Pub Date : 2019-11-18DOI: 10.5545/sv-jme.2019.6197
Primož Ogrinec, J. Slavič, M. Boltežar
In vibration fatigue, three unique types of loads are typical: random, harmonic and impulse. In an application any of these loads are possible. A fatigue-life analysis is possible in the time and frequency domains using the frequency-response function of a structure. Recent studies demonstrated that the impulse loads influence the accuracy of a fatigue-life prediction in the frequency domain. The focus of this research is a theoretical study of an equivalent harmonic load to the impulse load on a single-degree-of-freedom system in order to investigate the feasibility of impulse loads in vibration testing. This research shows that there is a relationship between the impulse and harmonic loads that is related to the underlying dynamic properties (e.g., damping, natural frequency). Based on a theoretical analysis an experimental procedure was developed for both cases of excitation, which was able to confirm the theoretical analysis. Using the modal decomposition the single-degree-of-freedom approach can be generalized to multiple-degrees-of-freedom systems.
{"title":"Harmonic Equivalence of the Impulse Loads in Vibration Fatigue","authors":"Primož Ogrinec, J. Slavič, M. Boltežar","doi":"10.5545/sv-jme.2019.6197","DOIUrl":"https://doi.org/10.5545/sv-jme.2019.6197","url":null,"abstract":"In vibration fatigue, three unique types of loads are typical: random, harmonic and impulse. In an application any of these loads are possible. A fatigue-life analysis is possible in the time and frequency domains using the frequency-response function of a structure. Recent studies demonstrated that the impulse loads influence the accuracy of a fatigue-life prediction in the frequency domain. The focus of this research is a theoretical study of an equivalent harmonic load to the impulse load on a single-degree-of-freedom system in order to investigate the feasibility of impulse loads in vibration testing. This research shows that there is a relationship between the impulse and harmonic loads that is related to the underlying dynamic properties (e.g., damping, natural frequency). Based on a theoretical analysis an experimental procedure was developed for both cases of excitation, which was able to confirm the theoretical analysis. Using the modal decomposition the single-degree-of-freedom approach can be generalized to multiple-degrees-of-freedom systems.","PeriodicalId":135907,"journal":{"name":"Strojniški vestnik – Journal of Mechanical Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116450626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-18DOI: 10.5545/sv-jme.2019.6366
K. Zelič, Igor Mele, Ivo Pačnik, Jože Moškon, M. Gaberšček, T. Katrašnik
Phase separating Li-ion battery cell cathode materials feature a well-known phenomenon called the memory effect. It manifests itself as an abnormal change in working voltage being dependent on cell cycling history. It was only recently that plausible mechanistic reasoning of the memory effect in Li-ion batteries was proposed. However, the existing literature does still not consistently reveal a phenomenological background for the onset or absence of the memory effect. This paper provides strong experimental and theoretical evidence of the memory effect in phase separating Li-ion battery cathode materials. Specifically, the background leading to the onset or absence of the memory effect and the underlying causal chain of phenomena from the collective particle-by-particle intra-electrode phenomena to macroscopic voltage output of the battery are presented and discussed. The results, clearly reveal that no memory effect is observed and predicted for low cut off voltages, whereas the absence of the first rest in memory writing cycle does not result in the absence of the memory effect, as previously believed. In addition, excellent agreement between the simulated and measured results is shown which, on one hand confirms the credibility of the combined analyses and, on the other, provides clear causal relations from macroscopic experimental parameters to simulated phenomena on the particle level.
