首页 > 最新文献

Insect Molecular Biology最新文献

英文 中文
Identification and functional study of Fib-L, a major silk fibroin gene component in rice leaf folders. 水稻叶折中主要丝纤维蛋白基因成分 Fib-L 的鉴定和功能研究
IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-28 DOI: 10.1111/imb.12965
Jing Xie, Qiyao Mo, Lina Chen, Zhongyan Zhu, Xiao Liu, Guy Smagghe, Mao Ye, Shangwei Li

The rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae), is a major migratory pest in rice agriculture. This pest is characterised by its larvae's ability to fold rice leaves using silk, a behaviour that culminates in the formation of a silken cocoon during the pupal stage. The fibroin light chain (CmFib-L) gene is crucial for silk production, yet its specific function in C. medinalis has reminded elusive. This study presents a comprehensive analysis of the CmFib-L gene, revealing its complete open reading frame (ORF) and expression patterns. Notably, the gene is highly expressed in the fifth-instar larvae and the silk gland, which are critical stages for silk production. Our experiments demonstrate that silencing the CmFib-L gene leads to a reduction in pupal weight, an extension of the pupal stage and a disorganised silk cocoon. Furthermore, the larval behaviour of leaf folding and spinning is significantly impaired when the expression of CmFib-L is downregulated. These findings not only show the importance of fibroin light chain in silk production but also reveal a new target gene to regulate and control the behaviour and development of C. medinalis.

稻纵卷叶螟 Cnaphalocrocis medinalis(鳞翅目:鳞翅目)是水稻农业中的一种主要迁飞害虫。这种害虫的特点是幼虫能够用蚕丝折叠稻叶,这种行为最终会在蛹期形成一个丝茧。纤维蛋白轻链(CmFib-L)基因对蚕丝的生产至关重要,但它在麦地那龙虱中的具体功能却一直难以捉摸。本研究对 CmFib-L 基因进行了全面分析,揭示了其完整的开放阅读框(ORF)和表达模式。值得注意的是,该基因在五龄幼虫和蚕丝腺中高度表达,而五龄幼虫和蚕丝腺是生产蚕丝的关键阶段。我们的实验证明,沉默 CmFib-L 基因会导致蛹重量减轻、蛹期延长和丝茧松散。此外,当 CmFib-L 的表达被下调时,幼虫的折叶和纺丝行为也会明显受损。这些发现不仅显示了纤维蛋白轻链在蚕丝生产中的重要性,还揭示了一个新的靶基因来调节和控制 C. medinalis 的行为和发育。
{"title":"Identification and functional study of Fib-L, a major silk fibroin gene component in rice leaf folders.","authors":"Jing Xie, Qiyao Mo, Lina Chen, Zhongyan Zhu, Xiao Liu, Guy Smagghe, Mao Ye, Shangwei Li","doi":"10.1111/imb.12965","DOIUrl":"https://doi.org/10.1111/imb.12965","url":null,"abstract":"<p><p>The rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae), is a major migratory pest in rice agriculture. This pest is characterised by its larvae's ability to fold rice leaves using silk, a behaviour that culminates in the formation of a silken cocoon during the pupal stage. The fibroin light chain (CmFib-L) gene is crucial for silk production, yet its specific function in C. medinalis has reminded elusive. This study presents a comprehensive analysis of the CmFib-L gene, revealing its complete open reading frame (ORF) and expression patterns. Notably, the gene is highly expressed in the fifth-instar larvae and the silk gland, which are critical stages for silk production. Our experiments demonstrate that silencing the CmFib-L gene leads to a reduction in pupal weight, an extension of the pupal stage and a disorganised silk cocoon. Furthermore, the larval behaviour of leaf folding and spinning is significantly impaired when the expression of CmFib-L is downregulated. These findings not only show the importance of fibroin light chain in silk production but also reveal a new target gene to regulate and control the behaviour and development of C. medinalis.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The quest for the best target genes for RNAi-mediated pest control. 寻找 RNAi- 媒介害虫控制的最佳目标基因。
IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-25 DOI: 10.1111/imb.12966
Doga Cedden, Gregor Bucher

RNA interference (RNAi) has emerged as an eco-friendly alternative to classic pesticides for pest control. This review highlights the importance of identifying the best target genes for RNAi-mediated pest control. We argue that the knowledge-based approach to predicting effective targets is limited by our current gaps of knowledge, making unbiased screening a superior method for discovering the best target processes and genes. We emphasize the recent evidence that suggests targeting conserved basic cellular processes, such as protein degradation and translation, is more effective than targeting the classic pesticide target processes. We support these claims by comparing the efficacy of previously reported RNAi target genes and classic insecticide targets with data from our genome-wide RNAi screen in the red flour beetle, Tribolium castaneum. Finally, we provide practical advice for identifying excellent target genes in other pests, where large-scale RNAi screenings are typically challenging.

