Pub Date : 2023-12-01Epub Date: 2023-07-04DOI: 10.1007/s12539-023-00574-y
Yang Liu, Feng Li, Junliang Shang, Jinxing Liu, Juan Wang, Daohui Ge
Recently developed single-cell RNA-seq (scRNA-seq) technology has given researchers the chance to investigate single-cell level of disease development. Clustering is one of the most essential strategies for analyzing scRNA-seq data. Choosing high-quality feature sets can significantly enhance the outcomes of single-cell clustering and classification. But computationally burdensome and highly expressed genes cannot afford a stabilized and predictive feature set for technical reasons. In this study, we introduce scFED, a feature-engineered gene selection framework. scFED identifies prospective feature sets to eliminate the noise fluctuation. And fuse them with existing knowledge from the tissue-specific cellular taxonomy reference database (CellMatch) to avoid the influence of subjective factors. Then present a reconstruction approach for noise reduction and crucial information amplification. We apply scFED on four genuine single-cell datasets and compare it with other techniques. According to the results, scFED improves clustering, decreases dimension of the scRNA-seq data, improves cell type identification when combined with clustering algorithms, and has higher performance than other methods. Therefore, scFED offers certain benefits in scRNA-seq data gene selection.
{"title":"scFED: Clustering Identifying Cell Types of scRNA-Seq Data Based on Feature Engineering Denoising.","authors":"Yang Liu, Feng Li, Junliang Shang, Jinxing Liu, Juan Wang, Daohui Ge","doi":"10.1007/s12539-023-00574-y","DOIUrl":"10.1007/s12539-023-00574-y","url":null,"abstract":"<p><p>Recently developed single-cell RNA-seq (scRNA-seq) technology has given researchers the chance to investigate single-cell level of disease development. Clustering is one of the most essential strategies for analyzing scRNA-seq data. Choosing high-quality feature sets can significantly enhance the outcomes of single-cell clustering and classification. But computationally burdensome and highly expressed genes cannot afford a stabilized and predictive feature set for technical reasons. In this study, we introduce scFED, a feature-engineered gene selection framework. scFED identifies prospective feature sets to eliminate the noise fluctuation. And fuse them with existing knowledge from the tissue-specific cellular taxonomy reference database (CellMatch) to avoid the influence of subjective factors. Then present a reconstruction approach for noise reduction and crucial information amplification. We apply scFED on four genuine single-cell datasets and compare it with other techniques. According to the results, scFED improves clustering, decreases dimension of the scRNA-seq data, improves cell type identification when combined with clustering algorithms, and has higher performance than other methods. Therefore, scFED offers certain benefits in scRNA-seq data gene selection.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"590-601"},"PeriodicalIF":4.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10124243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-07-15DOI: 10.1007/s12539-023-00578-8
Sohaib Asif, Ming Zhao, Xuehan Chen, Yusen Zhu
Kidney stone disease is one of the most common and serious health problems in much of the world, leading to many hospitalizations with severe pain. Detecting small stones is difficult and time-consuming, so an early diagnosis of kidney disease is needed to prevent the loss of kidney failure. Recent advances in artificial intelligence (AI) found to be very successful in the diagnosis of various diseases in the biomedical field. However, existing models using deep networks have several problems, such as high computational cost, long training time, and huge parameters. Providing a low-cost solution for diagnosing kidney stones in a medical decision support system is of paramount importance. Therefore, in this study, we propose "StoneNet", a lightweight and high-performance model for the detection of kidney stones based on MobileNet using depthwise separable convolution. The proposed model includes a combination of global average pooling (GAP), batch normalization, dropout layer, and dense layers. Our study shows that using GAP instead of flattening layers greatly improves the robustness of the model by significantly reducing the parameters. The developed model is benchmarked against four pre-trained models as well as the state-of-the-art heavy model. The results show that the proposed model can achieve the highest accuracy of 97.98%, and only requires training and testing time of 996.88 s and 14.62 s. Several parameters, such as different batch sizes and optimizers, were considered to validate the proposed model. The proposed model is computationally faster and provides optimal performance than other considered models. Experiments on a large kidney dataset of 1799 CT images show that StoneNet has superior performance in terms of higher accuracy and lower complexity. The proposed model can assist the radiologist in faster diagnosis of kidney stones and has great potential for deployment in real-time applications.