{"title":"Revealing the Thermodynamic Background of the Memory Effect in Phase Separating Cathode Materials","authors":"K. Zelič, Igor Mele, Ivo Pačnik, Jože Moškon, M. Gaberšček, T. Katrašnik","doi":"10.5545/sv-jme.2019.6366","DOIUrl":"https://doi.org/10.5545/sv-jme.2019.6366","url":null,"abstract":"Phase separating Li-ion battery cell cathode materials feature a well-known phenomenon called the memory effect. It manifests itself as an abnormal change in working voltage being dependent on cell cycling history. It was only recently that plausible mechanistic reasoning of the memory effect in Li-ion batteries was proposed. However, the existing literature does still not consistently reveal a phenomenological background for the onset or absence of the memory effect. This paper provides strong experimental and theoretical evidence of the memory effect in phase separating Li-ion battery cathode materials. Specifically, the background leading to the onset or absence of the memory effect and the underlying causal chain of phenomena from the collective particle-by-particle intra-electrode phenomena to macroscopic voltage output of the battery are presented and discussed. The results, clearly reveal that no memory effect is observed and predicted for low cut off voltages, whereas the absence of the first rest in memory writing cycle does not result in the absence of the memory effect, as previously believed. In addition, excellent agreement between the simulated and measured results is shown which, on one hand confirms the credibility of the combined analyses and, on the other, provides clear causal relations from macroscopic experimental parameters to simulated phenomena on the particle level.","PeriodicalId":135907,"journal":{"name":"Strojniški vestnik – Journal of Mechanical Engineering","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114266139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-18DOI: 10.5545/sv-jme.2019.6369
Parham Kabirifar, A. Žerovnik, Žiga Ahčin, Luka Porenta, M. Brojan, J. Tušek
The elastocaloric cooling, utilizing latent heat associated with martensitic transformation in shape-memory alloys, is being considered in the recent years as one of the most promising alternatives to vapour compression cooling technology. It can be more efficient and completely harmless to the environment and people. In the first part of this work, the basics of the elastocaloric effect (eCE) and the state-of-the-art in the field of elastocaloric materials and devices are presented. In the second part, we are addressing crucial challenges in designing active elastocaloric regenerators, which are currently showing the largest potential for utilization of eCE in practical devices. Another key component of elastocaloric technology is a driver mechanism that needs to provide loading for active elastocaloric regenerators in an efficient way and recover the released energy during their unloading. Different driver mechanisms are reviewed and the work recovery potential is discussed in the third part of this work.
{"title":"Elastocaloric Cooling: State-of-the-art and Future Challenges in Designing Regenerative Elastocaloric Devices","authors":"Parham Kabirifar, A. Žerovnik, Žiga Ahčin, Luka Porenta, M. Brojan, J. Tušek","doi":"10.5545/sv-jme.2019.6369","DOIUrl":"https://doi.org/10.5545/sv-jme.2019.6369","url":null,"abstract":"The elastocaloric cooling, utilizing latent heat associated with martensitic transformation in shape-memory alloys, is being considered in the recent years as one of the most promising alternatives to vapour compression cooling technology. It can be more efficient and completely harmless to the environment and people. In the first part of this work, the basics of the elastocaloric effect (eCE) and the state-of-the-art in the field of elastocaloric materials and devices are presented. In the second part, we are addressing crucial challenges in designing active elastocaloric regenerators, which are currently showing the largest potential for utilization of eCE in practical devices. Another key component of elastocaloric technology is a driver mechanism that needs to provide loading for active elastocaloric regenerators in an efficient way and recover the released energy during their unloading. Different driver mechanisms are reviewed and the work recovery potential is discussed in the third part of this work.","PeriodicalId":135907,"journal":{"name":"Strojniški vestnik – Journal of Mechanical Engineering","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122268275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-18DOI: 10.5545/sv-jme.2019.6406
M. Kalin, M. Polajnar, M. Kus, F. Majdič
Environmental awareness and especially the legislation that requires the reduction of polluting emissions are strong driving forces toward more sustainable engineering and greener solutions in the design, use and overall life span of machinery. However, providing novel concepts that will exclude non-environmentally adapted, but over many years developed and optimized solutions, is not an easy task. It clearly requires time if the same level of technical performance is to be maintained. Green tribology is one of the fields that has been closely involved in these actives in the past two decades. The research and use of tribology science and technology toward green and sustainable engineering include natural material usage, lower energy consumption, reducing natural oil resources, reducing pollution and emissions, fewer maintenance requirements and thus reduced machinery-investment cycles. This report is not an attempt to cover all the existing concepts, attempts or literature available in the field, but mainly those efforts that our group has been working on over the past 20 years, which mainly includes novel green-lubrication concepts that come from exploring and exploiting surface engineering through the use of diamond-like-carbon (DLC) coatings.
