首页 > 最新文献

Interdisciplinary Sciences: Computational Life Sciences最新文献

英文 中文
Predicting Protein-Ligand Binding Affinity Using Fusion Model of Spatial-Temporal Graph Neural Network and 3D Structure-Based Complex Graph. 利用时空图神经网络和基于三维结构的复杂图的融合模型预测蛋白质配体结合亲和力
IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-11-14 DOI: 10.1007/s12539-024-00644-9
Gaili Li, Yongna Yuan, Ruisheng Zhang

The investigation of molecular interactions between ligands and their target molecules is becoming more significant as protein structure data continues to develop. In this study, we introduce PLA-STGCNnet, a deep fusion spatial-temporal graph neural network designed to study protein-ligand interactions based on the 3D structural data of protein-ligand complexes. Unlike 1D protein sequences or 2D ligand graphs, the 3D graph representation offers a more precise portrayal of the complex interactions between proteins and ligands. Research studies have shown that our fusion model, PLA-STGCNnet, outperforms individual algorithms in accurately predicting binding affinity. The advantage of a fusion model is the ability to fully combine the advantages of multiple different models and improve overall performance by combining their features and outputs. Our fusion model shows satisfactory performance on different data sets, which proves its generalization ability and stability. The fusion-based model showed good performance in protein-ligand affinity prediction, and we successfully applied the model to drug screening. Our research underscores the promise of fusion spatial-temporal graph neural networks in addressing complex challenges in protein-ligand affinity prediction. The Python scripts for implementing various model components are accessible at https://github.com/ligaili01/PLA-STGCN.

随着蛋白质结构数据的不断发展,配体与其目标分子之间的分子相互作用研究变得越来越重要。在本研究中,我们介绍了 PLA-STGCNnet,这是一种深度融合时空图神经网络,旨在基于蛋白质配体复合物的三维结构数据研究蛋白质配体之间的相互作用。与一维蛋白质序列或二维配体图不同,三维图表示法能更精确地描述蛋白质和配体之间复杂的相互作用。研究表明,我们的融合模型 PLA-STGCNnet 在准确预测结合亲和力方面优于单个算法。融合模型的优势在于能够充分结合多个不同模型的优势,并通过结合其特征和输出来提高整体性能。我们的融合模型在不同的数据集上都表现出了令人满意的性能,这证明了它的泛化能力和稳定性。基于融合的模型在蛋白质配体亲和力预测中表现出色,我们成功地将该模型应用于药物筛选。我们的研究强调了融合时空图神经网络在解决蛋白质配体亲和性预测复杂难题方面的前景。用于实现各种模型组件的 Python 脚本可在 https://github.com/ligaili01/PLA-STGCN 上获取。
{"title":"Predicting Protein-Ligand Binding Affinity Using Fusion Model of Spatial-Temporal Graph Neural Network and 3D Structure-Based Complex Graph.","authors":"Gaili Li, Yongna Yuan, Ruisheng Zhang","doi":"10.1007/s12539-024-00644-9","DOIUrl":"https://doi.org/10.1007/s12539-024-00644-9","url":null,"abstract":"<p><p>The investigation of molecular interactions between ligands and their target molecules is becoming more significant as protein structure data continues to develop. In this study, we introduce PLA-STGCNnet, a deep fusion spatial-temporal graph neural network designed to study protein-ligand interactions based on the 3D structural data of protein-ligand complexes. Unlike 1D protein sequences or 2D ligand graphs, the 3D graph representation offers a more precise portrayal of the complex interactions between proteins and ligands. Research studies have shown that our fusion model, PLA-STGCNnet, outperforms individual algorithms in accurately predicting binding affinity. The advantage of a fusion model is the ability to fully combine the advantages of multiple different models and improve overall performance by combining their features and outputs. Our fusion model shows satisfactory performance on different data sets, which proves its generalization ability and stability. The fusion-based model showed good performance in protein-ligand affinity prediction, and we successfully applied the model to drug screening. Our research underscores the promise of fusion spatial-temporal graph neural networks in addressing complex challenges in protein-ligand affinity prediction. The Python scripts for implementing various model components are accessible at https://github.com/ligaili01/PLA-STGCN.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142619766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drug Sensitivity Prediction Based on Multi-stage Multi-modal Drug Representation Learning. 基于多阶段多模态药物表征学习的药物敏感性预测
IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-11-12 DOI: 10.1007/s12539-024-00668-1
Jinmiao Song, Mingjie Wei, Shuang Zhao, Hui Zhai, Qiguo Dai, Xiaodong Duan

Accurate prediction of anticancer drug responses is essential for developing personalized treatment plans in order to improve cancer patient survival rates and reduce healthcare costs. To this end, we propose a drug sensitivity prediction model based on multi-stage multi-modal drug representations (ModDRDSP) to reflect the properties of drugs more comprehensively, and to better model the complex interactions between cells and drugs. Specifically, we adopt the SMILES representation learning method based on the deep hierarchical bi-directional GRU network (DSBiGRU) and the molecular graph representation learning method based on the deep message-crossing network (DMCN) for the multi-modal information of drugs. Additionally, we integrate the multi-omics information of cell lines based on a convolutional neural network (CNN). Finally, we use an ensemble deep forest algorithm for the prediction of drug sensitivity. After validation, the ModDRDSP shows impressive performance which outperforms the four current industry-leading models. More importantly, ablation experiments demonstrate the validity of each module of the proposed model, and case studies show the good results of ModDRDSP for predicting drug sensitivity, further establishing the superiority of ModDRDSP in terms of performance.