{"title":"StoneNet: An Efficient Lightweight Model Based on Depthwise Separable Convolutions for Kidney Stone Detection from CT Images.","authors":"Sohaib Asif, Ming Zhao, Xuehan Chen, Yusen Zhu","doi":"10.1007/s12539-023-00578-8","DOIUrl":"10.1007/s12539-023-00578-8","url":null,"abstract":"<p><p>Kidney stone disease is one of the most common and serious health problems in much of the world, leading to many hospitalizations with severe pain. Detecting small stones is difficult and time-consuming, so an early diagnosis of kidney disease is needed to prevent the loss of kidney failure. Recent advances in artificial intelligence (AI) found to be very successful in the diagnosis of various diseases in the biomedical field. However, existing models using deep networks have several problems, such as high computational cost, long training time, and huge parameters. Providing a low-cost solution for diagnosing kidney stones in a medical decision support system is of paramount importance. Therefore, in this study, we propose \"StoneNet\", a lightweight and high-performance model for the detection of kidney stones based on MobileNet using depthwise separable convolution. The proposed model includes a combination of global average pooling (GAP), batch normalization, dropout layer, and dense layers. Our study shows that using GAP instead of flattening layers greatly improves the robustness of the model by significantly reducing the parameters. The developed model is benchmarked against four pre-trained models as well as the state-of-the-art heavy model. The results show that the proposed model can achieve the highest accuracy of 97.98%, and only requires training and testing time of 996.88 s and 14.62 s. Several parameters, such as different batch sizes and optimizers, were considered to validate the proposed model. The proposed model is computationally faster and provides optimal performance than other considered models. Experiments on a large kidney dataset of 1799 CT images show that StoneNet has superior performance in terms of higher accuracy and lower complexity. The proposed model can assist the radiologist in faster diagnosis of kidney stones and has great potential for deployment in real-time applications.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"633-652"},"PeriodicalIF":4.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9776663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-04-28DOI: 10.1007/s12539-023-00568-w
Xingyi Liu, Bin Yang, Xinpeng Huang, Wenying Yan, Yujuan Zhang, Guang Hu
Complex diseases are generally caused by disorders of biological networks and/or mutations in multiple genes. Comparisons of network topologies between different disease states can highlight key factors in their dynamic processes. Here, we propose a differential modular analysis approach that integrates protein-protein interactions with gene expression profiles for modular analysis, and introduces inter-modular edges and date hubs to identify the "core network module" that quantifies the significant phenotypic variation. Then, based on this core network module, key factors, including functional protein-protein interactions, pathways, and driver mutations, are predicted by the topological-functional connection score and structural modeling. We applied this approach to analyze the lymph node metastasis (LNM) process in breast cancer. The functional enrichment analysis showed that both inter-modular edges and date hubs play important roles in cancer metastasis and invasion, and in metastasis hallmarks. The structural mutation analysis suggested that the LNM of breast cancer may be the outcome of the dysfunction of rearranged during transfection (RET) proto-oncogene-related interactions and the non-canonical calcium signaling pathway via an allosteric mutation of RET. We believe that the proposed method can provide new insights into disease progression such as cancer metastasis.
{"title":"Identifying Lymph Node Metastasis-Related Factors in Breast Cancer Using Differential Modular and Mutational Structural Analysis.","authors":"Xingyi Liu, Bin Yang, Xinpeng Huang, Wenying Yan, Yujuan Zhang, Guang Hu","doi":"10.1007/s12539-023-00568-w","DOIUrl":"10.1007/s12539-023-00568-w","url":null,"abstract":"<p><p>Complex diseases are generally caused by disorders of biological networks and/or mutations in multiple genes. Comparisons of network topologies between different disease states can highlight key factors in their dynamic processes. Here, we propose a differential modular analysis approach that integrates protein-protein interactions with gene expression profiles for modular analysis, and introduces inter-modular edges and date hubs to identify the \"core network module\" that quantifies the significant phenotypic variation. Then, based on this core network module, key factors, including functional protein-protein interactions, pathways, and driver mutations, are predicted by the topological-functional connection score and structural modeling. We applied this approach to analyze the lymph node metastasis (LNM) process in breast cancer. The functional enrichment analysis showed that both inter-modular edges and date hubs play important roles in cancer metastasis and invasion, and in metastasis hallmarks. The structural mutation analysis suggested that the LNM of breast cancer may be the outcome of the dysfunction of rearranged during transfection (RET) proto-oncogene-related interactions and the non-canonical calcium signaling pathway via an allosteric mutation of RET. We believe that the proposed method can provide new insights into disease progression such as cancer metastasis.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"525-541"},"PeriodicalIF":4.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9362414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-07-20DOI: 10.1007/s12539-023-00581-z
Zeye Liu, Hang Li, Wenchao Li, Fengwen Zhang, Wenbin Ouyang, Shouzheng Wang, Aihua Zhi, Xiangbin Pan
Purpose: Studies relating to the right ventricle (RV) are inadequate, and specific diagnostic algorithms still need to be improved. This essay is designed to make exploration and verification on an algorithm of deep learning based on imaging and clinical data to detect RV abnormalities.
