Promoters are important cis-regulatory elements for the regulation of gene expression, and their accurate predictions are crucial for elucidating the biological functions and potential mechanisms of genes. Many previous prokaryotic promoter prediction methods are encouraging in terms of the prediction performance, but most of them focus on the recognition of promoters in only one or a few bacterial species. Moreover, due to ignoring the promoter sequence motifs, the interpretability of predictions with existing methods is limited. In this work, we present a generalized method Prompt (Promoters in multiple prokaryotes) to predict promoters in 16 prokaryotes and improve the interpretability of prediction results. Prompt integrates three methods including RSK (Regression based on Selected k-mer), CL (Contrastive Learning) and MLP (Multilayer Perception), and employs a voting strategy to divide the datasets into high-confidence and low-confidence categories. Results on the promoter prediction tasks in 16 prokaryotes show that the accuracy (Accuracy, Matthews correlation coefficient) of Prompt is greater than 80% in highly credible datasets of 16 prokaryotes, and is greater than 90% in 12 prokaryotes, and Prompt performs the best compared with other existing methods. Moreover, by identifying promoter sequence motifs, Prompt can improve the interpretability of the predictions. Prompt is freely available at https://github.com/duqimeng/PromptPrompt , and will contribute to the research of promoters in prokaryote.
{"title":"Predicting Promoters in Multiple Prokaryotes with Prompt.","authors":"Qimeng Du, Yixue Guo, Junpeng Zhang, Fuping Lu, Chong Peng, Chichun Zhou","doi":"10.1007/s12539-024-00637-8","DOIUrl":"10.1007/s12539-024-00637-8","url":null,"abstract":"<p><p>Promoters are important cis-regulatory elements for the regulation of gene expression, and their accurate predictions are crucial for elucidating the biological functions and potential mechanisms of genes. Many previous prokaryotic promoter prediction methods are encouraging in terms of the prediction performance, but most of them focus on the recognition of promoters in only one or a few bacterial species. Moreover, due to ignoring the promoter sequence motifs, the interpretability of predictions with existing methods is limited. In this work, we present a generalized method Prompt (Promoters in multiple prokaryotes) to predict promoters in 16 prokaryotes and improve the interpretability of prediction results. Prompt integrates three methods including RSK (Regression based on Selected k-mer), CL (Contrastive Learning) and MLP (Multilayer Perception), and employs a voting strategy to divide the datasets into high-confidence and low-confidence categories. Results on the promoter prediction tasks in 16 prokaryotes show that the accuracy (Accuracy, Matthews correlation coefficient) of Prompt is greater than 80% in highly credible datasets of 16 prokaryotes, and is greater than 90% in 12 prokaryotes, and Prompt performs the best compared with other existing methods. Moreover, by identifying promoter sequence motifs, Prompt can improve the interpretability of the predictions. Prompt is freely available at https://github.com/duqimeng/PromptPrompt , and will contribute to the research of promoters in prokaryote.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"814-828"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-02DOI: 10.1007/s12539-024-00650-x
Xiongwen Quan, Xingyuan Ou, Li Gao, Wenya Yin, Guangyao Hou, Han Zhang
As a common disease, cardiovascular and cerebrovascular diseases pose a great harm threat to human wellness. Even using advanced and comprehensive treatment methods, there is still a high mortality rate. Arteriosclerosis, as an important factor reflecting the severity of cardiovascular and cerebrovascular diseases, is imperative to detect the arteriosclerotic retinopathy. However, the detection of arteriosclerosis retinopathy requires expensive and time-consuming manual evaluation, while end-to-end deep learning detection methods also need interpretable design to high light task-related features. Considering the importance of automatic arteriosclerotic retinopathy grading, we propose a segmentation and classification interaction network (SCINet). We propose a segmentation and classification interaction architecture for grading arteriosclerotic retinopathy. After IterNet is used to segment retinal vessel from original fundus images, the backbone feature extractor roughly extracts features from the segmented and original fundus arteriosclerosis images and further enhances them through the vessel aware module. The last classifier module generates fundus arteriosclerosis grading results. Specifically, the vessel aware module is designed to highlight the important areal vessel features segmented from original images by attention mechanism, thereby achieving information interaction. The attention mechanism selectively learns the vessel features of segmentation region information under the proposed interactive architecture, which leads to reweighting the extracted features and enhances significant feature information. Extensive experiments have confirmed the effect of our model. SCINet has the best performance on the task of arteriosclerotic retinopathy grading. Additionally, the CNN method is scalable to similar tasks by incorporating segmented images as auxiliary information.