RNA 干扰(RNAi)已成为害虫控制中传统杀虫剂的环保型替代品。本综述强调了确定 RNAi 介导的害虫控制的最佳靶基因的重要性。我们认为,基于知识预测有效靶标的方法受限于我们目前的知识空白,因此无偏见筛选是发现最佳靶标过程和基因的上佳方法。我们强调,最近有证据表明,以保守的基本细胞过程(如蛋白质降解和翻译)为靶标比以经典的杀虫剂靶标过程为靶标更为有效。我们将以前报道的 RNAi 靶基因和传统杀虫剂靶基因的功效与我们在红面粉甲虫(Tribolium castaneum)中进行的全基因组 RNAi 筛选数据进行了比较,从而支持这些说法。最后,我们为在其他害虫中识别优秀的靶基因提供了实用建议,因为在其他害虫中进行大规模 RNAi 筛选通常具有挑战性。
{"title":"The quest for the best target genes for RNAi-mediated pest control.","authors":"Doga Cedden, Gregor Bucher","doi":"10.1111/imb.12966","DOIUrl":"https://doi.org/10.1111/imb.12966","url":null,"abstract":"<p><p>RNA interference (RNAi) has emerged as an eco-friendly alternative to classic pesticides for pest control. This review highlights the importance of identifying the best target genes for RNAi-mediated pest control. We argue that the knowledge-based approach to predicting effective targets is limited by our current gaps of knowledge, making unbiased screening a superior method for discovering the best target processes and genes. We emphasize the recent evidence that suggests targeting conserved basic cellular processes, such as protein degradation and translation, is more effective than targeting the classic pesticide target processes. We support these claims by comparing the efficacy of previously reported RNAi target genes and classic insecticide targets with data from our genome-wide RNAi screen in the red flour beetle, Tribolium castaneum. Finally, we provide practical advice for identifying excellent target genes in other pests, where large-scale RNAi screenings are typically challenging.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular characterization of a novel thioredoxin-related transmembrane protein gene AcTMX3 that plays important roles in antioxidant defence in Arma chinensis diapause. 新型硫氧还蛋白相关跨膜蛋白基因 AcTMX3 的分子特征,该基因在 Arma chinensis diapause 的抗氧化防御中发挥重要作用。
IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-23 DOI: 10.1111/imb.12964
Qiaozhi Luo, Jianjun Mao, Yuyan Li, Mengqing Wang, Lisheng Zhang, Zhongjian Shen

Protein disulphide isomerase (PDI) possesses disulphide isomerase, oxidoreductase and molecular chaperone activities, and is involved in regulating various physiological processes. However, there are few studies on the function in insect diapause. In this study, we cloned one novel member PDI family (TMX3, thioredoxin-related transmembrane protein 3) in Arma chinensis. The AcTMX3 encodes 426 amino acids that contains a predicted N-terminal signal sequence, a thioredoxin-like domain with the CXXC active site and a potential transmembrane region, which are typical sequence features of TMX3. RT-qPCR results showed that AcTMX3 was mainly expressed in the head under non-diapause conditions, while AcTMX3 was highly expressed in the fat body (central metabolic organ) under diapause conditions. Moreover, temporal expression profile showed that compared with non-diapause conditions, diapause conditions significantly induced AcTMX3 expression, and the expression of AcTMX3 was enhanced at 15°C. Silencing AcTMX3 in A. chinensis significantly inhibited the expression of antioxidant genes (AcTrx2 and AcTrx-like), increased the content of H2O2 and ascorbate and reduced the survival rate of A. chinensis under diapause conditions. Our results suggested that AcTMX3 played an important role in the resistance of A. chinensis to oxidative stress under diapause conditions.

蛋白二硫异构酶(PDI)具有二硫异构酶、氧化还原酶和分子伴侣蛋白活性,参与调节多种生理过程。然而,有关其在昆虫休眠中功能的研究很少。本研究克隆了一种新的 PDI 家族成员(TMX3,硫代氧化还蛋白相关跨膜蛋白 3)。AcTMX3编码426个氨基酸,包含一个预测的N端信号序列、一个具有CXXC活性位点的硫代毒素样结构域和一个潜在的跨膜区,这些都是TMX3的典型序列特征。RT-qPCR 结果表明,在非休眠状态下,AcTMX3 主要在头部表达,而在休眠状态下,AcTMX3 在脂肪体(中央代谢器官)中高表达。此外,时间表达谱显示,与非休眠条件相比,休眠条件显著诱导 AcTMX3 的表达,且 AcTMX3 的表达在 15°C 时增强。沉默AcTMX3可明显抑制抗氧化基因(AcTrx2和AcTrx-like)的表达,增加H2O2和抗坏血酸的含量,降低休眠状态下 chinensis的存活率。我们的研究结果表明,AcTMX3 在减产条件下盐池蛙抵抗氧化胁迫的过程中发挥了重要作用。
{"title":"Molecular characterization of a novel thioredoxin-related transmembrane protein gene AcTMX3 that plays important roles in antioxidant defence in Arma chinensis diapause.","authors":"Qiaozhi Luo, Jianjun Mao, Yuyan Li, Mengqing Wang, Lisheng Zhang, Zhongjian Shen","doi":"10.1111/imb.12964","DOIUrl":"https://doi.org/10.1111/imb.12964","url":null,"abstract":"<p><p>Protein disulphide isomerase (PDI) possesses disulphide isomerase, oxidoreductase and molecular chaperone activities, and is involved in regulating various physiological processes. However, there are few studies on the function in insect diapause. In this study, we cloned one novel member PDI family (TMX3, thioredoxin-related transmembrane protein 3) in Arma chinensis. The AcTMX3 encodes 426 amino acids that contains a predicted N-terminal signal sequence, a thioredoxin-like domain with the CXXC active site and a potential transmembrane region, which are typical sequence features of TMX3. RT-qPCR results showed that AcTMX3 was mainly expressed in the head under non-diapause conditions, while AcTMX3 was highly expressed in the fat body (central metabolic organ) under diapause conditions. Moreover, temporal expression profile showed that compared with non-diapause conditions, diapause conditions significantly induced AcTMX3 expression, and the expression of AcTMX3 was enhanced at 15°C. Silencing AcTMX3 in A. chinensis significantly inhibited the expression of antioxidant genes (AcTrx2 and AcTrx-like), increased the content of H<sub>2</sub>O<sub>2</sub> and ascorbate and reduced the survival rate of A. chinensis under diapause conditions. Our results suggested that AcTMX3 played an important role in the resistance of A. chinensis to oxidative stress under diapause conditions.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic gatekeepers: Dynamic roles of sugar transporters in insect metabolism and physiology. 代谢看门人:糖转运体在昆虫新陈代谢和生理学中的动态作用。
IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-12 DOI: 10.1111/imb.12963
Bhagyashri Y Chaudhari, Aditya G Pradhan, Rakesh S Joshi