Methods: The Automated Cardiac Diagnosis Challenge dataset includes 20 subjects with RV abnormalities (an RV cavity volume which is higher than 110 mL/m2 or RV ejection fraction which is lower than 40%) and 20 normal subjects who suffered from both cardiac MRI. The subjects were separated into training and validation sets in a ratio of 7:3 and were modeled by utilizing a nerve net of deep-learning and six machine-learning algorithms. Eight MRI specialists from multiple centers independently determined whether each subject in the validation group had RV abnormalities. Model performance was evaluated based on the AUC, accuracy, recall, sensitivity and specificity. Furthermore, a preliminary assessment of patient disease risk was performed based on clinical information using a nomogram.
Results: The deep-learning neural network outperformed the other six machine-learning algorithms, with an AUC value of 1 (95% confidence interval: 1-1) on both training group and validation group. This algorithm surpassed most human experts (87.5%). In addition, the nomogram model could evaluate a population with a disease risk of 0.2-0.8.
Conclusions: A deep-learning algorithm could effectively identify patients with RV abnormalities. This AI algorithm developed specifically for right ventricular abnormalities will improve the detection of right ventricular abnormalities at all levels of care units and facilitate the timely diagnosis and treatment of related diseases. In addition, this study is the first to validate the algorithm's ability to classify RV abnormalities by comparing it with human experts.
{"title":"Development of an Expert-Level Right Ventricular Abnormality Detection Algorithm Based on Deep Learning.","authors":"Zeye Liu, Hang Li, Wenchao Li, Fengwen Zhang, Wenbin Ouyang, Shouzheng Wang, Aihua Zhi, Xiangbin Pan","doi":"10.1007/s12539-023-00581-z","DOIUrl":"10.1007/s12539-023-00581-z","url":null,"abstract":"<p><strong>Purpose: </strong>Studies relating to the right ventricle (RV) are inadequate, and specific diagnostic algorithms still need to be improved. This essay is designed to make exploration and verification on an algorithm of deep learning based on imaging and clinical data to detect RV abnormalities.</p><p><strong>Methods: </strong>The Automated Cardiac Diagnosis Challenge dataset includes 20 subjects with RV abnormalities (an RV cavity volume which is higher than 110 mL/m<sup>2</sup> or RV ejection fraction which is lower than 40%) and 20 normal subjects who suffered from both cardiac MRI. The subjects were separated into training and validation sets in a ratio of 7:3 and were modeled by utilizing a nerve net of deep-learning and six machine-learning algorithms. Eight MRI specialists from multiple centers independently determined whether each subject in the validation group had RV abnormalities. Model performance was evaluated based on the AUC, accuracy, recall, sensitivity and specificity. Furthermore, a preliminary assessment of patient disease risk was performed based on clinical information using a nomogram.</p><p><strong>Results: </strong>The deep-learning neural network outperformed the other six machine-learning algorithms, with an AUC value of 1 (95% confidence interval: 1-1) on both training group and validation group. This algorithm surpassed most human experts (87.5%). In addition, the nomogram model could evaluate a population with a disease risk of 0.2-0.8.</p><p><strong>Conclusions: </strong>A deep-learning algorithm could effectively identify patients with RV abnormalities. This AI algorithm developed specifically for right ventricular abnormalities will improve the detection of right ventricular abnormalities at all levels of care units and facilitate the timely diagnosis and treatment of related diseases. In addition, this study is the first to validate the algorithm's ability to classify RV abnormalities by comparing it with human experts.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"653-662"},"PeriodicalIF":4.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9837943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-06-30DOI: 10.1007/s12539-023-00575-x
Bowen Li, Heng Chen, Jian Huang, Bifang He
CD47/SIRPα pathway is a new breakthrough in the field of tumor immunity after PD-1/PD-L1. While current monoclonal antibody therapies targeting CD47/SIRPα have demonstrated some anti-tumor effectiveness, there are several inherent limitations associated with these formulations. In the paper, we developed a predictive model that combines next-generation phage display (NGPD) and traditional machine learning methods to distinguish CD47 binding peptides. First, we utilized NGPD biopanning technology to screen CD47 binding peptides. Second, ten traditional machine learning methods based on multiple peptide descriptors and three deep learning methods were used to build computational models for identifying CD47 binding peptides. Finally, we proposed an integrated model based on support vector machine. During the five-fold cross-validation, the integrated predictor demonstrated specificity, accuracy, and sensitivity of 0.755, 0.764, and 0.772, respectively. Furthermore, an online bioinformatics tool called CD47Binder has been developed for the integrated predictor. This tool is readily accessible on http://i.uestc.edu.cn/CD47Binder/cgi-bin/CD47Binder.pl .