{"title":"SCINet: A Segmentation and Classification Interaction CNN Method for Arteriosclerotic Retinopathy Grading.","authors":"Xiongwen Quan, Xingyuan Ou, Li Gao, Wenya Yin, Guangyao Hou, Han Zhang","doi":"10.1007/s12539-024-00650-x","DOIUrl":"10.1007/s12539-024-00650-x","url":null,"abstract":"<p><p>As a common disease, cardiovascular and cerebrovascular diseases pose a great harm threat to human wellness. Even using advanced and comprehensive treatment methods, there is still a high mortality rate. Arteriosclerosis, as an important factor reflecting the severity of cardiovascular and cerebrovascular diseases, is imperative to detect the arteriosclerotic retinopathy. However, the detection of arteriosclerosis retinopathy requires expensive and time-consuming manual evaluation, while end-to-end deep learning detection methods also need interpretable design to high light task-related features. Considering the importance of automatic arteriosclerotic retinopathy grading, we propose a segmentation and classification interaction network (SCINet). We propose a segmentation and classification interaction architecture for grading arteriosclerotic retinopathy. After IterNet is used to segment retinal vessel from original fundus images, the backbone feature extractor roughly extracts features from the segmented and original fundus arteriosclerosis images and further enhances them through the vessel aware module. The last classifier module generates fundus arteriosclerosis grading results. Specifically, the vessel aware module is designed to highlight the important areal vessel features segmented from original images by attention mechanism, thereby achieving information interaction. The attention mechanism selectively learns the vessel features of segmentation region information under the proposed interactive architecture, which leads to reweighting the extracted features and enhances significant feature information. Extensive experiments have confirmed the effect of our model. SCINet has the best performance on the task of arteriosclerotic retinopathy grading. Additionally, the CNN method is scalable to similar tasks by incorporating segmented images as auxiliary information.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"926-935"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-04DOI: 10.1007/s12539-024-00641-y
Hua Chai, Weizhen Deng, Junyu Wei, Ting Guan, Minfan He, Yong Liang, Le Li
Background: Accurate identification of cancer subtypes is crucial for disease prognosis evaluation and personalized patient management. Recent advances in computational methods have demonstrated that multi-omics data provides valuable insights into tumor molecular subtyping. However, the high dimensionality and small sample size of the data may result in ambiguous and overlapping cancer subtypes during clustering. In this study, we propose a novel contrastive-learning-based approach to address this issue. The proposed end-to-end deep learning method can extract crucial information from the multi-omics features by self-supervised learning for patient clustering.
Results: By applying our method to nine public cancer datasets, we have demonstrated superior performance compared to existing methods in separating patients with different survival outcomes (p < 0.05). To further evaluate the impact of various omics data on cancer survival, we developed an XGBoost classification model and found that mRNA had the highest importance score, followed by DNA methylation and miRNA. In the presented case study, our method successfully clustered subtypes and identified 14 cancer-related genes, of which 12 (85.7%) were validated through literature review.
Conclusions: Our findings demonstrate that our method is capable of identifying cancer subtypes that are both statistically and biologically significant. The code about COLCS is given at: https://github.com/Mercuriiio/COLCS .