Sugars play multiple critical roles in insects, serving as energy sources, carbon skeletons, osmolytes and signalling molecules. The transport of sugars from source to sink via membrane proteins is essential for the uptake, distribution and utilization of sugars across various tissues. Sugar supply and distribution are crucial for insect development, flight, diapause and reproduction. Insect sugar transporters (STs) share significant structural and functional similarities with those in mammals and other higher eukaryotes. However, they exhibit unique characteristics, including differential regulation, substrate selectivity and kinetics. Here, we have discussed structural diversity, evolutionary trends, expression dynamics, mechanisms of action and functional significance of insect STs. The sequence and structural diversity of insect STs, highlighted by the analysis of conserved domains and evolutionary patterns, underpins their functional differentiation and divergence. The review emphasizes the importance of STs in insect metabolism, physiology and stress tolerance. It also discusses how variations in transporter regulation, expression, selectivity and activity contribute to functional differences. Furthermore, we have underlined the potential and necessity of studying these mechanisms and roles to gain a deeper understanding of insect glycobiology. Understanding the regulation and function of sugar transporters is vital for comprehending insect metabolism and physiological potential. This review provides valuable insights into the diverse functionalities of insect STs and their significant roles in metabolism and physiology.

糖类在昆虫体内发挥着多种关键作用,可作为能量来源、碳骨架、渗透溶解物和信号分子。糖类通过膜蛋白从源到汇的运输对于糖类在不同组织中的吸收、分配和利用至关重要。糖的供应和分配对昆虫的发育、飞行、休眠和繁殖至关重要。昆虫的糖转运体(ST)与哺乳动物和其他高等真核生物的糖转运体在结构和功能上有很大的相似之处。然而,它们也表现出独特的特征,包括不同的调节、底物选择性和动力学。在此,我们讨论了昆虫 STs 的结构多样性、进化趋势、表达动态、作用机制和功能意义。通过对保守结构域和进化模式的分析,我们强调了昆虫 STs 序列和结构的多样性,这也是其功能分化和差异的基础。综述强调了 STs 在昆虫新陈代谢、生理和抗逆性方面的重要性。它还讨论了转运体调控、表达、选择性和活性的变化是如何导致功能差异的。此外,我们还强调了研究这些机制和作用以深入了解昆虫糖生物学的潜力和必要性。了解糖转运体的调控和功能对于理解昆虫的新陈代谢和生理潜能至关重要。本综述就昆虫糖转运体的各种功能及其在新陈代谢和生理学中的重要作用提供了有价值的见解。
{"title":"Metabolic gatekeepers: Dynamic roles of sugar transporters in insect metabolism and physiology.","authors":"Bhagyashri Y Chaudhari, Aditya G Pradhan, Rakesh S Joshi","doi":"10.1111/imb.12963","DOIUrl":"https://doi.org/10.1111/imb.12963","url":null,"abstract":"<p><p>Sugars play multiple critical roles in insects, serving as energy sources, carbon skeletons, osmolytes and signalling molecules. The transport of sugars from source to sink via membrane proteins is essential for the uptake, distribution and utilization of sugars across various tissues. Sugar supply and distribution are crucial for insect development, flight, diapause and reproduction. Insect sugar transporters (STs) share significant structural and functional similarities with those in mammals and other higher eukaryotes. However, they exhibit unique characteristics, including differential regulation, substrate selectivity and kinetics. Here, we have discussed structural diversity, evolutionary trends, expression dynamics, mechanisms of action and functional significance of insect STs. The sequence and structural diversity of insect STs, highlighted by the analysis of conserved domains and evolutionary patterns, underpins their functional differentiation and divergence. The review emphasizes the importance of STs in insect metabolism, physiology and stress tolerance. It also discusses how variations in transporter regulation, expression, selectivity and activity contribute to functional differences. Furthermore, we have underlined the potential and necessity of studying these mechanisms and roles to gain a deeper understanding of insect glycobiology. Understanding the regulation and function of sugar transporters is vital for comprehending insect metabolism and physiological potential. This review provides valuable insights into the diverse functionalities of insect STs and their significant roles in metabolism and physiology.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142464288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterisation of the bacteriomes harboured by major wireworm pest species in the Canadian Prairies. 加拿大草原主要线虫害虫物种所含细菌群的特征。
IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-09 DOI: 10.1111/imb.12962
Ivan Drahun, Keagan Morrison, Elise A Poole, Willem G van Herk, Bryan J Cassone

Nearly all insects harbour bacterial communities that can have a profound effect on their life history, including regulating and shaping host metabolism, development, immunity and fitness. The bacteriomes of several coleopterans have been described; however, very little has been reported for wireworms. These long-lived larvae of click beetles (Coleoptera: Elateridae) are major agricultural pests of a variety of crops grown in the Canadian Prairies. Consequently, the goal of this study was to characterise the bacteriomes of five of the most significant pest species within the region: Limonius californicus, Hypnoidus abbreviatus, H. bicolor, Aeolus mellillus and Dalopius spp. To do this, we collected larvae from southern Manitoba fields (pre-seeding) and carried out 16S rRNA sequencing on individual specimens. Our results indicate wireworms have diverse and taxon-rich bacterial communities, with over 400 genera identified predominately from the phyla Proteobacteria, Actinobacteriota, Bacteroidota and Firmicutes. However, each species had nine or fewer genera comprising >80% of their bacteriome. Network analyses revealed some community structuring consistent among species, which may culminate in shaping/regulating host biology. Moreover, the microbial signatures were influenced by both ontogeny (early vs. late stage larvae) and reproductive strategy (sexual vs. parthenogenetic), with a myriad of other factors likely contributing to bacterial diversity that are impossible to resolve from our study. Overall, this metagenomics study represents the first to characterise the bacteriomes of wireworms in the Canadian Prairies and the findings could assist in the development of sustainable management strategies for these important agricultural pests.