{"title":"Green Tribology for the Sustainable Engineering of the Future","authors":"M. Kalin, M. Polajnar, M. Kus, F. Majdič","doi":"10.5545/sv-jme.2019.6406","DOIUrl":"https://doi.org/10.5545/sv-jme.2019.6406","url":null,"abstract":"Environmental awareness and especially the legislation that requires the reduction of polluting emissions are strong driving forces toward more sustainable engineering and greener solutions in the design, use and overall life span of machinery. However, providing novel concepts that will exclude non-environmentally adapted, but over many years developed and optimized solutions, is not an easy task. It clearly requires time if the same level of technical performance is to be maintained. Green tribology is one of the fields that has been closely involved in these actives in the past two decades. The research and use of tribology science and technology toward green and sustainable engineering include natural material usage, lower energy consumption, reducing natural oil resources, reducing pollution and emissions, fewer maintenance requirements and thus reduced machinery-investment cycles. This report is not an attempt to cover all the existing concepts, attempts or literature available in the field, but mainly those efforts that our group has been working on over the past 20 years, which mainly includes novel green-lubrication concepts that come from exploring and exploiting surface engineering through the use of diamond-like-carbon (DLC) coatings.","PeriodicalId":135907,"journal":{"name":"Strojniški vestnik – Journal of Mechanical Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131005276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-18DOI: 10.5545/10.5545/sv-jme.2019.6459
V. Šajn
The winner of American Institute of Aeronautics and Astronautics (AIAA)/Textron Aviation/Raytheon Missile Systems Design/Build/Fly (DBF) Competition 2019 was Edvard Rusjan team from Faculty of Mechanical Engineering, University of Ljubljana, Slovenia. Edvard Rusjan team use a strict scientific approach to beat opposing teams from most prestigious US Universities. Team developed a semi-analytic multidimensional algorithm for aircraft design optimization with an aim to maximize competition score in accordance with the competition rules. Two intermediate prototype models were produced and tested for single ground and three flying missions to fine tune algorithm empirical coefficients. Aircraft model aerodynamics was predicted with RANS numerical simulations and dynamic stability with Inviscid Panel method. By measurement in Low Turbulence Wind Tunnel the low drag of selected aircraft external load configuration was verified. Wing and fuselage of competition aircraft model named by Ljubljana students "Pretty Boy" were made of carbon-glass sandwich composite and Aramide honeycomb as sandwich filler. At final fly-off at TIMPA field in Tucson, in final flight mission team pilot Timotej Hofbauer with "Pretty Boy" scored 18 laps in 10 minutes time slot which was absolute record of competition. Runner-up Georgia Institute of Technology team was 22% slower and finished with 14 scored laps.