{"title":"A Contrastive-Learning-Based Deep Neural Network for Cancer Subtyping by Integrating Multi-Omics Data.","authors":"Hua Chai, Weizhen Deng, Junyu Wei, Ting Guan, Minfan He, Yong Liang, Le Li","doi":"10.1007/s12539-024-00641-y","DOIUrl":"10.1007/s12539-024-00641-y","url":null,"abstract":"<p><strong>Background: </strong>Accurate identification of cancer subtypes is crucial for disease prognosis evaluation and personalized patient management. Recent advances in computational methods have demonstrated that multi-omics data provides valuable insights into tumor molecular subtyping. However, the high dimensionality and small sample size of the data may result in ambiguous and overlapping cancer subtypes during clustering. In this study, we propose a novel contrastive-learning-based approach to address this issue. The proposed end-to-end deep learning method can extract crucial information from the multi-omics features by self-supervised learning for patient clustering.</p><p><strong>Results: </strong>By applying our method to nine public cancer datasets, we have demonstrated superior performance compared to existing methods in separating patients with different survival outcomes (p < 0.05). To further evaluate the impact of various omics data on cancer survival, we developed an XGBoost classification model and found that mRNA had the highest importance score, followed by DNA methylation and miRNA. In the presented case study, our method successfully clustered subtypes and identified 14 cancer-related genes, of which 12 (85.7%) were validated through literature review.</p><p><strong>Conclusions: </strong>Our findings demonstrate that our method is capable of identifying cancer subtypes that are both statistically and biologically significant. The code about COLCS is given at: https://github.com/Mercuriiio/COLCS .</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"966-975"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142125654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-19DOI: 10.1007/s12539-024-00648-5
Ling Chu, Yanqing Su, Xiangzhen Zan, Wanmin Lin, Xiangyu Yao, Peng Xu, Wenbin Liu
Recent advancements in synthesis and sequencing techniques have made deoxyribonucleic acid (DNA) a promising alternative for next-generation digital storage. As it approaches practical application, ensuring the security of DNA-stored information has become a critical problem. Deniable encryption allows the decryption of different information from the same ciphertext, ensuring that the "plausible" fake information can be provided when users are coerced to reveal the real information. In this paper, we propose a deniable encryption method that uniquely leverages DNA noise channels. Specifically, true and fake messages are encrypted by two similar modulation carriers and subsequently obfuscated by inherent errors. Experiment results demonstrate that our method not only can conceal true information among fake ones indistinguishably, but also allow both the coercive adversary and the legitimate receiver to decrypt the intended information accurately. Further security analysis validates the resistance of our method against various typical attacks. Compared with conventional DNA cryptography methods based on complex biological operations, our method offers superior practicality and reliability, positioning it as an ideal solution for data encryption in future large-scale DNA storage applications.
合成和测序技术的最新进展使脱氧核糖核酸(DNA)成为下一代数字存储的理想选择。随着脱氧核糖核酸越来越接近实际应用,确保其存储信息的安全性已成为一个关键问题。可抵赖加密允许对同一密文中的不同信息进行解密,确保用户在被迫透露真实信息时,可以提供 "似是而非 "的假信息。在本文中,我们提出了一种独特利用 DNA 噪音通道的可抵赖加密方法。具体来说,真假信息通过两个相似的调制载波进行加密,然后通过固有误差进行混淆。实验结果表明,我们的方法不仅能将真实信息无差别地隐藏在虚假信息中,还能让胁迫对手和合法接收者准确解密预期信息。进一步的安全性分析验证了我们的方法可以抵御各种典型攻击。与基于复杂生物操作的传统 DNA 密码学方法相比,我们的方法具有更高的实用性和可靠性,是未来大规模 DNA 存储应用中数据加密的理想解决方案。
{"title":"A Deniable Encryption Method for Modulation-Based DNA Storage.","authors":"Ling Chu, Yanqing Su, Xiangzhen Zan, Wanmin Lin, Xiangyu Yao, Peng Xu, Wenbin Liu","doi":"10.1007/s12539-024-00648-5","DOIUrl":"10.1007/s12539-024-00648-5","url":null,"abstract":"<p><p>Recent advancements in synthesis and sequencing techniques have made deoxyribonucleic acid (DNA) a promising alternative for next-generation digital storage. As it approaches practical application, ensuring the security of DNA-stored information has become a critical problem. Deniable encryption allows the decryption of different information from the same ciphertext, ensuring that the \"plausible\" fake information can be provided when users are coerced to reveal the real information. In this paper, we propose a deniable encryption method that uniquely leverages DNA noise channels. Specifically, true and fake messages are encrypted by two similar modulation carriers and subsequently obfuscated by inherent errors. Experiment results demonstrate that our method not only can conceal true information among fake ones indistinguishably, but also allow both the coercive adversary and the legitimate receiver to decrypt the intended information accurately. Further security analysis validates the resistance of our method against various typical attacks. Compared with conventional DNA cryptography methods based on complex biological operations, our method offers superior practicality and reliability, positioning it as an ideal solution for data encryption in future large-scale DNA storage applications.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"872-881"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141999872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-07-02DOI: 10.1007/s12539-024-00634-x
Nicolás J Gallego-Molina, Andrés Ortiz, Juan E Arco, Francisco J Martinez-Murcia, Wai Lok Woo
The electrical activity of the neural processes involved in cognitive functions is captured in EEG signals, allowing the exploration of the integration and coordination of neuronal oscillations across multiple spatiotemporal scales. We have proposed a novel approach that combines the transformation of EEG signal into image sequences, considering cross-frequency phase synchronisation (CFS) dynamics involved in low-level auditory processing, with the development of a two-stage deep learning model for the detection of developmental dyslexia (DD). This deep learning model exploits spatial and temporal information preserved in the image sequences to find discriminative patterns of phase synchronisation over time achieving a balanced accuracy of up to 83%. This result supports the existence of differential brain synchronisation dynamics between typical and dyslexic seven-year-old readers. Furthermore, we have obtained interpretable representations using a novel feature mask to link the most relevant regions during classification with the cognitive processes attributed to normal reading and those corresponding to compensatory mechanisms found in dyslexia.