几乎所有昆虫都有细菌群落,这些细菌群落会对昆虫的生活史产生深远影响,包括调节和塑造宿主的新陈代谢、发育、免疫力和健康状况。已经对几种鞘翅目昆虫的细菌群作了描述,但关于线虫的报道却很少。这些点击甲虫(鞘翅目:Elateridae)的长寿命幼虫是加拿大草原地区多种农作物的主要农业害虫。因此,本研究的目标是描述该地区五种最重要害虫的细菌组特征:为此,我们从马尼托巴省南部田地(播种前)收集幼虫,并对单个标本进行 16S rRNA 测序。我们的研究结果表明,铁线虫的细菌群落种类繁多、分类群丰富,共鉴定出 400 多个菌属,主要来自变形菌门、放线菌门、类杆菌门和真菌门。不过,每个物种都有 9 个或更少的属,占其细菌群的 80% 以上。网络分析显示,不同物种之间的一些群落结构是一致的,这可能会最终塑造/调节宿主的生物学特性。此外,微生物特征还受到本体(早期幼虫与晚期幼虫)和繁殖策略(有性繁殖与孤雌生殖)的影响,还有许多其他因素可能会导致细菌多样性,但我们的研究无法解决这些问题。总之,这项元基因组学研究首次描述了加拿大草原铁线虫细菌群的特征,研究结果有助于针对这些重要的农业害虫制定可持续的管理策略。
{"title":"Characterisation of the bacteriomes harboured by major wireworm pest species in the Canadian Prairies.","authors":"Ivan Drahun, Keagan Morrison, Elise A Poole, Willem G van Herk, Bryan J Cassone","doi":"10.1111/imb.12962","DOIUrl":"https://doi.org/10.1111/imb.12962","url":null,"abstract":"<p><p>Nearly all insects harbour bacterial communities that can have a profound effect on their life history, including regulating and shaping host metabolism, development, immunity and fitness. The bacteriomes of several coleopterans have been described; however, very little has been reported for wireworms. These long-lived larvae of click beetles (Coleoptera: Elateridae) are major agricultural pests of a variety of crops grown in the Canadian Prairies. Consequently, the goal of this study was to characterise the bacteriomes of five of the most significant pest species within the region: Limonius californicus, Hypnoidus abbreviatus, H. bicolor, Aeolus mellillus and Dalopius spp. To do this, we collected larvae from southern Manitoba fields (pre-seeding) and carried out 16S rRNA sequencing on individual specimens. Our results indicate wireworms have diverse and taxon-rich bacterial communities, with over 400 genera identified predominately from the phyla Proteobacteria, Actinobacteriota, Bacteroidota and Firmicutes. However, each species had nine or fewer genera comprising >80% of their bacteriome. Network analyses revealed some community structuring consistent among species, which may culminate in shaping/regulating host biology. Moreover, the microbial signatures were influenced by both ontogeny (early vs. late stage larvae) and reproductive strategy (sexual vs. parthenogenetic), with a myriad of other factors likely contributing to bacterial diversity that are impossible to resolve from our study. Overall, this metagenomics study represents the first to characterise the bacteriomes of wireworms in the Canadian Prairies and the findings could assist in the development of sustainable management strategies for these important agricultural pests.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CRISPR/Cas9-mediated knockout of the abdominal-B homeotic gene in the global pest, fall armyworm (Spodoptera frugiperda). CRISPR/Cas9 介导的全球害虫--秋军虫(Spodoptera frugiperda)腹部-B 同源基因的敲除。
IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-24 DOI: 10.1111/imb.12958
Xiao-Guang Liu, Te Zhao, Qi-Qi Qiu, Cong-Ke Wang, Tian-Liang Li, Xiao-Long Liu, Li Wang, Qin-Qin Wang, Lin Zhou

The Homeotic complex (Hox) genes play a crucial role in determining segment identity and appendage morphology in bilaterian animals along the antero-posterior axis. Recent studies have expanded to agricultural pests such as fall armyworm (FAW), scientifically known as Spodoptera frugiperda J. E. Smith (Lepidoptera: Noctuidae), which significantly threatens global agricultural productivity. However, the specific role of the hox gene Sfabd-B in FAW remains unexplored. This research investigates the spatial and temporal expression patterns of Sfabd-B in various tissues at different developmental stages using quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, we explored the potential function of the Sfabd-B gene located in the FAW genome using CRISPR/Cas9 technology. The larval mutant phenotypes can be classified into three subgroups as compared with wild-type individuals, that is, an excess of pedis in the posterior abdomen, deficient pedis due to segmental fusion and deviations in the posterior abdominal segments. Importantly, significant differences in mutant phenotypes between male and female individuals were also evident during the pupal and adult phases. Notably, both the decapentaplegic (dpp) and cuticular protein 12 (cp 12) genes displayed a substantial marked decrease in expression levels in the copulatory organ of male mutants and the ovipositor of female mutants compared with the wild type. These findings highlight the importance of Sfabd-B in genital tract patterning, providing a potential target for improving genetic control.

