitinase while providing a potential target for pest management.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 2","pages":"157-172"},"PeriodicalIF":2.6,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139061985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterisation of lepidopteran geranylgeranyl diphosphate synthase as a putative pesticide target 鳞翅目香叶基二磷酸合成酶作为农药靶点的特性研究。
IF 2.6 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-11-14 DOI: 10.1111/imb.12885
Evangelia Katsavou, Chara Sarafoglou, Vasileia Balabanidou, Evangelia Skoufa, Ralf Nauen, Marc Linka, Sven Geibel, Shane Denecke, John Vontas

Geranylgeranyl pyrophosphate (diphosphate) synthase (GGPPS) plays an important role in various physiological processes in insects, such as isoprenoid biosynthesis and protein prenylation. Here, we functionally characterised the GGPPS from the major agricultural lepidopteran pests Spodoptera frugiperda and Helicoverpa armigera. Partial disruption of GGPPS by CRISPR in S. frugiperda decreased embryo hatching rate and larval survival, suggesting that this gene is essential. Functional expression in vitro of Helicoverpa armigera GGPPS in Escherichia coli revealed a catalytically active enzyme. Next, we developed and optimised an enzyme assay to screen for potential inhibitors, such as the zoledronate and the minodronate, which showed a dose-dependent inhibition. Phylogenetic analysis of GGPPS across insects showed that GGPPS is highly conserved but also revealed several residues likely to be involved in substrate binding, which were substantially different in bee pollinator and human GGPPS. Considering the essentiality of GGPPS and its putative binding residue variability qualifies a GGPPS as a novel pesticide target. The developed assay may contribute to the identification of novel insecticide leads.

Geranylgeranyl焦磷酸(二磷酸)合成酶(GGPPS)在昆虫类异戊二烯生物合成和蛋白质烯酰化等多种生理过程中起重要作用。在此,我们对主要农业鳞翅目害虫狐尾蛾和棉铃虫的GGPPS进行了功能表征。CRISPR部分破坏GGPPS会降低S. frugiperda的胚胎孵化率和幼虫存活率,表明该基因是必不可少的。棉铃虫GGPPS在大肠杆菌中的体外功能表达显示出一种催化活性酶。接下来,我们开发并优化了一种酶分析来筛选潜在的抑制剂,如唑来膦酸盐和米诺膦酸盐,它们显示出剂量依赖性的抑制作用。昆虫GGPPS的系统发育分析表明,GGPPS具有高度保守性,但也发现了一些可能参与底物结合的残基,这些残基在蜜蜂传粉媒介和人类GGPPS中存在很大差异。考虑到GGPPS的重要性及其假定的结合残基可变性,GGPPS有资格成为一种新的农药靶标。该方法可用于新型杀虫剂铅的鉴定。
{"title":"Characterisation of lepidopteran geranylgeranyl diphosphate synthase as a putative pesticide target","authors":"Evangelia Katsavou,&nbsp;Chara Sarafoglou,&nbsp;Vasileia Balabanidou,&nbsp;Evangelia Skoufa,&nbsp;Ralf Nauen,&nbsp;Marc Linka,&nbsp;Sven Geibel,&nbsp;Shane Denecke,&nbsp;John Vontas","doi":"10.1111/imb.12885","DOIUrl":"10.1111/imb.12885","url":null,"abstract":"<p>Geranylgeranyl pyrophosphate (diphosphate) synthase (GGPPS) plays an important role in various physiological processes in insects, such as isoprenoid biosynthesis and protein prenylation. Here, we functionally characterised the GGPPS from the major agricultural lepidopteran pests <i>Spodoptera frugiperda</i> and <i>Helicoverpa armigera</i>. Partial disruption of <i>GGPPS</i> by CRISPR in <i>S. frugiperda</i> decreased embryo hatching rate and larval survival, suggesting that this gene is essential. Functional expression <i>in vitro</i> of <i>Helicoverpa armigera</i> GGPPS in <i>Escherichia coli</i> revealed a catalytically active enzyme. Next, we developed and optimised an enzyme assay to screen for potential inhibitors, such as the zoledronate and the minodronate, which showed a dose-dependent inhibition. Phylogenetic analysis of GGPPS across insects showed that <i>GGPPS</i> is highly conserved but also revealed several residues likely to be involved in substrate binding, which were substantially different in bee pollinator and human GGPPS. Considering the essentiality of GGPPS and its putative binding residue variability qualifies a GGPPS as a novel pesticide target. The developed assay may contribute to the identification of novel insecticide leads.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 2","pages":"147-156"},"PeriodicalIF":2.6,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92153698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Juvenile hormone inhibits adult cuticle formation in Drosophila melanogaster through Kr-h1/Dnmt2-mediated DNA methylation of Acp65A promoter 幼激素通过Kr-h1/Dnmt2介导的Acp65A启动子的DNA甲基化抑制黑腹果蝇成虫角质层的形成。
IF 2.6 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-11-02 DOI: 10.1111/imb.12884
Qianyu He, Xiaochun Fan, Shunxin Wang, Shanshan Chen, Jinxia Chen