准确预测抗癌药物反应对于制定个性化治疗方案以提高癌症患者生存率和降低医疗成本至关重要。为此,我们提出了一种基于多阶段多模态药物表征(ModDRDSP)的药物敏感性预测模型,以更全面地反映药物的特性,更好地模拟细胞与药物之间复杂的相互作用。具体来说,针对药物的多模态信息,我们采用了基于深度分层双向GRU网络(DSBiGRU)的SMILES表征学习方法和基于深度信息交叉网络(DMCN)的分子图表征学习方法。此外,我们还基于卷积神经网络(CNN)整合了细胞系的多组学信息。最后,我们使用集合深林算法预测药物敏感性。经过验证,ModDRDSP 的性能表现令人印象深刻,超过了目前业界领先的四种模型。更重要的是,消融实验证明了所提模型每个模块的有效性,案例研究也显示了 ModDRDSP 在预测药物敏感性方面的良好效果,进一步确立了 ModDRDSP 在性能方面的优越性。
{"title":"Drug Sensitivity Prediction Based on Multi-stage Multi-modal Drug Representation Learning.","authors":"Jinmiao Song, Mingjie Wei, Shuang Zhao, Hui Zhai, Qiguo Dai, Xiaodong Duan","doi":"10.1007/s12539-024-00668-1","DOIUrl":"https://doi.org/10.1007/s12539-024-00668-1","url":null,"abstract":"<p><p>Accurate prediction of anticancer drug responses is essential for developing personalized treatment plans in order to improve cancer patient survival rates and reduce healthcare costs. To this end, we propose a drug sensitivity prediction model based on multi-stage multi-modal drug representations (ModDRDSP) to reflect the properties of drugs more comprehensively, and to better model the complex interactions between cells and drugs. Specifically, we adopt the SMILES representation learning method based on the deep hierarchical bi-directional GRU network (DSBiGRU) and the molecular graph representation learning method based on the deep message-crossing network (DMCN) for the multi-modal information of drugs. Additionally, we integrate the multi-omics information of cell lines based on a convolutional neural network (CNN). Finally, we use an ensemble deep forest algorithm for the prediction of drug sensitivity. After validation, the ModDRDSP shows impressive performance which outperforms the four current industry-leading models. More importantly, ablation experiments demonstrate the validity of each module of the proposed model, and case studies show the good results of ModDRDSP for predicting drug sensitivity, further establishing the superiority of ModDRDSP in terms of performance.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142619765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Integrated TCN-CrossMHA Model for Predicting circRNA-RBP Binding Sites. 用于预测 circRNA-RBP 结合位点的 TCN-CrossMHA 集成模型。
IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-11-06 DOI: 10.1007/s12539-024-00660-9
Yajing Guo, Xiujuan Lei, Shuyu Li

Circular RNA (circRNA) has the capacity to bind with RNA binding protein (RBP), thereby exerting a substantial impact on diseases. Predicting binding sites aids in comprehending the interaction mechanism, thereby offering insights for disease treatment strategies. Here, we propose a novel approach based on temporal convolutional network (TCN) and cross multi-head attention mechanism to predict circRNA-RBP binding sites (circTCA). First, we employ two distinct encoding methodologies to obtain two raw matrices of circRNA sequences. Then, two parallel TCN blocks extract shallow and abstract features of the two matrices separately. The fusion of the two is achieved through cross multi-head attention mechanism and after this, global expectation pooling assigns weights to the concatenated feature. Finally, the task of classifying the input sequence is entrusted to a fully connected (FC) layer. We compare circTCA with other five methods and conduct ablation experiments to demonstrate its effectiveness. We also conduct feature visualization and assess the motifs extracted by circTCA with existing motifs. All in all, circTCA is effective for binding sites prediction of circRNA and RBP.