{"title":"Unraveling Brain Synchronisation Dynamics by Explainable Neural Networks using EEG Signals: Application to Dyslexia Diagnosis.","authors":"Nicolás J Gallego-Molina, Andrés Ortiz, Juan E Arco, Francisco J Martinez-Murcia, Wai Lok Woo","doi":"10.1007/s12539-024-00634-x","DOIUrl":"10.1007/s12539-024-00634-x","url":null,"abstract":"<p><p>The electrical activity of the neural processes involved in cognitive functions is captured in EEG signals, allowing the exploration of the integration and coordination of neuronal oscillations across multiple spatiotemporal scales. We have proposed a novel approach that combines the transformation of EEG signal into image sequences, considering cross-frequency phase synchronisation (CFS) dynamics involved in low-level auditory processing, with the development of a two-stage deep learning model for the detection of developmental dyslexia (DD). This deep learning model exploits spatial and temporal information preserved in the image sequences to find discriminative patterns of phase synchronisation over time achieving a balanced accuracy of up to 83%. This result supports the existence of differential brain synchronisation dynamics between typical and dyslexic seven-year-old readers. Furthermore, we have obtained interpretable representations using a novel feature mask to link the most relevant regions during classification with the cognitive processes attributed to normal reading and those corresponding to compensatory mechanisms found in dyslexia.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"1005-1018"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512920/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141491790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-07-07DOI: 10.1007/s12539-024-00640-z
Guolun Zhong, Hui Liu, Lei Deng
The emergence of antibiotic-resistant microbes raises a pressing demand for novel alternative treatments. One promising alternative is the antimicrobial peptides (AMPs), a class of innate immunity mediators within the therapeutic peptide realm. AMPs offer salient advantages such as high specificity, cost-effective synthesis, and reduced toxicity. Although some computational methodologies have been proposed to identify potential AMPs with the rapid development of artificial intelligence techniques, there is still ample room to improve their performance. This study proposes a predictive framework which ensembles deep learning and statistical learning methods to screen peptides with antimicrobial activity. We integrate multiple LightGBM classifiers and convolution neural networks which leverages various predicted sequential, structural and physicochemical properties from their residue sequences extracted by diverse machine learning paradigms. Comparative experiments exhibit that our method outperforms other state-of-the-art approaches on an independent test dataset, in terms of representative capability measures. Besides, we analyse the discrimination quality under different varieties of attribute information and it reveals that combination of multiple features could improve prediction. In addition, a case study is carried out to illustrate the exemplary favorable identification effect. We establish a web application at http://amp.denglab.org to provide convenient usage of our proposal and make the predictive framework, source code, and datasets publicly accessible at https://github.com/researchprotein/amp .