Differentiation of imaginal epidermal cells of Drosophila melanogaster to form adult cuticles occurs at approximately 40–93 h after puparium formation. Juvenile hormone (JH) given at pupariation results in formation of a second pupal cuticle in the abdomen instead of the adult cuticle. Although the adult cuticle gene Acp65A has been reported to be down-regulated following JH treatment, the regulatory mechanism remains unclear. Here, we found that the JH primary response gene Krüppel homologue 1 (Kr-h1) plays a vital role in the repression of adult cuticle formation through the mediation of JH action. Overexpression of Kr-h1 mimicked—while knocking down of Kr-h1 attenuated—the inhibitory action of JH on the formation of the adult abdominal cuticle. Further, we found that Kr-h1 inhibited the transcription of Acp65A by directly binding to the consensus Kr-h1 binding site (KBS) within the Acp65A promoter region. Moreover, the DNA methyltransferase Dnmt2 was shown to interact with Kr-h1, combined with the KBS to promote the DNA methylation of sequences around the KBS, in turn inhibiting the transcription of Acp65A. This study advances our understanding of the molecular basis of the “status quo” action of JH on the Drosophila adult metamorphosis.

黑腹果蝇的想象表皮细胞分化形成成年角质层发生在大约40-93 h。蛹蜕皮时给予的幼激素(JH)会在腹部形成第二个蛹角质层,而不是成虫角质层。尽管成人角质层基因Acp65A已被报道在JH治疗后下调,但其调节机制尚不清楚。在这里,我们发现JH初级反应基因Krüppel同源物1(Kr-h1)通过JH作用在抑制成人角质层形成中发挥着至关重要的作用。Kr-h1的过表达模拟了敲低Kr-h1,减弱了JH对成人腹部角质层形成的抑制作用。此外,我们发现Kr-h1通过直接结合Acp65A启动子区内的共有Kr-h1结合位点(KBS)来抑制Acp65A的转录。此外,DNA甲基转移酶Dnmt2显示与Kr-h1相互作用,与KBS结合以促进KBS周围序列的DNA甲基化,进而抑制Acp65A的转录。本研究加深了我们对JH对果蝇成虫变态“现状”作用的分子基础的理解。
{"title":"Juvenile hormone inhibits adult cuticle formation in Drosophila melanogaster through Kr-h1/Dnmt2-mediated DNA methylation of Acp65A promoter","authors":"Qianyu He,&nbsp;Xiaochun Fan,&nbsp;Shunxin Wang,&nbsp;Shanshan Chen,&nbsp;Jinxia Chen","doi":"10.1111/imb.12884","DOIUrl":"10.1111/imb.12884","url":null,"abstract":"<p>Differentiation of imaginal epidermal cells of <i>Drosophila melanogaster</i> to form adult cuticles occurs at approximately 40–93 h after puparium formation. Juvenile hormone (JH) given at pupariation results in formation of a second pupal cuticle in the abdomen instead of the adult cuticle. Although the adult cuticle gene <i>Acp65A</i> has been reported to be down-regulated following JH treatment, the regulatory mechanism remains unclear. Here, we found that the JH primary response gene <i>Krüppel homologue 1</i> (<i>Kr-h1</i>) plays a vital role in the repression of adult cuticle formation through the mediation of JH action. Overexpression of <i>Kr-h1</i> mimicked—while knocking down of <i>Kr-h1</i> attenuated—the inhibitory action of JH on the formation of the adult abdominal cuticle. Further, we found that Kr-h1 inhibited the transcription of <i>Acp65A</i> by directly binding to the consensus Kr-h1 binding site (KBS) within the <i>Acp65A</i> promoter region. Moreover, the DNA methyltransferase Dnmt2 was shown to interact with Kr-h1, combined with the KBS to promote the DNA methylation of sequences around the KBS, in turn inhibiting the transcription of <i>Acp65A</i>. This study advances our understanding of the molecular basis of the “status quo” action of JH on the <i>Drosophila</i> adult metamorphosis.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 2","pages":"124-135"},"PeriodicalIF":2.6,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71423324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A classic screening marker does not affect antennal electrophysiology but strongly regulates reproductive behaviours in Bactrocera dorsalis 一个经典的筛选标记不影响触角电生理,但强烈调节背小实蝇的生殖行为。
IF 2.6 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-10-25 DOI: 10.1111/imb.12883
QiQige Wuyun, Yan Zhang, Jinxi Yuan, Jie Zhang, Cong Ren, Qi Wang, Shanchun Yan, Wei Liu, Guirong Wang

The key phenotype white eye (white) has been used for decades to selectively remove females before release in sterile insect technique programs and as an effective screening marker in genetic engineering. Bactrocera dorsalis is a representative tephritid pest causing damage to more than 150 fruit crops. Yet, the function of white in important biological processes remains unclear in B. dorsalis. In this study, the impacts of the white gene on electrophysiology and reproductive behaviour in B. dorsalis were tested. The results indicated that knocking out Bdwhite disrupted eye pigmentation in adults, consistent with previous reports. Bdwhite did not affect the antennal electrophysiology response to 63 chemical components with various structures. However, reproductive behaviours in both males and females were significantly reduced in Bdwhite−/−. Both pre-copulatory and copulation behaviours were significantly reduced in Bdwhite−/−, and the effect was male-specific. Mutant females significantly delayed their oviposition towards γ-octalactone, and the peak of oviposition behaviour towards orange juice was lost. These results show that Bdwhite might not be an ideal screening marker in functional gene research aiming to identify molecular targets for behaviour-modifying chemicals. Instead, owing to its strong effect on B. dorsalis sexual behaviours, the downstream genes regulated by Bdwhite or the genes from white-linked areas could be alternate molecular targets that promote the development of better behavioural modifying chemical-based pest management techniques.