环状 RNA(circRNA)能够与 RNA 结合蛋白(RBP)结合,从而对疾病产生重大影响。预测结合位点有助于理解相互作用机制,从而为疾病治疗策略提供启示。在此,我们提出了一种基于时序卷积网络(TCN)和交叉多头注意机制的新方法来预测 circRNA-RBP 结合位点(circTCA)。首先,我们采用两种不同的编码方法获得两个原始的 circRNA 序列矩阵。然后,两个并行的 TCN 模块分别提取两个矩阵的浅层和抽象特征。通过交叉多头关注机制实现二者的融合,之后,全局期望池为合并特征分配权重。最后,对输入序列进行分类的任务就交给了全连接(FC)层。我们将 circTCA 与其他五种方法进行了比较,并进行了消融实验以证明其有效性。我们还进行了特征可视化,并对 circTCA 提取的主题和现有主题进行了评估。总之,circTCA 对 circRNA 和 RBP 的结合位点预测非常有效。
{"title":"An Integrated TCN-CrossMHA Model for Predicting circRNA-RBP Binding Sites.","authors":"Yajing Guo, Xiujuan Lei, Shuyu Li","doi":"10.1007/s12539-024-00660-9","DOIUrl":"https://doi.org/10.1007/s12539-024-00660-9","url":null,"abstract":"<p><p>Circular RNA (circRNA) has the capacity to bind with RNA binding protein (RBP), thereby exerting a substantial impact on diseases. Predicting binding sites aids in comprehending the interaction mechanism, thereby offering insights for disease treatment strategies. Here, we propose a novel approach based on temporal convolutional network (TCN) and cross multi-head attention mechanism to predict circRNA-RBP binding sites (circTCA). First, we employ two distinct encoding methodologies to obtain two raw matrices of circRNA sequences. Then, two parallel TCN blocks extract shallow and abstract features of the two matrices separately. The fusion of the two is achieved through cross multi-head attention mechanism and after this, global expectation pooling assigns weights to the concatenated feature. Finally, the task of classifying the input sequence is entrusted to a fully connected (FC) layer. We compare circTCA with other five methods and conduct ablation experiments to demonstrate its effectiveness. We also conduct feature visualization and assess the motifs extracted by circTCA with existing motifs. All in all, circTCA is effective for binding sites prediction of circRNA and RBP.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ABTrans: A Transformer-based Model for Predicting Interaction between Anti-Aβ Antibodies and Peptides. ABTrans:基于变压器的抗 Aβ 抗体与多肽相互作用预测模型
IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-10-28 DOI: 10.1007/s12539-024-00664-5
Yuhong Su, Xincheng Zeng, Lingfeng Zhang, Yanlin Bian, Yangjing Wang, Buyong Ma

Antibodies against Aβ peptide have been recently approved to treat Alzheimer's disease, underscoring the importance of understanding their interactions for developing more potent treatments. Here we investigated the interaction between anti-Aβ antibodies and various peptides using a deep learning model. Our model, ABTrans, was trained on dodecapeptide sequences from phage display experiments and known anti-Aβ antibody sequences sourced from public sources. It classified the binding ability between anti-Aβ antibodies and dodecapeptides into four levels: not binding, weak binding, medium binding, and strong binding, achieving an accuracy of 0.83. Using ABTrans, we examined the cross-reaction of anti-Aβ antibodies with other human amyloidogenic proteins, revealing that Aducanumab and Donanemab exhibited the least cross-reactivity. Additionally, we systematically screened interactions between eleven selected anti-Aβ antibodies and all human proteins to identify potential off-target candidates.

针对 Aβ 肽的抗体最近已被批准用于治疗阿尔茨海默病,这凸显了了解它们之间的相互作用对于开发更有效的治疗方法的重要性。在此,我们使用深度学习模型研究了抗Aβ抗体与各种肽之间的相互作用。我们的模型 ABTrans 是根据噬菌体展示实验中的十二肽序列和来自公共资源的已知抗 Aβ 抗体序列训练而成的。它将抗 Aβ 抗体与十二肽的结合能力分为四个等级:不结合、弱结合、中等结合和强结合,准确率达到 0.83。利用 ABTrans,我们检测了抗 Aβ 抗体与其他人类淀粉样蛋白的交叉反应,结果发现 Aducanumab 和 Donanemab 的交叉反应最小。此外,我们还系统地筛选了 11 种选定的抗 Aβ 抗体与所有人类蛋白质之间的相互作用,以确定潜在的脱靶候选者。
{"title":"ABTrans: A Transformer-based Model for Predicting Interaction between Anti-Aβ Antibodies and Peptides.","authors":"Yuhong Su, Xincheng Zeng, Lingfeng Zhang, Yanlin Bian, Yangjing Wang, Buyong Ma","doi":"10.1007/s12539-024-00664-5","DOIUrl":"https://doi.org/10.1007/s12539-024-00664-5","url":null,"abstract":"<p><p>Antibodies against Aβ peptide have been recently approved to treat Alzheimer's disease, underscoring the importance of understanding their interactions for developing more potent treatments. Here we investigated the interaction between anti-Aβ antibodies and various peptides using a deep learning model. Our model, ABTrans, was trained on dodecapeptide sequences from phage display experiments and known anti-Aβ antibody sequences sourced from public sources. It classified the binding ability between anti-Aβ antibodies and dodecapeptides into four levels: not binding, weak binding, medium binding, and strong binding, achieving an accuracy of 0.83. Using ABTrans, we examined the cross-reaction of anti-Aβ antibodies with other human amyloidogenic proteins, revealing that Aducanumab and Donanemab exhibited the least cross-reactivity. Additionally, we systematically screened interactions between eleven selected anti-Aβ antibodies and all human proteins to identify potential off-target candidates.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BES-Designer: A Web Tool to Design Guide RNAs for Base Editing to Simplify Library. BES-Designer:设计用于碱基编辑的引导 RNA 以简化文库的网络工具。
IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-10-28 DOI: 10.1007/s12539-024-00663-6
Qian Zhou, Qian Gao, Yujia Gao, Youhua Zhang, Yanjun Chen, Min Li, Pengcheng Wei, Zhenyu Yue