{"title":"CD47Binder: Identify CD47 Binding Peptides by Combining Next-Generation Phage Display Data and Multiple Peptide Descriptors.","authors":"Bowen Li, Heng Chen, Jian Huang, Bifang He","doi":"10.1007/s12539-023-00575-x","DOIUrl":"10.1007/s12539-023-00575-x","url":null,"abstract":"<p><p>CD47/SIRPα pathway is a new breakthrough in the field of tumor immunity after PD-1/PD-L1. While current monoclonal antibody therapies targeting CD47/SIRPα have demonstrated some anti-tumor effectiveness, there are several inherent limitations associated with these formulations. In the paper, we developed a predictive model that combines next-generation phage display (NGPD) and traditional machine learning methods to distinguish CD47 binding peptides. First, we utilized NGPD biopanning technology to screen CD47 binding peptides. Second, ten traditional machine learning methods based on multiple peptide descriptors and three deep learning methods were used to build computational models for identifying CD47 binding peptides. Finally, we proposed an integrated model based on support vector machine. During the five-fold cross-validation, the integrated predictor demonstrated specificity, accuracy, and sensitivity of 0.755, 0.764, and 0.772, respectively. Furthermore, an online bioinformatics tool called CD47Binder has been developed for the integrated predictor. This tool is readily accessible on http://i.uestc.edu.cn/CD47Binder/cgi-bin/CD47Binder.pl .</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"578-589"},"PeriodicalIF":4.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9698355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-08-21DOI: 10.1007/s12539-023-00584-w
Jisha Augustine, A S Jereesh
DNA methylation is an epigenetic alteration that plays a fundamental part in governing gene regulatory processes. The DNA methylation mechanism affixes methyl groups to distinct cytosine residues, influencing chromatin architectures. Multiple studies have demonstrated that DNA methylation's regulatory effect on genes is linked to the beginning and progression of several disorders. Researchers have recently uncovered thousands of phenotype-related methylation sites through the epigenome-wide association study (EWAS). However, combining the methylation levels of several sites within a gene and determining the gene-level DNA methylation remains challenging. In this study, we proposed the supervised UMAP Assisted Gene-level Methylation method (sUAGM) for disease prediction based on supervised UMAP (Uniform Manifold Approximation and Projection), a manifold learning-based method for reducing dimensionality. The methylation values at the gene level generated using the proposed method are evaluated by employing various feature selection and classification algorithms on three distinct DNA methylation datasets derived from blood samples. The performance has been assessed employing classification accuracy, F-1 score, Mathews Correlation Coefficient (MCC), Kappa, Classification Success Index (CSI) and Jaccard Index. The Support Vector Machine with the linear kernel (SVML) classifier with Recursive Feature Elimination (RFE) performs best across all three datasets. From comparative analysis, our method outperformed existing gene-level and site-level approaches by achieving 100% accuracy and F1-score with fewer genes. The functional analysis of the top 28 genes selected from the Parkinson's disease dataset revealed a significant association with the disease.