几十年来,在不育昆虫技术项目中,关键表型白眼(白色)一直被用于在释放前选择性地去除雌性,并作为基因工程中的一种有效筛选标记。桔小实蝇是一种具有代表性的热带害虫,对150多种果树造成危害。然而,白色在重要的生物学过程中的作用在B.dorsalis中仍不清楚。在本研究中,测试了白色基因对B.dorsalis的电生理和生殖行为的影响。结果表明,敲除Bdwhite会破坏成年人眼睛的色素沉着,这与之前的报道一致。Bdwhite对63种不同结构的化学成分的触角电生理反应没有影响。然而,在Bdwhite-/-中,雄性和雌性的生殖行为都显著减少。Bdwhite-/-的交配前和交配行为都显著减少,而且这种影响是雄性特有的。突变雌性对γ-八内酯的产卵显著延迟,对橙汁的产卵行为峰值消失。这些结果表明,在功能基因研究中,Bdwhite可能不是一个理想的筛选标记,目的是识别行为改变化学物质的分子靶标。相反,由于其对B.dorsalis性行为的强烈影响,由Bdwhite调节的下游基因或来自白色连接区域的基因可能是促进开发更好的基于化学方法的行为改变害虫管理技术的替代分子靶点。
{"title":"A classic screening marker does not affect antennal electrophysiology but strongly regulates reproductive behaviours in Bactrocera dorsalis","authors":"QiQige Wuyun,&nbsp;Yan Zhang,&nbsp;Jinxi Yuan,&nbsp;Jie Zhang,&nbsp;Cong Ren,&nbsp;Qi Wang,&nbsp;Shanchun Yan,&nbsp;Wei Liu,&nbsp;Guirong Wang","doi":"10.1111/imb.12883","DOIUrl":"10.1111/imb.12883","url":null,"abstract":"<p>The key phenotype white eye (white) has been used for decades to selectively remove females before release in sterile insect technique programs and as an effective screening marker in genetic engineering. <i>Bactrocera dorsalis</i> is a representative tephritid pest causing damage to more than 150 fruit crops. Yet, the function of white in important biological processes remains unclear in <i>B. dorsalis</i>. In this study, the impacts of the <i>white</i> gene on electrophysiology and reproductive behaviour in <i>B. dorsalis</i> were tested. The results indicated that knocking out <i>Bdwhite</i> disrupted eye pigmentation in adults, consistent with previous reports. <i>Bdwhite</i> did not affect the antennal electrophysiology response to 63 chemical components with various structures. However, reproductive behaviours in both males and females were significantly reduced in <i>Bdwhite</i><sup>−/−</sup>. Both pre-copulatory and copulation behaviours were significantly reduced in <i>Bdwhite</i><sup>−/−</sup>, and the effect was male-specific. Mutant females significantly delayed their oviposition towards γ-octalactone, and the peak of oviposition behaviour towards orange juice was lost. These results show that <i>Bdwhite</i> might not be an ideal screening marker in functional gene research aiming to identify molecular targets for behaviour-modifying chemicals. Instead, owing to its strong effect on <i>B. dorsalis</i> sexual behaviours, the downstream genes regulated by <i>Bdwhite</i> or the genes from white-linked areas could be alternate molecular targets that promote the development of better behavioural modifying chemical-based pest management techniques.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 2","pages":"136-146"},"PeriodicalIF":2.6,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50157802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptome analysis of Apis mellifera antennae reveals molecular divergence underlying the division of labour in worker bees 蜜蜂触角的转录组分析揭示了工蜂分工的分子差异。
IF 2.6 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-10-21 DOI: 10.1111/imb.12882
Bairu Liu, Yicong Xu, Weixing Zhang

The olfactory system plays a fundamental role in mediating insect behaviour. Worker bees exhibit an age-dependent division of labour, performing discrete sets of behaviours throughout their lifespan. The behavioural states of bees rely on their sense of the environment and chemical communication via their olfactory system, the antennae. However, the olfactory adaptation mechanism of worker bees during their behavioural development remains unclear. In this study, we conducted a comprehensive and quantitative analysis of antennal gene expression in the Apis mellifera of newly emerged workers, nurses, foragers and defenders using RNA-seq. We found that the antenna tissues of honey bees continued developing after transformation from newly emerged workers to adults. Additionally, we identified differentially expressed genes associated with bee development and division of labour. We validated that major royal jelly protein genes are highly and specifically expressed in nurse honey bee workers. Furthermore, we identified and validated significant alternative splicing events correlated with the development and division of labour. These findings provide a comprehensive transcriptome profile and a new perspective on the molecular mechanisms that may underlie the worker honey bee division of labour.