同源复合体(Hox)基因在决定两栖动物前后轴的节段特征和附肢形态方面起着至关重要的作用。最近的研究已扩展到农业害虫,如秋季军虫(FAW),学名 Spodoptera frugiperda J. E. Smith(鳞翅目:夜蛾科),它严重威胁全球农业生产力。然而,hox基因Sfabd-B在FAW中的具体作用仍有待探索。本研究利用实时定量聚合酶链式反应(qRT-PCR)研究了Sfabd-B在不同发育阶段的不同组织中的时空表达模式。此外,我们还利用CRISPR/Cas9技术探索了Sfabd-B基因在一窝蜂基因组中的潜在功能。与野生型个体相比,幼虫突变体的表型可分为三个亚组,即后腹部足突过多、节段融合导致足突不足以及后腹部节段偏离。重要的是,在蛹期和成虫期,雌雄个体的突变体表型也存在明显差异。值得注意的是,与野生型相比,雄性突变体的交配器官和雌性突变体的产卵器中,断头截瘫(dpp)基因和角质蛋白12(cp 12)基因的表达水平都明显下降。这些发现凸显了Sfabd-B在生殖道模式化中的重要性,为改善遗传控制提供了一个潜在的目标。
{"title":"CRISPR/Cas9-mediated knockout of the abdominal-B homeotic gene in the global pest, fall armyworm (Spodoptera frugiperda).","authors":"Xiao-Guang Liu, Te Zhao, Qi-Qi Qiu, Cong-Ke Wang, Tian-Liang Li, Xiao-Long Liu, Li Wang, Qin-Qin Wang, Lin Zhou","doi":"10.1111/imb.12958","DOIUrl":"https://doi.org/10.1111/imb.12958","url":null,"abstract":"<p><p>The Homeotic complex (Hox) genes play a crucial role in determining segment identity and appendage morphology in bilaterian animals along the antero-posterior axis. Recent studies have expanded to agricultural pests such as fall armyworm (FAW), scientifically known as Spodoptera frugiperda J. E. Smith (Lepidoptera: Noctuidae), which significantly threatens global agricultural productivity. However, the specific role of the hox gene Sfabd-B in FAW remains unexplored. This research investigates the spatial and temporal expression patterns of Sfabd-B in various tissues at different developmental stages using quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, we explored the potential function of the Sfabd-B gene located in the FAW genome using CRISPR/Cas9 technology. The larval mutant phenotypes can be classified into three subgroups as compared with wild-type individuals, that is, an excess of pedis in the posterior abdomen, deficient pedis due to segmental fusion and deviations in the posterior abdominal segments. Importantly, significant differences in mutant phenotypes between male and female individuals were also evident during the pupal and adult phases. Notably, both the decapentaplegic (dpp) and cuticular protein 12 (cp 12) genes displayed a substantial marked decrease in expression levels in the copulatory organ of male mutants and the ovipositor of female mutants compared with the wild type. These findings highlight the importance of Sfabd-B in genital tract patterning, providing a potential target for improving genetic control.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Foraging in the darkness: Highly selective tuning of below-ground larval olfaction to Brassicaceae volatiles in striped flea beetle. 在黑暗中觅食:条斑跳甲地下幼虫嗅觉对十字花科挥发性物质的高度选择性调节
IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-22 DOI: 10.1111/imb.12960
Yong Xiao, Chunmei Lei, Xue Wang, Raufa Batool, Fei Yin, Zhengke Peng, Xiangfeng Jing, Zhenyu Li

The olfactory system of above-ground insects is among the best described perceptual architectures. However, remarkably little is known about how below-ground insects navigate in the dark for foraging. Here, we investigated host plant preferences, olfactory sensilla and characterise olfactory proteins in below-ground larvae of the striped flea beetle (SFB) Phyllotreta striolata Fabricius (Coleoptera: Chrysomelidae). Both the adults and larvae of this coleopteran pest cause serious damage to Brassicaceous crops above and below ground, respectively. To elucidate the role of olfactory system in host location of below-ground larvae, we initially demonstrated that SFB larvae distinctly favoured Brassicaceae over other plant families by two-choice behavioural bioassay. Subsequently, scanning electron microscopy of sensilla in SFB larval head showed a significant reduction in the number of olfactory sensilla in larvae compared with adults. However, essential olfactory sensilla such as sensilla basiconica are underscoring the indispensability of the larval olfactory system. We selected four larval-specific odorant binding proteins for functional validation from our previous transcriptome data. Functional studies revealed that PstrOBP23 exhibits robust binding affinity to 24 volatiles of Brassicaceae plants, including seven isothiocyanate compounds. This suggests a pivotal role of PstrOBP23 in the foraging behaviour of the larvae below the ground. Moreover, two ligands displaying strong binding capacity exhibit apparent attractive or repellent activity towards SFB larvae. Our findings provide a crucial insight into the olfactory system of below-ground larvae in SFB, highlighting the highly selective tuning of larvae specific OBP to host plant volatiles. These results offer potential avenues for developing effective pest control strategies against SFB.