{"title":"Identification of gene-level methylation for disease prediction.","authors":"Jisha Augustine, A S Jereesh","doi":"10.1007/s12539-023-00584-w","DOIUrl":"10.1007/s12539-023-00584-w","url":null,"abstract":"<p><p>DNA methylation is an epigenetic alteration that plays a fundamental part in governing gene regulatory processes. The DNA methylation mechanism affixes methyl groups to distinct cytosine residues, influencing chromatin architectures. Multiple studies have demonstrated that DNA methylation's regulatory effect on genes is linked to the beginning and progression of several disorders. Researchers have recently uncovered thousands of phenotype-related methylation sites through the epigenome-wide association study (EWAS). However, combining the methylation levels of several sites within a gene and determining the gene-level DNA methylation remains challenging. In this study, we proposed the supervised UMAP Assisted Gene-level Methylation method (sUAGM) for disease prediction based on supervised UMAP (Uniform Manifold Approximation and Projection), a manifold learning-based method for reducing dimensionality. The methylation values at the gene level generated using the proposed method are evaluated by employing various feature selection and classification algorithms on three distinct DNA methylation datasets derived from blood samples. The performance has been assessed employing classification accuracy, F-1 score, Mathews Correlation Coefficient (MCC), Kappa, Classification Success Index (CSI) and Jaccard Index. The Support Vector Machine with the linear kernel (SVML) classifier with Recursive Feature Elimination (RFE) performs best across all three datasets. From comparative analysis, our method outperformed existing gene-level and site-level approaches by achieving 100% accuracy and F1-score with fewer genes. The functional analysis of the top 28 genes selected from the Parkinson's disease dataset revealed a significant association with the disease.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"678-695"},"PeriodicalIF":4.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10029577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Accurate segmentation of medical images is essential for clinical decision-making, and deep learning techniques have shown remarkable results in this area. However, existing segmentation models that combine transformer and convolutional neural networks often use skip connections in U-shaped networks, which may limit their ability to capture contextual information in medical images. To address this limitation, we propose a coordinated mobile and residual transformer UNet (MRC-TransUNet) that combines the strengths of transformer and UNet architectures. Our approach uses a lightweight MR-ViT to address the semantic gap and a reciprocal attention module to compensate for the potential loss of details. To better explore long-range contextual information, we use skip connections only in the first layer and add MR-ViT and RPA modules in the subsequent downsampling layers. In our study, we evaluated the effectiveness of our proposed method on three different medical image segmentation datasets, namely, breast, brain, and lung. Our proposed method outperformed state-of-the-art methods in terms of various evaluation metrics, including the Dice coefficient and Hausdorff distance. These results demonstrate that our proposed method can significantly improve the accuracy of medical image segmentation and has the potential for clinical applications. Illustration of the proposed MRC-TransUNet. For the input medical images, we first subject them to an intrinsic downsampling operation and then replace the original jump connection structure using MR-ViT. The output feature representations at different scales are fused by the RPA module. Finally, an upsampling operation is performed to fuse the features to restore them to the same resolution as the input image.
{"title":"A Novel Deep Learning Model for Medical Image Segmentation with Convolutional Neural Network and Transformer.","authors":"Zhuo Zhang, Hongbing Wu, Huan Zhao, Yicheng Shi, Jifang Wang, Hua Bai, Baoshan Sun","doi":"10.1007/s12539-023-00585-9","DOIUrl":"10.1007/s12539-023-00585-9","url":null,"abstract":"<p><p>Accurate segmentation of medical images is essential for clinical decision-making, and deep learning techniques have shown remarkable results in this area. However, existing segmentation models that combine transformer and convolutional neural networks often use skip connections in U-shaped networks, which may limit their ability to capture contextual information in medical images. To address this limitation, we propose a coordinated mobile and residual transformer UNet (MRC-TransUNet) that combines the strengths of transformer and UNet architectures. Our approach uses a lightweight MR-ViT to address the semantic gap and a reciprocal attention module to compensate for the potential loss of details. To better explore long-range contextual information, we use skip connections only in the first layer and add MR-ViT and RPA modules in the subsequent downsampling layers. In our study, we evaluated the effectiveness of our proposed method on three different medical image segmentation datasets, namely, breast, brain, and lung. Our proposed method outperformed state-of-the-art methods in terms of various evaluation metrics, including the Dice coefficient and Hausdorff distance. These results demonstrate that our proposed method can significantly improve the accuracy of medical image segmentation and has the potential for clinical applications. Illustration of the proposed MRC-TransUNet. For the input medical images, we first subject them to an intrinsic downsampling operation and then replace the original jump connection structure using MR-ViT. The output feature representations at different scales are fused by the RPA module. Finally, an upsampling operation is performed to fuse the features to restore them to the same resolution as the input image.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"663-677"},"PeriodicalIF":4.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10203189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-07-07DOI: 10.1007/s12539-023-00576-w
Weirui Lei, Shengyou Qian, Xin Zhu, Jiwen Hu
Studying the formation and stability of atherosclerotic plaques in the hemodynamic field is essential for understanding the growth mechanism and preventive treatment of atherosclerotic plaques. In this paper, based on a multiplayer porous wall model, we established a two-way fluid-solid interaction with time-varying inlet flow. The lipid-rich necrotic core (LRNC) and stress in atherosclerotic plaque were described for analyzing the stability of atherosclerotic plaques during the plaque growth by solving advection-diffusion-reaction equations with finite-element method. It was found that LRNC appeared when the lipid levels of apoptotic materials (such as macrophages, foam cells) in the plaque reached a specified lower concentration, and increased with the plaque growth. LRNC was positively correlated with the blood pressure and was negatively correlated with the blood flow velocity. The maximum stress was mainly located at the necrotic core and gradually moved toward the left shoulder of the plaque with the plaque growth, which increases the plaque instability and the risk of the plaque shedding. The computational model may contribute to understanding the mechanisms of early atherosclerotic plaque growth and the risk of instability in the plaque growth.