嗅觉系统在调节昆虫行为中起着重要作用。工蜂表现出与年龄相关的分工,在其一生中表现出一系列离散的行为。蜜蜂的行为状态依赖于它们对环境的感知和通过嗅觉系统(触角)进行的化学交流。然而,工蜂在行为发育过程中的嗅觉适应机制尚不清楚。在这项研究中,我们使用RNA-seq对新出现的工人、护士、觅食者和保卫者的蜜蜂触角基因表达进行了全面和定量的分析。我们发现,蜜蜂的触角组织在从新出现的工蜂转变为成虫后继续发育。此外,我们还鉴定了与蜜蜂发育和分工相关的差异表达基因。我们验证了主要蜂王浆蛋白基因在蜜蜂护理工作者中高度特异性表达。此外,我们确定并验证了与发育和分工相关的重要替代剪接事件。这些发现提供了一个全面的转录组图谱,并为工蜂分工的分子机制提供了新的视角。
{"title":"Transcriptome analysis of Apis mellifera antennae reveals molecular divergence underlying the division of labour in worker bees","authors":"Bairu Liu,&nbsp;Yicong Xu,&nbsp;Weixing Zhang","doi":"10.1111/imb.12882","DOIUrl":"10.1111/imb.12882","url":null,"abstract":"<p>The olfactory system plays a fundamental role in mediating insect behaviour. Worker bees exhibit an age-dependent division of labour, performing discrete sets of behaviours throughout their lifespan. The behavioural states of bees rely on their sense of the environment and chemical communication via their olfactory system, the antennae. However, the olfactory adaptation mechanism of worker bees during their behavioural development remains unclear. In this study, we conducted a comprehensive and quantitative analysis of antennal gene expression in the <i>Apis mellifera</i> of newly emerged workers, nurses, foragers and defenders using RNA-seq. We found that the antenna tissues of honey bees continued developing after transformation from newly emerged workers to adults. Additionally, we identified differentially expressed genes associated with bee development and division of labour. We validated that major royal jelly protein genes are highly and specifically expressed in nurse honey bee workers. Furthermore, we identified and validated significant alternative splicing events correlated with the development and division of labour. These findings provide a comprehensive transcriptome profile and a new perspective on the molecular mechanisms that may underlie the worker honey bee division of labour.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 2","pages":"101-111"},"PeriodicalIF":2.6,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49677112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Opsin diversity and evolution in the Elateroidea superfamily: Insights from transcriptome data 鞘翅目超家族中的Opsin多样性和进化:转录组数据的见解。
IF 2.6 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-10-14 DOI: 10.1111/imb.12881
Danilo T. Amaral, Isabel A. S. Bonatelli

Vision plays a vital biological role in organisms, which depends on the visual pigment molecules (opsin plus chromophore). The expansion or reduction of spectral channels in the organisms is determined by distinct opsin classes and copy numbers resulting from duplication or loss. Within Coleoptera, the superfamily Elateroidea exhibits a great diversity of morphological and physiological characteristics, such as bioluminescence, making this group an important model for opsin studies. While molecular and physiological studies have been conducted in Lampyridae and Elateridae, other families remain unexplored. Here, we reused transcriptome datasets from Elateroidea species, including members of Elateridae, Lampyridae, Phengodidae, Rhagophthalmidae, Cantharidae, and Lycidae, to detect the diversity of putative opsin genes in this superfamily. In addition, we tested the signature of sites under positive selection in both ultraviolet (UV)- and long-wavelength (LW)-opsin classes. Although the visual system in Elateroidea is considered simple, we observed events of duplication in LW- and UV-opsin, as well as the absence of UV-opsin in distinct families, such as larval Phengodidae individuals. We detected different copies of LW-opsins that were highly expressed in the eyes of distinct tribes of fireflies, indicating the possible selection of each copy during the evolution of the sexual mating to avoid spectrum overlapping. In Elateridae, we found that the bioluminescent species had a distinct LW-opsin copy compared with the non-bioluminescent species, suggesting events of duplication and loss. The signature of positive selection showed only one residue associated with the chromophore binding site in the Elateroidea, which may produce a bathochromic shift in the wavelength absorption spectra in this family. Overall, this study brings important content and fills gaps regarding opsin evolution in Elateroidea.