CRISPR/Cas base editors offer precise conversion of single nucleotides without inducing double-strand breaks. This technology finds extensive applications in gene therapy, gene function analysis, and other domains. However, a crucial challenge lies in selecting the appropriate guide RNAs (gRNAs) for base editing. Although various gRNAs design tools exist, creating a simplified base-editing library with diverse protospacer adjacent motifs (PAM) sequences for gRNAs screening remains a challenge. We present a user-friendly web tool, BES-Designer ( https://bes-designer.aielab.net ), for gRNAs design based on base editors, aimed at streamlining the creation of a base-editing library. BES-Designer incorporates our proposed rules for target sequence simplification, helping researchers narrow down the scope of biological experiments in the lab. It allows users to design target sequences with various PAMs and editing types simultaneously, and prioritize them in the simplified base-editing library. This tool has been experimentally proven to achieve a 30% simplification efficiency on the base-editing-library.

CRISPR/Cas 碱基编辑器可精确转换单个核苷酸,而不会导致双链断裂。这项技术在基因治疗、基因功能分析和其他领域有着广泛的应用。然而,为碱基编辑选择合适的引导 RNA(gRNA)是一项关键挑战。虽然存在各种 gRNAs 设计工具,但创建一个具有多种原间隔邻接基序(PAM)的简化碱基编辑库来筛选 gRNAs 仍然是一项挑战。我们提出了一种用户友好型网络工具 BES-Designer ( https://bes-designer.aielab.net ) ,用于基于碱基编辑器设计 gRNAs,旨在简化碱基编辑库的创建过程。BES-Designer 融合了我们提出的目标序列简化规则,帮助研究人员缩小实验室生物实验的范围。它允许用户同时设计具有各种 PAM 和编辑类型的目标序列,并在简化的碱基编辑库中对其进行优先排序。实验证明,该工具的碱基编辑库简化效率高达 30%。
{"title":"BES-Designer: A Web Tool to Design Guide RNAs for Base Editing to Simplify Library.","authors":"Qian Zhou, Qian Gao, Yujia Gao, Youhua Zhang, Yanjun Chen, Min Li, Pengcheng Wei, Zhenyu Yue","doi":"10.1007/s12539-024-00663-6","DOIUrl":"https://doi.org/10.1007/s12539-024-00663-6","url":null,"abstract":"<p><p>CRISPR/Cas base editors offer precise conversion of single nucleotides without inducing double-strand breaks. This technology finds extensive applications in gene therapy, gene function analysis, and other domains. However, a crucial challenge lies in selecting the appropriate guide RNAs (gRNAs) for base editing. Although various gRNAs design tools exist, creating a simplified base-editing library with diverse protospacer adjacent motifs (PAM) sequences for gRNAs screening remains a challenge. We present a user-friendly web tool, BES-Designer ( https://bes-designer.aielab.net ), for gRNAs design based on base editors, aimed at streamlining the creation of a base-editing library. BES-Designer incorporates our proposed rules for target sequence simplification, helping researchers narrow down the scope of biological experiments in the lab. It allows users to design target sequences with various PAMs and editing types simultaneously, and prioritize them in the simplified base-editing library. This tool has been experimentally proven to achieve a 30% simplification efficiency on the base-editing-library.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
cascAGS: Comparative Analysis of SNP Calling Methods for Human Genome Data in the Absence of Gold Standard. cascAGS:缺乏黄金标准时人类基因组数据 SNP 调用方法的比较分析
IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-10-23 DOI: 10.1007/s12539-024-00653-8
Qianqian Song, Taobo Hu, Baosheng Liang, Shihai Li, Yang Li, Jinbo Wu, Shu Wang, Xiaohua Zhou

The development of third-generation sequencing has accelerated the boom of single nucleotide polymorphism (SNP) calling methods, but evaluating accuracy remains challenging owing to the absence of the SNP gold standard. The definitions for without-gold-standard and performance metrics and their estimation are urgently needed. Additionally, the possible correlations between different SNP loci should also be further explored. To address these challenges, we first introduced the concept of a gold standard and imperfect gold standard under the consistency framework and gave the corresponding definitions of sensitivity and specificity. A latent class model (LCM) was established to estimate the sensitivity and specificity of callers. Furthermore, we incorporated different dependency structures into LCM to investigate their impact on sensitivity and specificity. The performance of LCM was illustrated by comparing the accuracy of BCFtools, DeepVariant, FreeBayes, and GATK on various datasets. Through estimations across multiple datasets, the results indicate that LCM is well-suitable for evaluating callers without the SNP gold standard, and accurate inclusion of the dependency between variations is crucial for better performance ranking. DeepVariant has a higher sum of sensitivity and specificity than other callers, followed by GATK and BCFtools. FreeBayes has low sensitivity but high specificity. Notably, appropriate sequencing coverage is another important factor for precise callers' evaluation. Most importantly, a web interface for assessing and comparing different callers was developed to simplify the evaluation process.