{"title":"Ensemble Machine Learning and Predicted Properties Promote Antimicrobial Peptide Identification.","authors":"Guolun Zhong, Hui Liu, Lei Deng","doi":"10.1007/s12539-024-00640-z","DOIUrl":"10.1007/s12539-024-00640-z","url":null,"abstract":"<p><p>The emergence of antibiotic-resistant microbes raises a pressing demand for novel alternative treatments. One promising alternative is the antimicrobial peptides (AMPs), a class of innate immunity mediators within the therapeutic peptide realm. AMPs offer salient advantages such as high specificity, cost-effective synthesis, and reduced toxicity. Although some computational methodologies have been proposed to identify potential AMPs with the rapid development of artificial intelligence techniques, there is still ample room to improve their performance. This study proposes a predictive framework which ensembles deep learning and statistical learning methods to screen peptides with antimicrobial activity. We integrate multiple LightGBM classifiers and convolution neural networks which leverages various predicted sequential, structural and physicochemical properties from their residue sequences extracted by diverse machine learning paradigms. Comparative experiments exhibit that our method outperforms other state-of-the-art approaches on an independent test dataset, in terms of representative capability measures. Besides, we analyse the discrimination quality under different varieties of attribute information and it reveals that combination of multiple features could improve prediction. In addition, a case study is carried out to illustrate the exemplary favorable identification effect. We establish a web application at http://amp.denglab.org to provide convenient usage of our proposal and make the predictive framework, source code, and datasets publicly accessible at https://github.com/researchprotein/amp .</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"951-965"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141544779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-16DOI: 10.1007/s12539-024-00646-7
Chen Zhang, Yongqiang Nie, Bufang Xu, Chunlan Mu, Geng G Tian, Xiaoyong Li, Weiwei Cheng, Aijun Zhang, Dali Li, Ji Wu
Abnormal interaction between granulosa cells and oocytes causes disordered development of ovarian follicles. However, the interactions between oocytes and cumulus granulosa cells (CGs), oocytes and mural granulosa cells (MGs), and CGs and MGs remain to be fully explored. Using single-cell RNA-sequencing (scRNA-seq), we determined the transcriptional profiles of oocytes, CGs and MGs in antral follicles. Analysis of scRNA-seq data revealed that CGs may regulate follicular development through the BMP15-KITL-KIT-PI3K-ARF6 pathway with elevated expression of luteinizing hormone receptor (LHR). Because internalization of the LHR is regulated by Arf6, we constructed LHRN316S mice by CRISPR/Cas9 to further explore mechanisms of follicular development and novel treatment strategies for female infertility. Ovaries of LHRN316S mice exhibited reduced numbers of corpora lutea and ovulation. The LHRN316S mice had a reduced rate of oocyte maturation in vitro and decreased serum progesterone levels. Mating LHRN316S female mice with ICR wild type male mice revealed that the infertility rate of LHRN316S mice was 21.4% (3/14). Litter sizes from LHRN316S mice were smaller than those from control wild type female mice. The oocytes from LHRN316S mice had an increased rate of maturation in vitro after progesterone administration in vitro. Furthermore, progesterone treated LHRN316S mice produced offspring numbers per litter equivalent to WT mice. These findings provide key insights into cellular interactions in ovarian follicles and provide important clues for infertility treatment.
{"title":"Luteinizing Hormone Receptor Mutation (LHR<sup>N316S</sup>) Causes Abnormal Follicular Development Revealed by Follicle Single-Cell Analysis and CRISPR/Cas9.","authors":"Chen Zhang, Yongqiang Nie, Bufang Xu, Chunlan Mu, Geng G Tian, Xiaoyong Li, Weiwei Cheng, Aijun Zhang, Dali Li, Ji Wu","doi":"10.1007/s12539-024-00646-7","DOIUrl":"10.1007/s12539-024-00646-7","url":null,"abstract":"<p><p>Abnormal interaction between granulosa cells and oocytes causes disordered development of ovarian follicles. However, the interactions between oocytes and cumulus granulosa cells (CGs), oocytes and mural granulosa cells (MGs), and CGs and MGs remain to be fully explored. Using single-cell RNA-sequencing (scRNA-seq), we determined the transcriptional profiles of oocytes, CGs and MGs in antral follicles. Analysis of scRNA-seq data revealed that CGs may regulate follicular development through the BMP15-KITL-KIT-PI3K-ARF6 pathway with elevated expression of luteinizing hormone receptor (LHR). Because internalization of the LHR is regulated by Arf6, we constructed LHR<sup>N316S</sup> mice by CRISPR/Cas9 to further explore mechanisms of follicular development and novel treatment strategies for female infertility. Ovaries of LHR<sup>N316S</sup> mice exhibited reduced numbers of corpora lutea and ovulation. The LHR<sup>N316S</sup> mice had a reduced rate of oocyte maturation in vitro and decreased serum progesterone levels. Mating LHR<sup>N316S</sup> female mice with ICR wild type male mice revealed that the infertility rate of LHR<sup>N316S</sup> mice was 21.4% (3/14). Litter sizes from LHR<sup>N316S</sup> mice were smaller than those from control wild type female mice. The oocytes from LHR<sup>N316S</sup> mice had an increased rate of maturation in vitro after progesterone administration in vitro. Furthermore, progesterone treated LHR<sup>N316S</sup> mice produced offspring numbers per litter equivalent to WT mice. These findings provide key insights into cellular interactions in ovarian follicles and provide important clues for infertility treatment.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"976-989"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512921/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141987894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19DOI: 10.1007/s12539-024-00670-7