视觉在生物体中起着至关重要的生物学作用,它依赖于视觉色素分子(视蛋白加发色团)。生物体中光谱通道的扩展或减少是由不同的视蛋白类别和复制或丢失产生的拷贝数决定的。在鞘翅目中,Elateroidea超科表现出巨大的形态和生理特征多样性,如生物发光,使该组成为视蛋白研究的重要模型。虽然已经对Lampyridae和Elateridae进行了分子和生理学研究,但其他家族仍有待探索。在这里,我们重复使用了Elateroidea物种的转录组数据集,包括Elateridae、Lampyridae、Phengodidae、Rhagophthalidae、Cantharidae和Lycidae的成员,以检测该超科中假定视蛋白基因的多样性。此外,我们测试了紫外线(UV)和长波长(LW)视蛋白类中阳性选择位点的特征。尽管Elateroidea的视觉系统被认为是简单的,但我们观察到LW-和UV视蛋白的重复事件,以及不同家族中UV视蛋白缺乏的情况,如黄颡鱼幼虫个体。我们检测到不同拷贝的LW视蛋白在不同萤火虫部落的眼睛中高度表达,这表明在性交配的进化过程中可能会选择每个拷贝,以避免光谱重叠。在Elateridae中,我们发现与非生物发光物种相比,生物发光物种具有不同的LW视蛋白拷贝,这表明发生了复制和丢失事件。阳性选择的特征显示,在Elateroidea中只有一个残基与发色团结合位点相关,这可能会在该家族的波长吸收光谱中产生色差。总之,本研究为Elateroidea视蛋白的进化提供了重要内容,填补了空白。
{"title":"Opsin diversity and evolution in the Elateroidea superfamily: Insights from transcriptome data","authors":"Danilo T. Amaral,&nbsp;Isabel A. S. Bonatelli","doi":"10.1111/imb.12881","DOIUrl":"10.1111/imb.12881","url":null,"abstract":"<p>Vision plays a vital biological role in organisms, which depends on the visual pigment molecules (opsin plus chromophore). The expansion or reduction of spectral channels in the organisms is determined by distinct opsin classes and copy numbers resulting from duplication or loss. Within Coleoptera, the superfamily Elateroidea exhibits a great diversity of morphological and physiological characteristics, such as bioluminescence, making this group an important model for opsin studies. While molecular and physiological studies have been conducted in Lampyridae and Elateridae, other families remain unexplored. Here, we reused transcriptome datasets from Elateroidea species, including members of Elateridae, Lampyridae, Phengodidae, Rhagophthalmidae, Cantharidae, and Lycidae, to detect the diversity of putative opsin genes in this superfamily. In addition, we tested the signature of sites under positive selection in both ultraviolet (UV)- and long-wavelength (LW)-opsin classes. Although the visual system in Elateroidea is considered simple, we observed events of duplication in LW- and UV-opsin, as well as the absence of UV-opsin in distinct families, such as larval Phengodidae individuals. We detected different copies of LW-opsins that were highly expressed in the eyes of distinct tribes of fireflies, indicating the possible selection of each copy during the evolution of the sexual mating to avoid spectrum overlapping. In Elateridae, we found that the bioluminescent species had a distinct LW-opsin copy compared with the non-bioluminescent species, suggesting events of duplication and loss. The signature of positive selection showed only one residue associated with the chromophore binding site in the Elateroidea, which may produce a bathochromic shift in the wavelength absorption spectra in this family. Overall, this study brings important content and fills gaps regarding opsin evolution in Elateroidea.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 2","pages":"112-123"},"PeriodicalIF":2.6,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41199713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expansion of the genetic toolbox for manipulation of the global crop pest Drosophila suzukii: Isolation and assessment of eye colour mutant strains 扩大全球作物害虫铃木果蝇的遗传工具箱:眼睛颜色突变株的分离和评估。
IF 2.6 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-10-11 DOI: 10.1111/imb.12879
Amarish K. Yadav, Ramasamy Asokan, Akihiko Yamamoto, Anandrao A. Patil, Maxwell J. Scott

Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), commonly called spotted wing Drosophila, is an important agricultural pest recognised worldwide. D. suzukii is a pest of soft-skinned fruits as females can lay eggs in ripening fruit before harvest. While strains for genetic biocontrol of D. suzukii have been made, the development of transgenic D. suzukii strains and their further screening remain a challenge partly due to the lack of phenotypically trackable genetic-markers, such as those widely used with the model genetic organism D. melanogaster. Here, we have used CRISPR/Cas9 to introduce heritable mutations in the eye colour genes white, cinnabar and sepia, which are located on the X, second and third chromosomes, respectively. Strains were obtained, which were homozygous for a single mutation. Genotyping of the established strains showed insertion and/or deletions (indels) at the targeted sites. A strain homozygous for mutations in cinnabar and sepia showed a pale-yellow eye colour at eclosion but darkened to a sepia colour after a week. The fecundity and fertility of some of the cinnabar and sepia strains were comparable with the wild type. Although white mutant males were previously reported to be sterile, we found that sterility is not fully penetrant and we have been able to maintain white-eyed strains for over a year. The cinnabar, sepia and white mutant strains developed in this study should facilitate future genetic studies in D. suzukii and the development of strains for genetic control of this pest.