第三代测序技术的发展加速了单核苷酸多态性(SNP)调用方法的蓬勃发展,但由于 SNP 金标准的缺失,评估其准确性仍具有挑战性。目前急需对无金标准和性能指标进行定义和估算。此外,还应进一步探讨不同 SNP 位点之间可能存在的相关性。为了应对这些挑战,我们首先介绍了一致性框架下金标准和不完全金标准的概念,并给出了灵敏度和特异性的相应定义。我们建立了一个潜类模型(LCM)来估算调用者的灵敏度和特异度。此外,我们还在 LCM 中加入了不同的依赖结构,以研究它们对灵敏度和特异性的影响。通过比较 BCFtools、DeepVariant、FreeBayes 和 GATK 在不同数据集上的准确性,说明了 LCM 的性能。通过对多个数据集的估算,结果表明 LCM 非常适合在没有 SNP 黄金标准的情况下评估调用者,而准确纳入变异之间的依赖性对于更好的性能排名至关重要。DeepVariant 的灵敏度和特异性之和高于其他调用器,其次是 GATK 和 BCFtools。FreeBayes 的灵敏度较低,但特异性较高。值得注意的是,适当的测序覆盖率是评估精确调用者的另一个重要因素。最重要的是,我们开发了一个用于评估和比较不同调用仪的网络界面,以简化评估过程。
{"title":"cascAGS: Comparative Analysis of SNP Calling Methods for Human Genome Data in the Absence of Gold Standard.","authors":"Qianqian Song, Taobo Hu, Baosheng Liang, Shihai Li, Yang Li, Jinbo Wu, Shu Wang, Xiaohua Zhou","doi":"10.1007/s12539-024-00653-8","DOIUrl":"https://doi.org/10.1007/s12539-024-00653-8","url":null,"abstract":"<p><p>The development of third-generation sequencing has accelerated the boom of single nucleotide polymorphism (SNP) calling methods, but evaluating accuracy remains challenging owing to the absence of the SNP gold standard. The definitions for without-gold-standard and performance metrics and their estimation are urgently needed. Additionally, the possible correlations between different SNP loci should also be further explored. To address these challenges, we first introduced the concept of a gold standard and imperfect gold standard under the consistency framework and gave the corresponding definitions of sensitivity and specificity. A latent class model (LCM) was established to estimate the sensitivity and specificity of callers. Furthermore, we incorporated different dependency structures into LCM to investigate their impact on sensitivity and specificity. The performance of LCM was illustrated by comparing the accuracy of BCFtools, DeepVariant, FreeBayes, and GATK on various datasets. Through estimations across multiple datasets, the results indicate that LCM is well-suitable for evaluating callers without the SNP gold standard, and accurate inclusion of the dependency between variations is crucial for better performance ranking. DeepVariant has a higher sum of sensitivity and specificity than other callers, followed by GATK and BCFtools. FreeBayes has low sensitivity but high specificity. Notably, appropriate sequencing coverage is another important factor for precise callers' evaluation. Most importantly, a web interface for assessing and comparing different callers was developed to simplify the evaluation process.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient Storage and Analysis of Genomic Data: A k-mer Frequency Mapping and Image Representation Method. 基因组数据的高效存储与分析:k-mer 频率映射和图像表示方法
IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-10-21 DOI: 10.1007/s12539-024-00659-2
Hatice Busra Luleci, Selcen Ari Yuka, Alper Yilmaz

k-mer frequencies are crucial for understanding DNA sequence patterns and structure, with applications in motif discovery, genome classification, and short read assembly. However, the exponential increase in the dimension of frequency tables with increasing k-mer length poses storage challenges. In this study, we present a novel method for compressing k-mer data without information loss, aiming to optimize storage and analysis processes. We employed Chaos Game Representation (CGR) to map k-mers to coordinates and used these components to generate raster images of k-mers. The CGR maps were partitioned and labeled based on substrings, with each substring mapped to a subframe, creating a fractal-like structure. The entire k-mer frequency set of each genomic sequence was represented as a single image, with each pixel corresponding to a specific k-mer and its occurrence. This approach reduced file size by up to 16-fold compared to plain text and 3-fold compared to binary format. Furthermore, we demonstrated the feasibility of performing alignment-free similarity analyses on images derived from k-mer frequencies of whole genome sequences from 14 plant species. Our results highlight the potential of this method as a fast and efficient tool for accessing, processing, and analyzing large biological sequence datasets, enabling the retrieval of k-mer frequencies and image reconstruction.