{"title":"Haemodynamic Effects on the Development and Stability of Atherosclerotic Plaques in Arterial Blood Vessel.","authors":"Weirui Lei, Shengyou Qian, Xin Zhu, Jiwen Hu","doi":"10.1007/s12539-023-00576-w","DOIUrl":"10.1007/s12539-023-00576-w","url":null,"abstract":"<p><p>Studying the formation and stability of atherosclerotic plaques in the hemodynamic field is essential for understanding the growth mechanism and preventive treatment of atherosclerotic plaques. In this paper, based on a multiplayer porous wall model, we established a two-way fluid-solid interaction with time-varying inlet flow. The lipid-rich necrotic core (LRNC) and stress in atherosclerotic plaque were described for analyzing the stability of atherosclerotic plaques during the plaque growth by solving advection-diffusion-reaction equations with finite-element method. It was found that LRNC appeared when the lipid levels of apoptotic materials (such as macrophages, foam cells) in the plaque reached a specified lower concentration, and increased with the plaque growth. LRNC was positively correlated with the blood pressure and was negatively correlated with the blood flow velocity. The maximum stress was mainly located at the necrotic core and gradually moved toward the left shoulder of the plaque with the plaque growth, which increases the plaque instability and the risk of the plaque shedding. The computational model may contribute to understanding the mechanisms of early atherosclerotic plaque growth and the risk of instability in the plaque growth.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"616-632"},"PeriodicalIF":4.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9762233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-05-10DOI: 10.1007/s12539-023-00570-2
Lei Ling, Lijun Huang, Jie Wang, Li Zhang, Yue Wu, Yizhang Jiang, Kaijian Xia
Soft subspace clustering (SSC), which analyzes high-dimensional data and applies various weights to each cluster class to assess the membership degree of each cluster to the space, has shown promising results in recent years. This method of clustering assigns distinct weights to each cluster class. By introducing spatial information, enhanced SSC algorithms improve the degree to which intraclass compactness and interclass separation are achieved. However, these algorithms are sensitive to noisy data and have a tendency to fall into local optima. In addition, the segmentation accuracy is poor because of the influence of noisy data. In this study, an SSC approach that is based on particle swarm optimization is suggested with the intention of reducing the interference caused by noisy data. The particle swarm optimization method is used to locate the best possible clustering center. Second, increasing the amount of geographical membership makes it possible to utilize the spatial information to quantify the link between different clusters in a more precise manner. In conclusion, the extended noise clustering method is implemented in order to maximize the weight. Additionally, the constraint condition of the weight is changed from the equality constraint to the boundary constraint in order to reduce the impact of noise. The methodology presented in this research works to reduce the amount of sensitivity the SSC algorithm has to noisy data. It is possible to demonstrate the efficacy of this algorithm by using photos with noise already present or by introducing noise to existing photographs. The revised SSC approach based on particle swarm optimization (PSO) is demonstrated to have superior segmentation accuracy through a number of trials; as a result, this work gives a novel method for the segmentation of noisy images.