地面昆虫的嗅觉系统是描述得最清楚的感知结构之一。然而,人们对地下昆虫如何在黑暗中导航觅食却知之甚少。在这里,我们研究了条纹蚤甲虫(Phyllotreta striolata Fabricius,鞘翅目:蝶形目)地下幼虫对寄主植物的偏好、嗅觉感受器以及嗅觉蛋白的特征。这种鞘翅目害虫的成虫和幼虫分别在地上和地下对十字花科作物造成严重危害。为了阐明嗅觉系统在地下幼虫寄主定位中的作用,我们首先通过二选一行为生物测定证明了芸苔科幼虫对芸苔属植物的明显偏爱。随后,通过扫描电子显微镜观察 SFB 幼虫头部的感觉器,发现与成虫相比,幼虫的嗅觉感觉器数量显著减少。然而,基本嗅觉感受器(sensilla basiconica)等重要的嗅觉感受器强调了幼虫嗅觉系统的不可或缺性。我们从先前的转录组数据中选择了四个幼虫特异性气味结合蛋白进行功能验证。功能研究发现,PstrOBP23 与 24 种十字花科植物的挥发性物质(包括 7 种异硫氰酸盐化合物)具有很强的结合亲和力。这表明 PstrOBP23 在幼虫的地下觅食行为中起着关键作用。此外,两种结合能力强的配体对 SFB 幼虫表现出明显的吸引或排斥活性。我们的研究结果为了解SFB地下幼虫的嗅觉系统提供了一个重要的视角,突出了幼虫特异性OBP对寄主植物挥发性物质的高度选择性调节。这些结果为制定有效的虫害防治策略提供了潜在的途径。
{"title":"Foraging in the darkness: Highly selective tuning of below-ground larval olfaction to Brassicaceae volatiles in striped flea beetle.","authors":"Yong Xiao, Chunmei Lei, Xue Wang, Raufa Batool, Fei Yin, Zhengke Peng, Xiangfeng Jing, Zhenyu Li","doi":"10.1111/imb.12960","DOIUrl":"https://doi.org/10.1111/imb.12960","url":null,"abstract":"<p><p>The olfactory system of above-ground insects is among the best described perceptual architectures. However, remarkably little is known about how below-ground insects navigate in the dark for foraging. Here, we investigated host plant preferences, olfactory sensilla and characterise olfactory proteins in below-ground larvae of the striped flea beetle (SFB) Phyllotreta striolata Fabricius (Coleoptera: Chrysomelidae). Both the adults and larvae of this coleopteran pest cause serious damage to Brassicaceous crops above and below ground, respectively. To elucidate the role of olfactory system in host location of below-ground larvae, we initially demonstrated that SFB larvae distinctly favoured Brassicaceae over other plant families by two-choice behavioural bioassay. Subsequently, scanning electron microscopy of sensilla in SFB larval head showed a significant reduction in the number of olfactory sensilla in larvae compared with adults. However, essential olfactory sensilla such as sensilla basiconica are underscoring the indispensability of the larval olfactory system. We selected four larval-specific odorant binding proteins for functional validation from our previous transcriptome data. Functional studies revealed that PstrOBP23 exhibits robust binding affinity to 24 volatiles of Brassicaceae plants, including seven isothiocyanate compounds. This suggests a pivotal role of PstrOBP23 in the foraging behaviour of the larvae below the ground. Moreover, two ligands displaying strong binding capacity exhibit apparent attractive or repellent activity towards SFB larvae. Our findings provide a crucial insight into the olfactory system of below-ground larvae in SFB, highlighting the highly selective tuning of larvae specific OBP to host plant volatiles. These results offer potential avenues for developing effective pest control strategies against SFB.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142286194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alternative double strand break repair pathways shape the evolution of high recombination in the honey bee, Apis mellifera. 替代性双链断裂修复途径决定了蜜蜂高重组的进化。
IF 2.6 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-19 DOI: 10.1111/imb.12961
Bertrand Fouks,Katelyn J Miller,Caitlin Ross,Corbin Jones,Olav Rueppell
Social insects, particularly honey bees, have exceptionally high genomic frequencies of genetic recombination. This phenomenon and underlying mechanisms are poorly understood. To characterise the patterns of crossovers and gene conversion in the honey bee genome, a recombination map of 187 honey bee brothers was generated by whole-genome resequencing. Recombination events were heterogeneously distributed without many true hotspots. The tract lengths between phase shifts were bimodally distributed, indicating distinct crossover and gene conversion events. While crossovers predominantly occurred in G/C-rich regions and seemed to cause G/C enrichment, the gene conversions were found predominantly in A/T-rich regions. The nucleotide composition of sequences involved in gene conversions that were associated with or distant from crossovers corresponded to the differences between crossovers and gene conversions. These combined results suggest two types of DNA double-strand break repair during honey bee meiosis: non-canonical homologous recombination, leading to gene conversion and A/T enrichment of the genome, and the canonical homologous recombination based on completed double Holliday Junctions, which can result in gene conversion or crossover and is associated with G/C bias. This G/C bias may be selected for to balance the A/T-rich base composition of eusocial hymenopteran genomes. The lack of evidence for a preference of the canonical homologous recombination for double-strand break repair suggests that the high genomic recombination rate of honey bees is mainly the consequence of a high rate of double-strand breaks, which could in turn result from the life history of honey bees and their A/T-rich genome.
社会性昆虫,尤其是蜜蜂,基因组的基因重组频率特别高。人们对这一现象及其内在机制知之甚少。为了描述蜜蜂基因组中交叉和基因转换的模式,我们通过全基因组重测序生成了 187 个蜜蜂兄弟的基因重组图谱。重组事件分布不均,没有许多真正的热点。相移之间的道长度呈双峰分布,表明存在不同的交叉和基因转换事件。交叉主要发生在富含 G/C 的区域,似乎会导致 G/C 富集,而基因转换则主要发生在富含 A/T 的区域。与交叉相关或远离交叉的基因转换序列的核苷酸组成与交叉和基因转换之间的差异相对应。这些综合结果表明,蜜蜂减数分裂过程中有两种类型的DNA双链断裂修复:一种是非规范同源重组,导致基因转换和基因组A/T富集;另一种是规范同源重组,基于完成的双霍利迪连接,可导致基因转换或交叉,并与G/C偏向有关。这种 G/C 偏向可能是为了平衡社会性膜翅目昆虫基因组中富含 A/T 的碱基组成而选择的。没有证据表明双链断裂修复偏好同源重组,这表明蜜蜂的高基因组重组率主要是高双链断裂率的结果,而高双链断裂率又可能是蜜蜂的生活史及其富含A/T-的基因组的结果。
{"title":"Alternative double strand break repair pathways shape the evolution of high recombination in the honey bee, Apis mellifera.","authors":"Bertrand Fouks,Katelyn J Miller,Caitlin Ross,Corbin Jones,Olav Rueppell","doi":"10.1111/imb.12961","DOIUrl":"https://doi.org/10.1111/imb.12961","url":null,"abstract":"Social insects, particularly honey bees, have exceptionally high genomic frequencies of genetic recombination. This phenomenon and underlying mechanisms are poorly understood. To characterise the patterns of crossovers and gene conversion in the honey bee genome, a recombination map of 187 honey bee brothers was generated by whole-genome resequencing. Recombination events were heterogeneously distributed without many true hotspots. The tract lengths between phase shifts were bimodally distributed, indicating distinct crossover and gene conversion events. While crossovers predominantly occurred in G/C-rich regions and seemed to cause G/C enrichment, the gene conversions were found predominantly in A/T-rich regions. The nucleotide composition of sequences involved in gene conversions that were associated with or distant from crossovers corresponded to the differences between crossovers and gene conversions. These combined results suggest two types of DNA double-strand break repair during honey bee meiosis: non-canonical homologous recombination, leading to gene conversion and A/T enrichment of the genome, and the canonical homologous recombination based on completed double Holliday Junctions, which can result in gene conversion or crossover and is associated with G/C bias. This G/C bias may be selected for to balance the A/T-rich base composition of eusocial hymenopteran genomes. The lack of evidence for a preference of the canonical homologous recombination for double-strand break repair suggests that the high genomic recombination rate of honey bees is mainly the consequence of a high rate of double-strand breaks, which could in turn result from the life history of honey bees and their A/T-rich genome.","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"12 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient CRISPR/Cas9-mediated genome editing in the European corn borer, Ostrinia nubilalis. 欧洲玉米螟(Ostrinia nubilalis)中高效的 CRISPR/Cas9 介导的基因组编辑。
IF 2.6 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-18 DOI: 10.1111/imb.12959
Jacob N Dayton,Tammy T Tran,Elisa Saint-Denis,Erik B Dopman
The European corn borer (Ostrinia nubilalis) is an agricultural pest and burgeoning model for research on speciation, seasonal adaptation and insect resistance management. Although previous work in O. nubilalis has identified genes associated with differences in life cycle, reproduction, and resistance to Bt toxins, the general lack of a robust gene-editing protocol for O. nubilalis has been a barrier to functional validation of candidate genes. Here, we demonstrate an efficient and practical methodology for heritable gene mutagenesis in O. nubilalis using the CRISPR/Cas9 genome editing system. Precise loss-of-function (LOF) mutations were generated at two circadian clock genes, period (per) and pigment-dispersing factor receptor (pdfr), and a developmental gene, prothoracicotropic hormone (ptth). Precluding the need for a visible genetic marker, gene-editing efficiency remained high across different single guide RNAs (sgRNA) and germline transmission of mutations to F1 offspring approached 100%. When single or dual sgRNAs were injected at a high concentration, gene-specific phenotypic differences in behaviour and development were identified in F0 mutants. Specifically, F0 gene mutants demonstrated that PER, but not PDFR, is essential for normal timing of eclosion. PTTH F0 mutants were significantly heavier and exhibited a higher incidence of diapause. This work will accelerate future studies of gene function in O. nubilalis and facilitate the development of similar screens in other Lepidopteran and non-model insects.
欧洲玉米螟(Ostrinia nubilalis)是一种农业害虫,也是研究物种、季节适应性和昆虫抗性管理的新兴模式。尽管以前的工作已经发现了与欧洲玉米螟生命周期、繁殖和对 Bt 毒素的抗性差异有关的基因,但由于普遍缺乏针对欧洲玉米螟的强大的基因编辑方案,候选基因的功能验证一直是个障碍。在这里,我们利用 CRISPR/Cas9 基因组编辑系统展示了一种高效实用的方法来诱变 O. nubilalis 的可遗传基因。我们在两个昼夜节律时钟基因--周期(per)和色素分散因子受体(pdfr)以及一个发育基因--前胸托叶激素(ptth)上产生了精确的功能缺失(LOF)突变。由于不需要可见的遗传标记,不同的单导RNA(sgRNA)的基因编辑效率仍然很高,突变对F1后代的种系传递接近100%。当注射高浓度的单导RNA或双导RNA时,F0突变体在行为和发育方面会出现基因特异性表型差异。具体而言,F0 基因突变体表明,PER(而非 PDFR)对正常的蜕皮时间至关重要。PTTH F0突变体明显更重,并表现出更高的休眠率。这项工作将加速未来对幼虫基因功能的研究,并促进在其他鳞翅目昆虫和非模式昆虫中开展类似的筛选工作。
{"title":"Efficient CRISPR/Cas9-mediated genome editing in the European corn borer, Ostrinia nubilalis.","authors":"Jacob N Dayton,Tammy T Tran,Elisa Saint-Denis,Erik B Dopman","doi":"10.1111/imb.12959","DOIUrl":"https://doi.org/10.1111/imb.12959","url":null,"abstract":"The European corn borer (Ostrinia nubilalis) is an agricultural pest and burgeoning model for research on speciation, seasonal adaptation and insect resistance management. Although previous work in O. nubilalis has identified genes associated with differences in life cycle, reproduction, and resistance to Bt toxins, the general lack of a robust gene-editing protocol for O. nubilalis has been a barrier to functional validation of candidate genes. Here, we demonstrate an efficient and practical methodology for heritable gene mutagenesis in O. nubilalis using the CRISPR/Cas9 genome editing system. Precise loss-of-function (LOF) mutations were generated at two circadian clock genes, period (per) and pigment-dispersing factor receptor (pdfr), and a developmental gene, prothoracicotropic hormone (ptth). Precluding the need for a visible genetic marker, gene-editing efficiency remained high across different single guide RNAs (sgRNA) and germline transmission of mutations to F1 offspring approached 100%. When single or dual sgRNAs were injected at a high concentration, gene-specific phenotypic differences in behaviour and development were identified in F0 mutants. Specifically, F0 gene mutants demonstrated that PER, but not PDFR, is essential for normal timing of eclosion. PTTH F0 mutants were significantly heavier and exhibited a higher incidence of diapause. This work will accelerate future studies of gene function in O. nubilalis and facilitate the development of similar screens in other Lepidopteran and non-model insects.","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"2 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Changes in bumblebee queen gut microbiotas during and after overwintering diapause. 越冬停歇期间和之后熊蜂蜂后肠道微生物群的变化
IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-22 DOI: 10.1111/imb.12957
Michelle Z Hotchkiss, Jessica R K Forrest, Alexandre J Poulain