k-mer 频率对于理解 DNA 序列模式和结构至关重要,可应用于主题发现、基因组分类和短文本组装。然而,随着 k-mer 长度的增加,频率表的维度呈指数增长,这给存储带来了挑战。在本研究中,我们提出了一种在不损失信息的情况下压缩 k-mer 数据的新方法,旨在优化存储和分析过程。我们采用混沌博弈表示法(CGR)将 k-聚合体映射到坐标,并利用这些分量生成 k-聚合体的栅格图像。我们根据子串对 CGR 地图进行了分割和标记,每个子串映射到一个子帧,从而创建了一个类似分形的结构。每个基因组序列的整个 k-聚合体频率集被表示为一幅图像,每个像素对应一个特定的 k-聚合体及其出现情况。与纯文本格式相比,这种方法将文件大小缩小了 16 倍,与二进制格式相比缩小了 3 倍。此外,我们还证明了对来自 14 个植物物种的全基因组序列 k-聚合体频率的图像进行无配对相似性分析的可行性。我们的研究结果凸显了这种方法的潜力,它是访问、处理和分析大型生物序列数据集的快速高效工具,可以检索 k-mer 频率和重建图像。
{"title":"Efficient Storage and Analysis of Genomic Data: A k-mer Frequency Mapping and Image Representation Method.","authors":"Hatice Busra Luleci, Selcen Ari Yuka, Alper Yilmaz","doi":"10.1007/s12539-024-00659-2","DOIUrl":"https://doi.org/10.1007/s12539-024-00659-2","url":null,"abstract":"<p><p>k-mer frequencies are crucial for understanding DNA sequence patterns and structure, with applications in motif discovery, genome classification, and short read assembly. However, the exponential increase in the dimension of frequency tables with increasing k-mer length poses storage challenges. In this study, we present a novel method for compressing k-mer data without information loss, aiming to optimize storage and analysis processes. We employed Chaos Game Representation (CGR) to map k-mers to coordinates and used these components to generate raster images of k-mers. The CGR maps were partitioned and labeled based on substrings, with each substring mapped to a subframe, creating a fractal-like structure. The entire k-mer frequency set of each genomic sequence was represented as a single image, with each pixel corresponding to a specific k-mer and its occurrence. This approach reduced file size by up to 16-fold compared to plain text and 3-fold compared to binary format. Furthermore, we demonstrated the feasibility of performing alignment-free similarity analyses on images derived from k-mer frequencies of whole genome sequences from 14 plant species. Our results highlight the potential of this method as a fast and efficient tool for accessing, processing, and analyzing large biological sequence datasets, enabling the retrieval of k-mer frequencies and image reconstruction.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142464357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell Fate Dynamics Reconstruction Identifies TPT1 and PTPRZ1 Feedback Loops as Master Regulators of Differentiation in Pediatric Glioblastoma-Immune Cell Networks. 细胞命运动力学重构发现 TPT1 和 PTPRZ1 反馈环是小儿胶质母细胞瘤-免疫细胞网络分化的主调控因子
IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-10-17 DOI: 10.1007/s12539-024-00657-4
Abicumaran Uthamacumaran

Pediatric glioblastoma is a complex dynamical disease that is difficult to treat due to its multiple adaptive behaviors driven largely by phenotypic plasticity. Integrated data science and network theory pipelines offer novel approaches to studying glioblastoma cell fate dynamics, particularly phenotypic transitions over time. Here we used various single-cell trajectory inference algorithms to infer signaling dynamics regulating pediatric glioblastoma-immune cell networks. We identified GATA2, PTPRZ1, TPT1, MTRNR2L1/2, OLIG1/2, SOX11, FXYD6, SEZ6L, PDGFRA, EGFR, S100B, WNT, TNF α , and NF-kB as critical transition genes or signals regulating glioblastoma-immune network dynamics, revealing potential clinically relevant targets. Further, we reconstructed glioblastoma cell fate attractors and found complex bifurcation dynamics within glioblastoma phenotypic transitions, suggesting that a causal pattern may be driving glioblastoma evolution and cell fate decision-making. Together, our findings have implications for developing targeted therapies against glioblastoma, and the continued integration of quantitative approaches and artificial intelligence (AI) to understand pediatric glioblastoma tumor-immune interactions.

小儿胶质母细胞瘤是一种复杂的动态疾病,由于其主要由表型可塑性驱动的多种适应行为而难以治疗。综合数据科学和网络理论管道为研究胶质母细胞瘤细胞命运动态,尤其是随时间发生的表型转变提供了新方法。在这里,我们使用各种单细胞轨迹推断算法来推断调节小儿胶质母细胞瘤-免疫细胞网络的信号动态。我们发现 GATA2、PTPRZ1、TPT1、MTRNR2L1/2、OLIG1/2、SOX11、FXYD6、SEZ6L、PDGFRA、EGFR、S100B、WNT、TNF α 和 NF-kB 是调控胶质母细胞瘤-免疫网络动态的关键过渡基因或信号,揭示了潜在的临床相关靶点。此外,我们还重建了胶质母细胞瘤细胞命运吸引子,发现胶质母细胞瘤表型转换过程中存在复杂的分叉动态,这表明可能存在一种因果模式在驱动胶质母细胞瘤的进化和细胞命运决策。我们的研究结果对开发胶质母细胞瘤靶向疗法以及继续整合定量方法和人工智能(AI)以了解小儿胶质母细胞瘤肿瘤-免疫相互作用具有重要意义。
{"title":"Cell Fate Dynamics Reconstruction Identifies TPT1 and PTPRZ1 Feedback Loops as Master Regulators of Differentiation in Pediatric Glioblastoma-Immune Cell Networks.","authors":"Abicumaran Uthamacumaran","doi":"10.1007/s12539-024-00657-4","DOIUrl":"https://doi.org/10.1007/s12539-024-00657-4","url":null,"abstract":"<p><p>Pediatric glioblastoma is a complex dynamical disease that is difficult to treat due to its multiple adaptive behaviors driven largely by phenotypic plasticity. Integrated data science and network theory pipelines offer novel approaches to studying glioblastoma cell fate dynamics, particularly phenotypic transitions over time. Here we used various single-cell trajectory inference algorithms to infer signaling dynamics regulating pediatric glioblastoma-immune cell networks. We identified GATA2, PTPRZ1, TPT1, MTRNR2L1/2, OLIG1/2, SOX11, FXYD6, SEZ6L, PDGFRA, EGFR, S100B, WNT, TNF <math><mi>α</mi></math> , and NF-kB as critical transition genes or signals regulating glioblastoma-immune network dynamics, revealing potential clinically relevant targets. Further, we reconstructed glioblastoma cell fate attractors and found complex bifurcation dynamics within glioblastoma phenotypic transitions, suggesting that a causal pattern may be driving glioblastoma evolution and cell fate decision-making. Together, our findings have implications for developing targeted therapies against glioblastoma, and the continued integration of quantitative approaches and artificial intelligence (AI) to understand pediatric glioblastoma tumor-immune interactions.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142464356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
misORFPred: A Novel Method to Mine Translatable sORFs in Plant Pri-miRNAs Using Enhanced Scalable k-mer and Dynamic Ensemble Voting Strategy. misORFPred:使用增强型可扩展 k-mer 和动态组合投票策略挖掘植物 Pri-miRNA 中可翻译 sORF 的新方法。
IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-10-14 DOI: 10.1007/s12539-024-00661-8
Haibin Li, Jun Meng, Zhaowei Wang, Yushi Luan