{"title":"An Improved Soft Subspace Clustering Algorithm Based on Particle Swarm Optimization for MR Image Segmentation.","authors":"Lei Ling, Lijun Huang, Jie Wang, Li Zhang, Yue Wu, Yizhang Jiang, Kaijian Xia","doi":"10.1007/s12539-023-00570-2","DOIUrl":"10.1007/s12539-023-00570-2","url":null,"abstract":"<p><p>Soft subspace clustering (SSC), which analyzes high-dimensional data and applies various weights to each cluster class to assess the membership degree of each cluster to the space, has shown promising results in recent years. This method of clustering assigns distinct weights to each cluster class. By introducing spatial information, enhanced SSC algorithms improve the degree to which intraclass compactness and interclass separation are achieved. However, these algorithms are sensitive to noisy data and have a tendency to fall into local optima. In addition, the segmentation accuracy is poor because of the influence of noisy data. In this study, an SSC approach that is based on particle swarm optimization is suggested with the intention of reducing the interference caused by noisy data. The particle swarm optimization method is used to locate the best possible clustering center. Second, increasing the amount of geographical membership makes it possible to utilize the spatial information to quantify the link between different clusters in a more precise manner. In conclusion, the extended noise clustering method is implemented in order to maximize the weight. Additionally, the constraint condition of the weight is changed from the equality constraint to the boundary constraint in order to reduce the impact of noise. The methodology presented in this research works to reduce the amount of sensitivity the SSC algorithm has to noisy data. It is possible to demonstrate the efficacy of this algorithm by using photos with noise already present or by introducing noise to existing photographs. The revised SSC approach based on particle swarm optimization (PSO) is demonstrated to have superior segmentation accuracy through a number of trials; as a result, this work gives a novel method for the segmentation of noisy images.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"560-577"},"PeriodicalIF":4.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9438416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1007/s12539-023-00561-3
Dinglin Zhang, Lidong Gong, Junben Weng, Yan Li, Anhui Wang, Guohui Li
RNA folding prediction is very meaningful and challenging. The molecular dynamics simulation (MDS) of all atoms (AA) is limited to the folding of small RNA molecules. At present, most of the practical models are coarse grained (CG) model, and the coarse-grained force field (CGFF) parameters usually depend on known RNA structures. However, the limitation of the CGFF is obvious that it is difficult to study the modified RNA. Based on the 3 beads model (AIMS_RNA_B3), we proposed the AIMS_RNA_B5 model with three beads representing a base and two beads representing the main chain (sugar group and phosphate group). We first run the all atom molecular dynamic simulation (AAMDS), and fit the CGFF parameter with the AA trajectory. Then perform the coarse-grained molecular dynamic simulation (CGMDS). AAMDS is the foundation of CGMDS. CGMDS is mainly to carry out the conformation sampling based on the current AAMDS state and improve the folding speed. We simulated the folding of three RNAs, which belong to hairpin, pseudoknot and tRNA respectively. Compared to the AIMS_RNA_B3 model, the AIMS_RNA_B5 model is more reasonable and performs better.
{"title":"RNA Folding Based on 5 Beads Model and Multiscale Simulation.","authors":"Dinglin Zhang, Lidong Gong, Junben Weng, Yan Li, Anhui Wang, Guohui Li","doi":"10.1007/s12539-023-00561-3","DOIUrl":"https://doi.org/10.1007/s12539-023-00561-3","url":null,"abstract":"<p><p>RNA folding prediction is very meaningful and challenging. The molecular dynamics simulation (MDS) of all atoms (AA) is limited to the folding of small RNA molecules. At present, most of the practical models are coarse grained (CG) model, and the coarse-grained force field (CGFF) parameters usually depend on known RNA structures. However, the limitation of the CGFF is obvious that it is difficult to study the modified RNA. Based on the 3 beads model (AIMS_RNA_B3), we proposed the AIMS_RNA_B5 model with three beads representing a base and two beads representing the main chain (sugar group and phosphate group). We first run the all atom molecular dynamic simulation (AAMDS), and fit the CGFF parameter with the AA trajectory. Then perform the coarse-grained molecular dynamic simulation (CGMDS). AAMDS is the foundation of CGMDS. CGMDS is mainly to carry out the conformation sampling based on the current AAMDS state and improve the folding speed. We simulated the folding of three RNAs, which belong to hairpin, pseudoknot and tRNA respectively. Compared to the AIMS_RNA_B3 model, the AIMS_RNA_B5 model is more reasonable and performs better.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":"15 3","pages":"393-404"},"PeriodicalIF":4.8,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9871173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}