铃木果蝇(Drosophila suzukii,Matsumura)(直翅目:Drosophilidae),通常被称为斑翼果蝇,是世界公认的重要农业害虫。铃木D.suzukii是一种软皮水果害虫,因为雌性可以在收获前在成熟的水果中产卵。虽然已经制备出了用于suzukii遗传生物控制的菌株,但转基因suzukiii菌株的开发及其进一步筛选仍然是一个挑战,部分原因是缺乏表型可追踪的遗传标记,例如那些广泛用于模式遗传生物黑腹果蝇的遗传标记。在这里,我们使用CRISPR/Cas9在眼睛颜色基因白色、朱砂色和深褐色中引入了可遗传的突变,这些基因分别位于X、第二和第三染色体上。获得了单一突变的纯合菌株。已建立菌株的基因分型显示在靶位点的插入和/或缺失(indel)。朱砂和棕褐色突变的纯合菌株在羽化时显示出淡黄色的眼睛颜色,但一周后变暗为棕褐色。一些朱砂和棕褐色品系的繁殖力和繁殖力与野生型相当。尽管以前有报道称白色突变雄性不育,但我们发现不育并没有完全渗透,我们已经能够将白眼菌株维持一年多。本研究中开发的朱砂、棕褐色和白色突变菌株应有助于suzukii未来的遗传研究和开发用于该害虫遗传控制的菌株。
{"title":"Expansion of the genetic toolbox for manipulation of the global crop pest Drosophila suzukii: Isolation and assessment of eye colour mutant strains","authors":"Amarish K. Yadav,&nbsp;Ramasamy Asokan,&nbsp;Akihiko Yamamoto,&nbsp;Anandrao A. Patil,&nbsp;Maxwell J. Scott","doi":"10.1111/imb.12879","DOIUrl":"10.1111/imb.12879","url":null,"abstract":"<p><i>Drosophila suzukii</i> (Matsumura) (Diptera: Drosophilidae), commonly called spotted wing Drosophila, is an important agricultural pest recognised worldwide. <i>D. suzukii</i> is a pest of soft-skinned fruits as females can lay eggs in ripening fruit before harvest. While strains for genetic biocontrol of <i>D. suzukii</i> have been made, the development of transgenic <i>D. suzukii</i> strains and their further screening remain a challenge partly due to the lack of phenotypically trackable genetic-markers, such as those widely used with the model genetic organism <i>D. melanogaster</i>. Here, we have used CRISPR/Cas9 to introduce heritable mutations in the eye colour genes <i>white</i>, <i>cinnabar</i> and <i>sepia</i>, which are located on the X, second and third chromosomes, respectively. Strains were obtained, which were homozygous for a single mutation. Genotyping of the established strains showed insertion and/or deletions (indels) at the targeted sites. A strain homozygous for mutations in <i>cinnabar</i> and <i>sepia</i> showed a pale-yellow eye colour at eclosion but darkened to a sepia colour after a week. The fecundity and fertility of some of the <i>cinnabar</i> and <i>sepia</i> strains were comparable with the wild type. Although <i>white</i> mutant males were previously reported to be sterile, we found that sterility is not fully penetrant and we have been able to maintain white-eyed strains for over a year. The <i>cinnabar</i>, <i>sepia</i> and <i>white</i> mutant strains developed in this study should facilitate future genetic studies in <i>D. suzukii</i> and the development of strains for genetic control of this pest.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 2","pages":"91-100"},"PeriodicalIF":2.6,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imb.12879","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41199712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An OBP gene highly expressed in non-chemosensory tissues affects the phototaxis and reproduction of Spodoptera frugiperda 在非化学感觉组织中高度表达的OBP基因影响草地贪夜蛾的趋光性和繁殖。
IF 2.6 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-10-10 DOI: 10.1111/imb.12880
Wei-Kang Han, Feng-Xian Tang, Yang-Yang Yan, Yan Wang, Yi-Xi Zhang, Na Yu, Kan Wang, Ze-Wen Liu

Insect odorant binding proteins (OBPs) were initially regarded as carriers of the odorants involved in chemosensation. However, it had been observed that a growing number of OBP genes exhibited broad expression patterns beyond chemosensory tissues. Here, an OBP gene (OBP31) was found to be highly expressed in the larval ventral nerve cord, adult brain and male reproductive organ of Spodoptera frugiperda. An OBP31 knockout strain (OBP31−/−) was generated by CRISPR/Cas9 mutagenesis. For OBP31−/−, the larvae needed longer time to pupate, but there was no difference in the pupal weight between OBP31−/− and wild type (WT). OBP31−/− larvae showed stronger phototaxis than the WT larvae, indicating the importance of OBP31 in light perception. For mating rhythm of adults, OBP31−/− moths displayed an earlier second mating peak. In the cross-pairing of OBP31−/− and WT moths, the mating duration was longer, and hatchability was lower in OBP31−/− group and OBP31+/−♂ group than that in the WT group. These results suggested that OBP31 played a vital role in larval light perception and male reproductive process and could provide valuable insights into understanding the biological functions of OBPs that were not specific in chemosensory tissues.