The primary microRNAs (pri-miRNAs) have been observed to contain translatable small open reading frames (sORFs) that can encode peptides as an independent element. Relevant studies have proven that those of sORFs are of significance in regulating the expression of biological traits. The existing methods for predicting the coding potential of sORFs frequently overlook this data or categorize them as negative samples, impeding the identification of additional translatable sORFs in pri-miRNAs. In light of this, a novel method named misORFPred has been proposed. Specifically, an enhanced scalable k-mer (ESKmer) that simultaneously integrates the composition information within a sequence and distance information between sequences is designed to extract the nucleotide sequence features. After feature selection, the optimal features and several machine learning classifiers are combined to construct the ensemble model, where a newly devised dynamic ensemble voting strategy (DEVS) is proposed to dynamically adjust the weights of base classifiers and adaptively select the optimal base classifiers for each unlabeled sample. Cross-validation results suggest that ESKmer and DEVS are essential for this classification task and could boost model performance. Independent testing results indicate that misORFPred outperforms the state-of-the-art methods. Furthermore, we execute misORFPerd on the genomes of various plant species and perform a thorough analysis of the predicted outcomes. Taken together, misORFPred is a powerful tool for identifying the translatable sORFs in plant pri-miRNAs and can provide highly trusted candidates for subsequent biological experiments.

据观察,初级微小RNA(pri-miRNA)含有可翻译的小开放阅读框(sORF),可作为独立元素编码肽。相关研究证明,sORFs 在调节生物性状表达方面具有重要意义。现有的预测 sORFs 编码潜力的方法经常忽略这些数据,或将其归类为阴性样本,从而阻碍了在 pri-miRNAs 中识别更多可翻译的 sORFs。有鉴于此,我们提出了一种名为 misORFPred 的新方法。具体来说,该方法设计了一种增强型可扩展 k-mer(ESKmer),可同时整合序列内的组成信息和序列间的距离信息,以提取核苷酸序列特征。在特征选择之后,将最优特征和多个机器学习分类器结合起来构建集合模型,其中提出了一种新设计的动态集合投票策略(DEVS),用于动态调整基础分类器的权重,并为每个未标记样本自适应地选择最优基础分类器。交叉验证结果表明,ESKmer 和 DEVS 对该分类任务至关重要,可以提高模型性能。独立测试结果表明,misORFPred 的性能优于最先进的方法。此外,我们还在不同植物物种的基因组上执行了 misORFPerd,并对预测结果进行了全面分析。总之,misORFPred 是识别植物 pri-miRNA 中可翻译 sORFs 的强大工具,可为后续生物学实验提供高度可信的候选者。
{"title":"misORFPred: A Novel Method to Mine Translatable sORFs in Plant Pri-miRNAs Using Enhanced Scalable k-mer and Dynamic Ensemble Voting Strategy.","authors":"Haibin Li, Jun Meng, Zhaowei Wang, Yushi Luan","doi":"10.1007/s12539-024-00661-8","DOIUrl":"https://doi.org/10.1007/s12539-024-00661-8","url":null,"abstract":"<p><p>The primary microRNAs (pri-miRNAs) have been observed to contain translatable small open reading frames (sORFs) that can encode peptides as an independent element. Relevant studies have proven that those of sORFs are of significance in regulating the expression of biological traits. The existing methods for predicting the coding potential of sORFs frequently overlook this data or categorize them as negative samples, impeding the identification of additional translatable sORFs in pri-miRNAs. In light of this, a novel method named misORFPred has been proposed. Specifically, an enhanced scalable k-mer (ESKmer) that simultaneously integrates the composition information within a sequence and distance information between sequences is designed to extract the nucleotide sequence features. After feature selection, the optimal features and several machine learning classifiers are combined to construct the ensemble model, where a newly devised dynamic ensemble voting strategy (DEVS) is proposed to dynamically adjust the weights of base classifiers and adaptively select the optimal base classifiers for each unlabeled sample. Cross-validation results suggest that ESKmer and DEVS are essential for this classification task and could boost model performance. Independent testing results indicate that misORFPred outperforms the state-of-the-art methods. Furthermore, we execute misORFPerd on the genomes of various plant species and perform a thorough analysis of the predicted outcomes. Taken together, misORFPred is a powerful tool for identifying the translatable sORFs in plant pri-miRNAs and can provide highly trusted candidates for subsequent biological experiments.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142464358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant lncRNA-miRNA Interaction Prediction Based on Counterfactual Heterogeneous Graph Attention Network. 基于反事实异质图注意网络的植物 lncRNA-miRNA 相互作用预测
IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-10-09 DOI: 10.1007/s12539-024-00652-9
Yu He, ZiLan Ning, XingHui Zhu, YinQiong Zhang, ChunHai Liu, SiWei Jiang, ZheMing Yuan, HongYan Zhang