Sizhe Zhang, Peng Han, Haiqing Sun, Ying Su, Chen Chen, Cheng Chen, Jinyao Li, Xiaoyi Lv, Xuecong Tian, Yandan Xu
Yinchenhao Decoction (YCHD), a classic formula in traditional Chinese medicine, is believed to have the potential to treat liver diseases by modulating the Toll-like receptor 4 (TLR4) target. Therefore, a thorough exploration of the effective components and therapeutic mechanisms targeting TLR4 in YCHD is a promising strategy for liver diseases. In this study, the AIGO-DTI deep learning framework was proposed to predict the targeting probability of major components in YCHD for TLR4. Comparative evaluations with four machine learning models (RF, SVM, KNN, XGBoost) and two deep learning models (GCN, GAT) demonstrated that the AIGO-DTI framework exhibited the best overall performance, with Recall and AUC reaching 0.968 and 0.991, respectively.This study further utilized the AIGO-DTI model to identify the potential impact of Isoscopoletin, a major component of YCHD, on TLR4. Subsequent wet experiments revealed that Isoscopoletin could influence the maturation of Dendritic Cells (DCs) induced by Lipopolysaccharide (LPS) through TLR4, suggesting its therapeutic potential for liver diseases, especially hepatitis. Additionally, based on the AIGO-DTI framework, this study established an online platform named TLR4-Predict to facilitate domain experts in discovering more compounds related to TLR4. Overall, the proposed AIGO-DTI framework accurately predicts unique compounds in YCHD that interact with TLR4, providing new insights for identifying and screening lead compounds targeting TLR4.
{"title":"Discovery of Active Ingredient of Yinchenhao Decoction Targeting TLR4 for Hepatic Inflammatory Diseases Based on Deep Learning Approach.","authors":"Sizhe Zhang, Peng Han, Haiqing Sun, Ying Su, Chen Chen, Cheng Chen, Jinyao Li, Xiaoyi Lv, Xuecong Tian, Yandan Xu","doi":"10.1007/s12539-024-00670-7","DOIUrl":"10.1007/s12539-024-00670-7","url":null,"abstract":"<p><p>Yinchenhao Decoction (YCHD), a classic formula in traditional Chinese medicine, is believed to have the potential to treat liver diseases by modulating the Toll-like receptor 4 (TLR4) target. Therefore, a thorough exploration of the effective components and therapeutic mechanisms targeting TLR4 in YCHD is a promising strategy for liver diseases. In this study, the AIGO-DTI deep learning framework was proposed to predict the targeting probability of major components in YCHD for TLR4. Comparative evaluations with four machine learning models (RF, SVM, KNN, XGBoost) and two deep learning models (GCN, GAT) demonstrated that the AIGO-DTI framework exhibited the best overall performance, with Recall and AUC reaching 0.968 and 0.991, respectively.This study further utilized the AIGO-DTI model to identify the potential impact of Isoscopoletin, a major component of YCHD, on TLR4. Subsequent wet experiments revealed that Isoscopoletin could influence the maturation of Dendritic Cells (DCs) induced by Lipopolysaccharide (LPS) through TLR4, suggesting its therapeutic potential for liver diseases, especially hepatitis. Additionally, based on the AIGO-DTI framework, this study established an online platform named TLR4-Predict to facilitate domain experts in discovering more compounds related to TLR4. Overall, the proposed AIGO-DTI framework accurately predicts unique compounds in YCHD that interact with TLR4, providing new insights for identifying and screening lead compounds targeting TLR4.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142667815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1007/s12539-024-00669-0
Wanjing Zhang, Mingyang Zhang, Min Zhu
Enhancer-promoter interactions (EPIs) are crucial in gene transcription regulation and cell differentiation. Traditional biological experiments are costly and time-consuming, motivating the development of computational prediction methods. However, existing EPI prediction methods inadequately capture the intricate direct interactions between enhancer and promoter sequences, which limits their prediction performance to some extent. In this work, we propose an innovative attention-based approach RAEPI, which uses convolutional neural networks to extract initial features of enhancers and promoters, combined with a specially designed Restricted Attention mechanism with Query-Key-Value constrained to simulate the interactions between them for further feature extraction. To improve cross-cell line prediction, we employ a transfer learning strategy for pre-training. Furthermore, we extracted sequence motifs to evaluate the RAEPI's effectiveness from a visualization perspective. Experimental results show that RAEPI achieves competitive prediction performance to existing methods on the benchmark dataset.