{"title":"Semi-Analytical Multidimensional Algorithm for Aircraft Design Optimisation: Student Design Build Fly (DBF) Competition","authors":"V. Šajn","doi":"10.5545/10.5545/sv-jme.2019.6459","DOIUrl":"https://doi.org/10.5545/10.5545/sv-jme.2019.6459","url":null,"abstract":"The winner of American Institute of Aeronautics and Astronautics (AIAA)/Textron Aviation/Raytheon Missile Systems Design/Build/Fly (DBF) Competition 2019 was Edvard Rusjan team from Faculty of Mechanical Engineering, University of Ljubljana, Slovenia. Edvard Rusjan team use a strict scientific approach to beat opposing teams from most prestigious US Universities. Team developed a semi-analytic multidimensional algorithm for aircraft design optimization with an aim to maximize competition score in accordance with the competition rules. Two intermediate prototype models were produced and tested for single ground and three flying missions to fine tune algorithm empirical coefficients. Aircraft model aerodynamics was predicted with RANS numerical simulations and dynamic stability with Inviscid Panel method. By measurement in Low Turbulence Wind Tunnel the low drag of selected aircraft external load configuration was verified. Wing and fuselage of competition aircraft model named by Ljubljana students \"Pretty Boy\" were made of carbon-glass sandwich composite and Aramide honeycomb as sandwich filler. At final fly-off at TIMPA field in Tucson, in final flight mission team pilot Timotej Hofbauer with \"Pretty Boy\" scored 18 laps in 10 minutes time slot which was absolute record of competition. Runner-up Georgia Institute of Technology team was 22% slower and finished with 14 scored laps.","PeriodicalId":135907,"journal":{"name":"Strojniški vestnik – Journal of Mechanical Engineering","volume":"108 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128199838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-15DOI: 10.5545/sv-jme.2019.6108
D. Miler, S. Škec, B. Katana, D. Žeželj
Plain bearings are often used due to their compact dimensions and low cost. Their frictional and wear properties are affected by several parameters: load, sliding velocity, temperature, and surface roughness, among others. In this article, the authors have experimentally investigated the influence of clearance size on the friction and wear in composite plain bearings. An experimental rig was designed to enable the testing of plain bearings in working conditions similar to those encountered throughout their exploitation. Two load levels, two lubrication types, and four clearance levels were varied, resulting in 48 experiments, as each was replicated twice. The friction coefficient and bearing temperature were measured during the experiment, while the material loss and change in surface roughness were determined post-experiment. The results have shown that clearance affects the friction in both the dry running specimens and specimens lubricated using a solid lubricant (polytetrafluoroethylene).
{"title":"An Experimental Study of Composite Plain Bearings: The Influence of Clearance on Friction Coefficient and Temperature","authors":"D. Miler, S. Škec, B. Katana, D. Žeželj","doi":"10.5545/sv-jme.2019.6108","DOIUrl":"https://doi.org/10.5545/sv-jme.2019.6108","url":null,"abstract":"Plain bearings are often used due to their compact dimensions and low cost. Their frictional and wear properties are affected by several parameters: load, sliding velocity, temperature, and surface roughness, among others. In this article, the authors have experimentally investigated the influence of clearance size on the friction and wear in composite plain bearings. An experimental rig was designed to enable the testing of plain bearings in working conditions similar to those encountered throughout their exploitation. Two load levels, two lubrication types, and four clearance levels were varied, resulting in 48 experiments, as each was replicated twice. The friction coefficient and bearing temperature were measured during the experiment, while the material loss and change in surface roughness were determined post-experiment. The results have shown that clearance affects the friction in both the dry running specimens and specimens lubricated using a solid lubricant (polytetrafluoroethylene).","PeriodicalId":135907,"journal":{"name":"Strojniški vestnik – Journal of Mechanical Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129158318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-15DOI: 10.5545/sv-jme.2019.6112
Chang Wang, Jun Liu, Zhiwei Luo
When rotating machinery is operated above the major critical speed, self-excited vibrations appear due to internal friction of the shaft. Internal frictions are classified into hysteretic damping due to the friction in the shaft material and structural damping due to the dry friction between the shaft and the mounted elements. In this paper, a method to suppress the self-excited vibration using leaf springs are proposed. The structural damping is considered as the internal damping. The characteristics of a rotor with leaf springs are investigated systematically by using simulative and theoretical analyses. The validity of the proposed method is also proved by experiments.