Bumblebees are key pollinators with gut microbiotas that support host health. After bumblebee queens undergo winter diapause, which occurs before spring colony establishment, their gut microbiotas are disturbed, but little is known about community dynamics during diapause itself. Queen gut microbiotas also help seed worker microbiotas, so it is important that they recover post-diapause to a typical community structure, a process that may be impeded by pesticide exposure. We examined how bumblebee queen gut microbiota community structure and metabolic potential shift during and after winter diapause, and whether post-diapause recovery is affected by pesticide exposure. To do so, we placed commercial Bombus impatiens queens into diapause, euthanizing them at 0, 2 and 4 months of diapause. Additionally, we allowed some queens to recover from diapause for 1 week before euthanasia, exposing half to the common herbicide glyphosate. Using whole-community, shotgun metagenomic sequencing, we found that core bee gut phylotypes dominated queen gut microbiotas before, during and after diapause, but that two phylotypes, Schmidhempelia and Snodgrassella, ceased to be detected during late diapause and recovery. Despite fluctuations in taxonomic community structure, metabolic potential remained constant through diapause and recovery. Also, glyphosate exposure did not affect post-diapause microbiota recovery. However, metagenomic assembly quality and our ability to detect microbial taxa and metabolic pathways declined alongside microbial abundance, which was substantially reduced during diapause. Our study offers new insights into how bumblebee queen gut microbiotas change taxonomically and functionally during a key life stage and provides guidance for future microbiota studies in diapausing bumblebees.