{"title":"RAEPI: Predicting Enhancer-Promoter Interactions Based on Restricted Attention Mechanism.","authors":"Wanjing Zhang, Mingyang Zhang, Min Zhu","doi":"10.1007/s12539-024-00669-0","DOIUrl":"https://doi.org/10.1007/s12539-024-00669-0","url":null,"abstract":"<p><p>Enhancer-promoter interactions (EPIs) are crucial in gene transcription regulation and cell differentiation. Traditional biological experiments are costly and time-consuming, motivating the development of computational prediction methods. However, existing EPI prediction methods inadequately capture the intricate direct interactions between enhancer and promoter sequences, which limits their prediction performance to some extent. In this work, we propose an innovative attention-based approach RAEPI, which uses convolutional neural networks to extract initial features of enhancers and promoters, combined with a specially designed Restricted Attention mechanism with Query-Key-Value constrained to simulate the interactions between them for further feature extraction. To improve cross-cell line prediction, we employ a transfer learning strategy for pre-training. Furthermore, we extracted sequence motifs to evaluate the RAEPI's effectiveness from a visualization perspective. Experimental results show that RAEPI achieves competitive prediction performance to existing methods on the benchmark dataset.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The development of peptide drug is hindered by the risk of amyloidogenic aggregation; if peptides tend to aggregate in this manner, they may be unsuitable for drug design. Computational methods aimed at predicting amyloidogenic sequences often face challenges in extracting high-quality features, and their predictive performance can be enchanced. To surmount these challenges, iAmyP was introduced as a specialized computational tool designed for predicting amyloidogenic hexapeptides. Utilizing multi-view learning, iAmyP incorporated sequence, structural, and evolutionary features, performing feature selection and feature fusion through recursive feature elimination and attention mechanisms. This amalgamation of features and subsequent feature selection and fusion lead to optimal performance facilitated by an optimization algorithm based on sequence least squares programming. Notably, iAmyP exhibited robust generalization for peptides with lengths of 7-10 amino acids. The role of hydrophobic amino acids in the aggregation process is critical, and a thorough analysis have significantly enhanced our insight into their significance in amyloidogenic hexapeptides. This tool represented an advancement in the development of peptide therapeutics by providing an understanding of amyloidogenic aggregation, establishing itself as a valuable framework for assessing amyloidogenic sequences. The data and code can be freely accessed at https://github.com/xialab-ahu/iAmyP .
{"title":"iAmyP: A Multi-view Learning for Amyloidogenic Hexapeptides Identification Based on Sequence Least Squares Programming.","authors":"Jinling Cai, Jianping Zhao, Yannan Bin, Junfeng Xia, Chunhou Zheng","doi":"10.1007/s12539-024-00666-3","DOIUrl":"https://doi.org/10.1007/s12539-024-00666-3","url":null,"abstract":"<p><p>The development of peptide drug is hindered by the risk of amyloidogenic aggregation; if peptides tend to aggregate in this manner, they may be unsuitable for drug design. Computational methods aimed at predicting amyloidogenic sequences often face challenges in extracting high-quality features, and their predictive performance can be enchanced. To surmount these challenges, iAmyP was introduced as a specialized computational tool designed for predicting amyloidogenic hexapeptides. Utilizing multi-view learning, iAmyP incorporated sequence, structural, and evolutionary features, performing feature selection and feature fusion through recursive feature elimination and attention mechanisms. This amalgamation of features and subsequent feature selection and fusion lead to optimal performance facilitated by an optimization algorithm based on sequence least squares programming. Notably, iAmyP exhibited robust generalization for peptides with lengths of 7-10 amino acids. The role of hydrophobic amino acids in the aggregation process is critical, and a thorough analysis have significantly enhanced our insight into their significance in amyloidogenic hexapeptides. This tool represented an advancement in the development of peptide therapeutics by providing an understanding of amyloidogenic aggregation, establishing itself as a valuable framework for assessing amyloidogenic sequences. The data and code can be freely accessed at https://github.com/xialab-ahu/iAmyP .</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}