昆虫气味结合蛋白(OBPs)最初被认为是参与化学补偿的气味载体。然而,已经观察到越来越多的OBP基因表现出超出化学感觉组织的广泛表达模式。本文发现一个OBP基因(OBP31)在草地贪夜蛾幼虫的腹神经索、成年大脑和雄性生殖器官中高度表达。通过CRISPR/Cas9诱变产生了一株OBP31敲除菌株(OBP31-/-)。对于OBP31-/-,幼虫需要更长的化蛹时间,但OBP31--/-和野生型(WT)的蛹重没有差异。OBP31-/-幼虫表现出比WT幼虫更强的趋光性,表明OBP31在光感中的重要性。对于成虫的交配节律,OBP31-/-蛾表现出较早的第二次交配高峰。在OBP31-/-和WT蛾的杂交配对中,OBP31--/-组和OBP31+/-组的交配持续时间较长,孵化率较低♂ 与WT组相比。这些结果表明,OBP31在幼虫的光感和雄性生殖过程中发挥着至关重要的作用,并可为理解OBPs的生物学功能提供有价值的见解,而OBPs在化学感觉组织中并不具有特异性。
{"title":"An OBP gene highly expressed in non-chemosensory tissues affects the phototaxis and reproduction of Spodoptera frugiperda","authors":"Wei-Kang Han,&nbsp;Feng-Xian Tang,&nbsp;Yang-Yang Yan,&nbsp;Yan Wang,&nbsp;Yi-Xi Zhang,&nbsp;Na Yu,&nbsp;Kan Wang,&nbsp;Ze-Wen Liu","doi":"10.1111/imb.12880","DOIUrl":"10.1111/imb.12880","url":null,"abstract":"<p>Insect odorant binding proteins (OBPs) were initially regarded as carriers of the odorants involved in chemosensation. However, it had been observed that a growing number of OBP genes exhibited broad expression patterns beyond chemosensory tissues. Here, an OBP gene (<i>OBP31</i>) was found to be highly expressed in the larval ventral nerve cord, adult brain and male reproductive organ of <i>Spodoptera frugiperda</i>. An <i>OBP31</i> knockout strain (<i>OBP31</i><sup><i>−/−</i></sup>) was generated by CRISPR/Cas9 mutagenesis. For <i>OBP31</i><sup><i>−/−</i></sup>, the larvae needed longer time to pupate, but there was no difference in the pupal weight between <i>OBP31</i><sup><i>−/−</i></sup> and wild type (WT). <i>OBP31</i><sup><i>−/−</i></sup> larvae showed stronger phototaxis than the WT larvae, indicating the importance of <i>OBP31</i> in light perception. For mating rhythm of adults, <i>OBP31</i><sup><i>−/−</i></sup> moths displayed an earlier second mating peak. In the cross-pairing of <i>OBP31</i><sup><i>−/−</i></sup> and WT moths, the mating duration was longer, and hatchability was lower in <i>OBP31</i><sup><i>−/−</i></sup> group and <i>OBP31</i><sup><i>+/−</i></sup>♂ group than that in the WT group. These results suggested that <i>OBP31</i> played a vital role in larval light perception and male reproductive process and could provide valuable insights into understanding the biological functions of OBPs that were not specific in chemosensory tissues.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 1","pages":"81-90"},"PeriodicalIF":2.6,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41182492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distinct roles of the Hox genes Ultrabithorax and abdominal-A in scorpionfly embryonic proleg development Hox基因Ultrabithorax和腹肌-A在蝎子胚胎前体发育中的不同作用。
IF 2.6 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-10-04 DOI: 10.1111/imb.12878
Bing-Peng Liu, Bao-Zhen Hua

The abdominal appendages of larval insects have a complex evolutionary history of gain and loss, but the regulatory mechanisms underlying the abdominal appendage development remain largely unclear. Here, we investigated the embryogenesis of abdominal prolegs in the scorpionfly Panorpa liui Hua (Mecoptera: Panorpidae) using in situ hybridization and parental RNA interference. The results show that RNAi-mediated knockdown of Ultrabithorax (Ubx) led to a homeotic transformation of the first abdominal segment (A1) into the third thoracic segment (T3) and changed the distributions of the downstream target Distal-less (Dll) expression but did not affect the expression levels of Dll. Knockdown of abdominal-A (abd-A) resulted in malformed segments, abnormal prolegs and disrupted Dll expression. The results demonstrate that the gene Ubx maintains an ancestral role of modulating A1 appendage fate without preventing Dll initiation, and a secondary adaptation of abd-A evolves the ability to specify abdominal segments and proleg identity. We conclude that changes in abdominal Hox gene expression and their target genes regulate abdominal appendage morphology during the evolutionary course of holometabolous larvae.

幼虫的腹部附肢有着复杂的得失进化史,但腹部附肢发育的调控机制在很大程度上仍不清楚。本文采用原位杂交和亲本RNA干扰的方法,研究了六花蝎蛛(Mecopera:Panorpidae)腹部前体的胚胎发生。结果表明,RNAi介导的Ultrabithorax(Ubx)敲低导致第一腹部节段(A1)向第三胸部节段(T3)的同源异型转化,并改变了下游靶向无远端(Dll)表达的分布,但不影响Dll的表达水平。敲除腹部A(abd-A)导致节段畸形、异常的prolegs和Dll表达中断。结果表明,基因Ubx在不阻止Dll启动的情况下维持了调节A1附属物命运的祖先作用,abd-a的二次适应进化出了指定腹部节段和proleg身份的能力。我们的结论是,在全代谢组幼虫的进化过程中,腹部Hox基因表达及其靶基因的变化调节着腹部附属物的形态。
{"title":"Distinct roles of the Hox genes Ultrabithorax and abdominal-A in scorpionfly embryonic proleg development","authors":"Bing-Peng Liu,&nbsp;Bao-Zhen Hua","doi":"10.1111/imb.12878","DOIUrl":"10.1111/imb.12878","url":null,"abstract":"<p>The abdominal appendages of larval insects have a complex evolutionary history of gain and loss, but the regulatory mechanisms underlying the abdominal appendage development remain largely unclear. Here, we investigated the embryogenesis of abdominal prolegs in the scorpionfly <i>Panorpa liui</i> Hua (Mecoptera: Panorpidae) using in situ hybridization and parental RNA interference. The results show that RNAi-mediated knockdown of <i>Ultrabithorax</i> (<i>Ubx</i>) led to a homeotic transformation of the first abdominal segment (A1) into the third thoracic segment (T3) and changed the distributions of the downstream target <i>Distal-less</i> (<i>Dll</i>) expression but did not affect the expression levels of <i>Dll</i>. Knockdown of <i>abdominal-A</i> (<i>abd-A</i>) resulted in malformed segments, abnormal prolegs and disrupted <i>Dll</i> expression. The results demonstrate that the gene <i>Ubx</i> maintains an ancestral role of modulating A1 appendage fate without preventing <i>Dll</i> initiation, and a secondary adaptation of <i>abd-A</i> evolves the ability to specify abdominal segments and proleg identity. We conclude that changes in abdominal Hox gene expression and their target genes regulate abdominal appendage morphology during the evolutionary course of holometabolous larvae.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 1","pages":"69-80"},"PeriodicalIF":2.6,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41140579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influence of first desaturase subfamily genes on fatty acid synthesis, desiccation tolerance and inter-caste nutrient transfer in the termite Coptotermes formosanus 第一去饱和酶亚家族基因对台湾白蚁脂肪酸合成、耐干燥性和种间营养转移的影响。
IF 2.6 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-09-26 DOI: 10.1111/imb.12877
Danni Xu, Yuxin Tong, Bosheng Chen, Baoling Li, Shengyin Wang, Dayu Zhang