{"title":"Suppression of Self-Excited Vibrations in Rotating Machinery Utilizing Leaf Springs","authors":"Chang Wang, Jun Liu, Zhiwei Luo","doi":"10.5545/sv-jme.2019.6112","DOIUrl":"https://doi.org/10.5545/sv-jme.2019.6112","url":null,"abstract":"When rotating machinery is operated above the major critical speed, self-excited vibrations appear due to internal friction of the shaft. Internal frictions are classified into hysteretic damping due to the friction in the shaft material and structural damping due to the dry friction between the shaft and the mounted elements. In this paper, a method to suppress the self-excited vibration using leaf springs are proposed. The structural damping is considered as the internal damping. The characteristics of a rotor with leaf springs are investigated systematically by using simulative and theoretical analyses. The validity of the proposed method is also proved by experiments.","PeriodicalId":135907,"journal":{"name":"Strojniški vestnik – Journal of Mechanical Engineering","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123453406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-15DOI: 10.5545/sv-jme.2019.6146
M. Izadi, H. Shahrokh, M. Korayem
This paper investigates critical buckling loads in joined conical shells under axial compression. An analytical approach has been applied to study classical linear buckling of joined cones that are made of cross-ply fiber reinforced laminates. The governing equations have been extracted using first-order shear deformation theory (FSDT), and an analytical solution has been applied to extract critical buckling loads. Accordingly, the system of partial differential equations has been solved via separation of variables using Fourier expansion and power series method. The effects of the number of layers, lamination sequences, semi-vertex angles, shell thicknesses, shell lengths and boundary conditions on the stability of joined cones have been examined. For validation, the specific examples of the present study have been compared to previous studies. Using ABAQUSE/CAE software (a FEM-based software), the results of finite element have been extracted. The present method is in good agreement with the finite element and other research results. Finally, the differences in classical shell theory (CST) of Donnell type and first-order shear deformation theory have been discussed for different shell thicknesses.
{"title":"Buckling of Joined Composite Conical Shells Using Shear Deformation Theory under Axial Compression","authors":"M. Izadi, H. Shahrokh, M. Korayem","doi":"10.5545/sv-jme.2019.6146","DOIUrl":"https://doi.org/10.5545/sv-jme.2019.6146","url":null,"abstract":"This paper investigates critical buckling loads in joined conical shells under axial compression. An analytical approach has been applied to study classical linear buckling of joined cones that are made of cross-ply fiber reinforced laminates. The governing equations have been extracted using first-order shear deformation theory (FSDT), and an analytical solution has been applied to extract critical buckling loads. Accordingly, the system of partial differential equations has been solved via separation of variables using Fourier expansion and power series method. The effects of the number of layers, lamination sequences, semi-vertex angles, shell thicknesses, shell lengths and boundary conditions on the stability of joined cones have been examined. For validation, the specific examples of the present study have been compared to previous studies. Using ABAQUSE/CAE software (a FEM-based software), the results of finite element have been extracted. The present method is in good agreement with the finite element and other research results. Finally, the differences in classical shell theory (CST) of Donnell type and first-order shear deformation theory have been discussed for different shell thicknesses.","PeriodicalId":135907,"journal":{"name":"Strojniški vestnik – Journal of Mechanical Engineering","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134459269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-15DOI: 10.5545/sv-jme.2019.6194
T. Yuvaraj, P. Suresh
Nickel-based superalloys are gaining importance for their growing usage in aerospace industries. Amidst the various advanced machining processes, electro discharge machining (EDM) is considered to be an important one for its ability to machine materials irrespective of its intrinsic properties. In this study, Inconel 718 is considered as a work material, and an L18 orthogonal array (OA) experimental plan is utilized to machine the work material. The influential factors, which affect the EDM performance characteristics, are identified using analysis of variance (ANOVA). Not much work has been done regarding using grey-Taguchi technique for order of preference by similarity to ideal solution (TOPSIS) methods, although these methods can be easily applied for multi-objective optimization. These methods provide the best results with the available sparse data. The best combination of machining factors is determined using grey-Taguchi and TOPSIS methods. Based on the conducted experiments, voltage (V) and pulse off-time (t_off) show a notable contribution on output performance. The optimal combination of input parameter through grey-Taguchi is found to be 10 A, 30 V, 200 μs, and 20 μs respectively, for the EDM parameters: current (I), V, pulse on-time (t_on) and t_off for improved response. Moreover, the best parameter setting (I = 10 A, V = 30 V, t_on =100 μs and t_off = 20 μs) is identified using the TOPSIS method for the performance measures machining rate (MR), tool wear rate (TWR), overcut (OC), and taper overcut (TOC). Further tool wear behaviour is also studied through scanning electron microscope (SEM) images by varying the voltage.