Identifying interactions between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) provides a new perspective for understanding regulatory relationships in plant life processes. Recently, computational methods based on graph neural networks (GNNs) have been widely employed to predict lncRNA-miRNA interactions (LMIs), which compensate for the inadequacy of biological experiments. However, the low-semantic and noise of graph limit the performance of existing GNN-based methods. In this paper, we develop a novel Counterfactual Heterogeneous Graph Attention Network (CFHAN) to improve the robustness to against the noise and the prediction of plant LMIs. Firstly, we construct a real-world based lncRNA-miRNA (L-M) heterogeneous network. Secondly, CFHAN utilizes the node-level attention, the semantic-level attention, and the counterfactual links to enhance the node embeddings learning. Finally, these embeddings are used as inputs for Multilayer Perceptron (MLP) to predict the interactions between lncRNAs and miRNAs. Evaluating our method on a benchmark dataset of plant LMIs, CFHAN outperforms five state-of-the-art methods, and achieves an average AUC and average ACC of 0.9953 and 0.9733, respectively. This demonstrates CFHAN's ability to predict plant LMIs and exhibits promising cross-species prediction ability, offering valuable insights for experimental LMI researches.

识别长非编码 RNA(lncRNA)和 microRNA(miRNA)之间的相互作用为了解植物生命过程中的调控关系提供了一个新的视角。最近,基于图神经网络(GNNs)的计算方法被广泛用于预测lncRNA-miRNA相互作用(LMIs),弥补了生物实验的不足。然而,图的低语义性和噪声限制了现有基于 GNN 的方法的性能。本文开发了一种新颖的反事实异构图注意网络(Counterfactual Heterogeneous Graph Attention Network,CFHAN),以提高对噪声的鲁棒性和植物 LMIs 的预测能力。首先,我们构建了一个基于真实世界的 lncRNA-miRNA(L-M)异构网络。其次,CFHAN 利用节点级关注、语义级关注和反事实链接来增强节点嵌入学习。最后,这些嵌入作为多层感知器(MLP)的输入,用于预测 lncRNA 与 miRNA 之间的相互作用。在植物 LMIs 基准数据集上评估我们的方法时,CFHAN 优于五种最先进的方法,平均 AUC 和平均 ACC 分别达到 0.9953 和 0.9733。这证明了 CFHAN 预测植物 LMI 的能力,并展现了良好的跨物种预测能力,为 LMI 实验研究提供了宝贵的启示。
{"title":"Plant lncRNA-miRNA Interaction Prediction Based on Counterfactual Heterogeneous Graph Attention Network.","authors":"Yu He, ZiLan Ning, XingHui Zhu, YinQiong Zhang, ChunHai Liu, SiWei Jiang, ZheMing Yuan, HongYan Zhang","doi":"10.1007/s12539-024-00652-9","DOIUrl":"https://doi.org/10.1007/s12539-024-00652-9","url":null,"abstract":"<p><p>Identifying interactions between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) provides a new perspective for understanding regulatory relationships in plant life processes. Recently, computational methods based on graph neural networks (GNNs) have been widely employed to predict lncRNA-miRNA interactions (LMIs), which compensate for the inadequacy of biological experiments. However, the low-semantic and noise of graph limit the performance of existing GNN-based methods. In this paper, we develop a novel Counterfactual Heterogeneous Graph Attention Network (CFHAN) to improve the robustness to against the noise and the prediction of plant LMIs. Firstly, we construct a real-world based lncRNA-miRNA (L-M) heterogeneous network. Secondly, CFHAN utilizes the node-level attention, the semantic-level attention, and the counterfactual links to enhance the node embeddings learning. Finally, these embeddings are used as inputs for Multilayer Perceptron (MLP) to predict the interactions between lncRNAs and miRNAs. Evaluating our method on a benchmark dataset of plant LMIs, CFHAN outperforms five state-of-the-art methods, and achieves an average AUC and average ACC of 0.9953 and 0.9733, respectively. This demonstrates CFHAN's ability to predict plant LMIs and exhibits promising cross-species prediction ability, offering valuable insights for experimental LMI researches.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Interdisciplinary Sciences: Computational Life Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1