Desaturase enzymes play an essential role in the biosynthesis of unsaturated fatty acids (UFAs). In this study, we identified seven “first desaturase” subfamily genes (Cfor-desatA1, Cfor-desatA2-a, Cfor-desatA2-b, Cfor-desatB-a, Cfor-desatB-b, Cfor-desatD and Cfor-desatE) from the Formosan subterranean termite Coptotermes formosanus. These desaturases were highly expressed in the cuticle and fat body of C. formosanus. Inhibition of either the Cfor-desatA2-a or Cfor-desatA2-b gene resulted in a significant decrease in the contents of fatty acids (C16:0, C18:0, C18:1 and C18:2) in worker castes. Moreover, we observed that inhibition of most of desaturase genes identified in this study had a negative impact on the survival rate and desiccation tolerance of workers. Interestingly, when normal soldiers were reared together with dsCfor-desatA2-b-treated workers, they exhibited higher mortality, suggesting that desaturase had an impact on trophallaxis among C. formosanus castes. Our findings shed light on the novel roles of desaturase family genes in the eusocial termite C. formosanus.

去饱和酶在不饱和脂肪酸(UFAs)的生物合成中起着重要作用。在本研究中,我们从台湾地下白蚁Coptotermes formosanus中鉴定了7个“第一去饱和酶”亚家族基因(Cfor-desatA1、Cfor-desatA2-a、Cfor-dsatA2-b、Cfor-DsatD和Cfor-desetE)。这些去饱和酶在台湾乳杆菌的角质层和脂肪体中高度表达。Cfor-desatA2-a或Cfor-desatA2-b基因的抑制导致工人种姓中脂肪酸含量(C16:0、C18:0、C18:1和C18:2)的显著降低。此外,我们观察到,本研究中鉴定的大多数去饱和酶基因的抑制对工人的存活率和干燥耐受性有负面影响。有趣的是,当正常士兵与dsCfor-desatA2处理的工人一起饲养时,他们表现出更高的死亡率,这表明去饱和酶对台湾乳杆菌种姓的营养不良有影响。我们的发现揭示了去饱和酶家族基因在真社会白蚁中的新作用。
{"title":"The influence of first desaturase subfamily genes on fatty acid synthesis, desiccation tolerance and inter-caste nutrient transfer in the termite Coptotermes formosanus","authors":"Danni Xu,&nbsp;Yuxin Tong,&nbsp;Bosheng Chen,&nbsp;Baoling Li,&nbsp;Shengyin Wang,&nbsp;Dayu Zhang","doi":"10.1111/imb.12877","DOIUrl":"10.1111/imb.12877","url":null,"abstract":"<p>Desaturase enzymes play an essential role in the biosynthesis of unsaturated fatty acids (UFAs). In this study, we identified seven “first desaturase” subfamily genes (<i>Cfor-desatA1</i>, <i>Cfor-desatA2-a</i>, <i>Cfor-desatA2-b</i>, <i>Cfor-desatB-a</i>, <i>Cfor-desatB-b</i>, <i>Cfor-desatD</i> and <i>Cfor-desatE</i>) from the Formosan subterranean termite <i>Coptotermes formosanus</i>. These desaturases were highly expressed in the cuticle and fat body of <i>C. formosanus</i>. Inhibition of either the <i>Cfor-desatA2-a</i> or <i>Cfor-desatA2-b</i> gene resulted in a significant decrease in the contents of fatty acids (C16:0, C18:0, C18:1 and C18:2) in worker castes. Moreover, we observed that inhibition of most of desaturase genes identified in this study had a negative impact on the survival rate and desiccation tolerance of workers. Interestingly, when normal soldiers were reared together with <i>dsCfor-desatA2-b</i>-treated workers, they exhibited higher mortality, suggesting that desaturase had an impact on trophallaxis among <i>C. formosanus</i> castes. Our findings shed light on the novel roles of desaturase family genes in the eusocial termite <i>C. formosanus</i>.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 1","pages":"55-68"},"PeriodicalIF":2.6,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41121182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Insect Molecular Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1