{"title":"Analysis of EDM Process Parameters on Inconel 718 Using the Grey-Taguchi and Topsis Method","authors":"T. Yuvaraj, P. Suresh","doi":"10.5545/sv-jme.2019.6194","DOIUrl":"https://doi.org/10.5545/sv-jme.2019.6194","url":null,"abstract":"Nickel-based superalloys are gaining importance for their growing usage in aerospace industries. Amidst the various advanced machining processes, electro discharge machining (EDM) is considered to be an important one for its ability to machine materials irrespective of its intrinsic properties. In this study, Inconel 718 is considered as a work material, and an L18 orthogonal array (OA) experimental plan is utilized to machine the work material. The influential factors, which affect the EDM performance characteristics, are identified using analysis of variance (ANOVA). Not much work has been done regarding using grey-Taguchi technique for order of preference by similarity to ideal solution (TOPSIS) methods, although these methods can be easily applied for multi-objective optimization. These methods provide the best results with the available sparse data. The best combination of machining factors is determined using grey-Taguchi and TOPSIS methods. Based on the conducted experiments, voltage (V) and pulse off-time (t_off) show a notable contribution on output performance. The optimal combination of input parameter through grey-Taguchi is found to be 10 A, 30 V, 200 μs, and 20 μs respectively, for the EDM parameters: current (I), V, pulse on-time (t_on) and t_off for improved response. Moreover, the best parameter setting (I = 10 A, V = 30 V, t_on =100 μs and t_off = 20 μs) is identified using the TOPSIS method for the performance measures machining rate (MR), tool wear rate (TWR), overcut (OC), and taper overcut (TOC). Further tool wear behaviour is also studied through scanning electron microscope (SEM) images by varying the voltage.","PeriodicalId":135907,"journal":{"name":"Strojniški vestnik – Journal of Mechanical Engineering","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117063479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-15DOI: 10.5545/sv-jme.2019.6133
David Muženič, Jaka Dugar, D. Kramar, M. Jezeršek, F. Pušavec
In this paper, an attempt is made to advance the understanding of Laser-Assisted Milling (LAMill) of zinc oxide (ZnO) ceramics. A series of conventional milling and LAMill experiments with varying laser power were conducted to determine the effect of laser assistance on the machinability of this material. Improved machinability in terms of reduction in machined surface roughness and edge chipping was achieved by adjusting laser power. At an optimal laser power of 120 W, determined for the machining parameters used, R a and R z were reduced by 37 % and 46 %, respectively, while the average and maximum chipping widths were reduced by 15 % and 17 %, respectively.
{"title":"Improvements in Machinability of Zinc Oxide Ceramics by Laser-Assisted Milling","authors":"David Muženič, Jaka Dugar, D. Kramar, M. Jezeršek, F. Pušavec","doi":"10.5545/sv-jme.2019.6133","DOIUrl":"https://doi.org/10.5545/sv-jme.2019.6133","url":null,"abstract":"In this paper, an attempt is made to advance the understanding of Laser-Assisted Milling (LAMill) of zinc oxide (ZnO) ceramics. A series of conventional milling and LAMill experiments with varying laser power were conducted to determine the effect of laser assistance on the machinability of this material. Improved machinability in terms of reduction in machined surface roughness and edge chipping was achieved by adjusting laser power. At an optimal laser power of 120 W, determined for the machining parameters used, R a and R z were reduced by 37 % and 46 %, respectively, while the average and maximum chipping widths were reduced by 15 % and 17 %, respectively.","PeriodicalId":135907,"journal":{"name":"Strojniški vestnik – Journal of Mechanical Engineering","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127975901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}