大黄蜂是重要的授粉者,其肠道微生物群支持宿主的健康。在春季蜂群建立之前,熊蜂蜂后会经历冬季休眠期,此时它们的肠道微生物群会受到干扰,但人们对休眠期内的群落动态知之甚少。蜂后肠道微生物群也有助于工蜂微生物群的播种,因此它们在休眠期后恢复到典型的群落结构非常重要,而这一过程可能会受到杀虫剂暴露的阻碍。我们研究了熊蜂蜂后肠道微生物群落结构和新陈代谢潜力在冬季停歇期间和停歇后的变化情况,以及停歇后的恢复是否会受到农药暴露的影响。为此,我们让商业化的无患子囊蜂蜂王进入休眠期,并在休眠期的 0 个月、2 个月和 4 个月对其实施安乐死。此外,我们还让一些蜂后从休眠期恢复一周后再实施安乐死,并让其中一半蜂后接触常见的除草剂草甘膦。通过全群落、霰弹枪元基因组测序,我们发现蜂王肠道核心系统型在停歇前、停歇期间和停歇后都主导着蜂王肠道微生物群落,但在停歇后期和恢复期间,不再检测到两个系统型,即Schmidhempelia和Snodgrassella。尽管分类群落结构发生了波动,但新陈代谢潜能在休眠和恢复期间保持不变。此外,草甘膦暴露并不影响休眠期后微生物群的恢复。然而,元基因组的组装质量以及我们检测微生物分类群和代谢途径的能力随着微生物丰度的下降而下降,而微生物丰度在休眠期大幅降低。我们的研究为了解熊蜂蜂后肠道微生物群在关键生命阶段如何发生分类和功能上的变化提供了新的视角,并为今后对停歇期熊蜂微生物群的研究提供了指导。
{"title":"Changes in bumblebee queen gut microbiotas during and after overwintering diapause.","authors":"Michelle Z Hotchkiss, Jessica R K Forrest, Alexandre J Poulain","doi":"10.1111/imb.12957","DOIUrl":"https://doi.org/10.1111/imb.12957","url":null,"abstract":"<p><p>Bumblebees are key pollinators with gut microbiotas that support host health. After bumblebee queens undergo winter diapause, which occurs before spring colony establishment, their gut microbiotas are disturbed, but little is known about community dynamics during diapause itself. Queen gut microbiotas also help seed worker microbiotas, so it is important that they recover post-diapause to a typical community structure, a process that may be impeded by pesticide exposure. We examined how bumblebee queen gut microbiota community structure and metabolic potential shift during and after winter diapause, and whether post-diapause recovery is affected by pesticide exposure. To do so, we placed commercial Bombus impatiens queens into diapause, euthanizing them at 0, 2 and 4 months of diapause. Additionally, we allowed some queens to recover from diapause for 1 week before euthanasia, exposing half to the common herbicide glyphosate. Using whole-community, shotgun metagenomic sequencing, we found that core bee gut phylotypes dominated queen gut microbiotas before, during and after diapause, but that two phylotypes, Schmidhempelia and Snodgrassella, ceased to be detected during late diapause and recovery. Despite fluctuations in taxonomic community structure, metabolic potential remained constant through diapause and recovery. Also, glyphosate exposure did not affect post-diapause microbiota recovery. However, metagenomic assembly quality and our ability to detect microbial taxa and metabolic pathways declined alongside microbial abundance, which was substantially reduced during diapause. Our study offers new insights into how bumblebee queen gut microbiotas change taxonomically and functionally during a key life stage and provides guidance for future microbiota studies in diapausing bumblebees.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142035757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Insect Molecular Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1