J. Reiffers, Sebastian Albrecht, O. Hälker, Andreas Lederhuber, B. Mican, Francisco-Javier Veredas
The wide field imager (WFI) is one of the two focal plane instruments on-board the Athena x-ray astronomy mission, the second large-class mission of the European Space Agency. Athena is planned to be launched in 2034 and will be stationed in Lagrange point L1, from where it will perform observations in the x-ray spectrum, from 0.2 keV to 15 keV. The frame processing module (FPM) is part of the detector electronics (DE) of the Athena WFI, which has the main task of reading out the WFI detector array, digitizing it, performing real-time frame processing, and event extraction, using offset correction and threshold maps. The high number of 512×512 pixels on each large detector (LD), the fast readout cycle (5 ms) and the complex sequence of digital signals required to read out the WFI detectors present some stringent design requirements on the electronics used in the FPM as well as on the programmable logic implemented in the selected field programmable gate array (FPGA). This paper describes the hardware design of the FPM and the preliminary engineering model that has already been manufactured. Given the criticality of the FPM, this early development model already includes most of the flight-like electronics based on state-of-the-art radiation hard ADCs, FPGAs and SSRAM memories. Specific design challenges are addressed related to the electronic implementation of the FPM, which already fulfils most of the design rules according the ECSS standards.
{"title":"Hardware development of Athena WFI frame processing module","authors":"J. Reiffers, Sebastian Albrecht, O. Hälker, Andreas Lederhuber, B. Mican, Francisco-Javier Veredas","doi":"10.1117/12.2627846","DOIUrl":"https://doi.org/10.1117/12.2627846","url":null,"abstract":"The wide field imager (WFI) is one of the two focal plane instruments on-board the Athena x-ray astronomy mission, the second large-class mission of the European Space Agency. Athena is planned to be launched in 2034 and will be stationed in Lagrange point L1, from where it will perform observations in the x-ray spectrum, from 0.2 keV to 15 keV. The frame processing module (FPM) is part of the detector electronics (DE) of the Athena WFI, which has the main task of reading out the WFI detector array, digitizing it, performing real-time frame processing, and event extraction, using offset correction and threshold maps. The high number of 512×512 pixels on each large detector (LD), the fast readout cycle (5 ms) and the complex sequence of digital signals required to read out the WFI detectors present some stringent design requirements on the electronics used in the FPM as well as on the programmable logic implemented in the selected field programmable gate array (FPGA). This paper describes the hardware design of the FPM and the preliminary engineering model that has already been manufactured. Given the criticality of the FPM, this early development model already includes most of the flight-like electronics based on state-of-the-art radiation hard ADCs, FPGAs and SSRAM memories. Specific design challenges are addressed related to the electronic implementation of the FPM, which already fulfils most of the design rules according the ECSS standards.","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"513 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133600177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An X-ray interferometer is a promising technology to achieve an unprecedentedly high-spatial resolution, which provides us further understandings of astrophysical objects and the Universe. The most critical key to realize a space telescope of X-ray interferometry is downsizing the optics, and one method for that is to develop an X-ray sensor with high position accuracy that can detect narrow X-ray interference fringes. For this purpose, we are developing a position-sensitive X-ray sensor by applying the Transition-Edge Sensor (TES) technology. We designed a prototype sensor as two Ti/Au (40/90 nm) TES pixels (140 × 140 μm) connected by a single oblong Au absorber (1400 μm × 20 μm × 1 μm) aiming the sub-micrometer position accuracy. Depending on an X-ray incident position, a photon energy is divided into the two TES pixels causing individual pulses. By measuring the difference of rising edges of the two pulses, we can determine the photon-incident position. We fabricated the prototype sensor, and performed an X-ray irradiation experiment by using an 55Fe radioactive source. As a result, we successfully detected pulses with different trigger times which reflect different rising edges up to ∼ 5 μsec, corresponding to the X-ray photon incident positions up to ∼ 0.5 mm from the center of the absorber. Here, the position accuracy depends on the accuracy of determining the rising edges. The response of our sensor is observed as ∼ 0.5 mm/5 μsec, indicating that a sub-micrometer position determination could be achieved by observing rising edges with nsec accuracy as a future prospect. In this paper, we introduce the design, fabrication, and X-ray irradiation experiment of this new position-sensitive X-ray sensor.
{"title":"Position-sensitive transition edge sensor with sub-micrometer accuracy developed for future x-ray interferometry mission","authors":"H. Noda, T. Hayashi, S. Yamada, D. Takei","doi":"10.1117/12.2629086","DOIUrl":"https://doi.org/10.1117/12.2629086","url":null,"abstract":"An X-ray interferometer is a promising technology to achieve an unprecedentedly high-spatial resolution, which provides us further understandings of astrophysical objects and the Universe. The most critical key to realize a space telescope of X-ray interferometry is downsizing the optics, and one method for that is to develop an X-ray sensor with high position accuracy that can detect narrow X-ray interference fringes. For this purpose, we are developing a position-sensitive X-ray sensor by applying the Transition-Edge Sensor (TES) technology. We designed a prototype sensor as two Ti/Au (40/90 nm) TES pixels (140 × 140 μm) connected by a single oblong Au absorber (1400 μm × 20 μm × 1 μm) aiming the sub-micrometer position accuracy. Depending on an X-ray incident position, a photon energy is divided into the two TES pixels causing individual pulses. By measuring the difference of rising edges of the two pulses, we can determine the photon-incident position. We fabricated the prototype sensor, and performed an X-ray irradiation experiment by using an 55Fe radioactive source. As a result, we successfully detected pulses with different trigger times which reflect different rising edges up to ∼ 5 μsec, corresponding to the X-ray photon incident positions up to ∼ 0.5 mm from the center of the absorber. Here, the position accuracy depends on the accuracy of determining the rising edges. The response of our sensor is observed as ∼ 0.5 mm/5 μsec, indicating that a sub-micrometer position determination could be achieved by observing rising edges with nsec accuracy as a future prospect. In this paper, we introduce the design, fabrication, and X-ray irradiation experiment of this new position-sensitive X-ray sensor.","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128288223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Marrone, J. Aguirre, J. Bracks, C. Bradford, Brockton S. Brendal, B. Bumble, A. J. Corso, M. Devlin, N. Emerson, J. Filippini, Jianyang Fu, V. Gasho, C. Groppi, S. Hailey-Dunsheath, J. Hoh, M. Hollister, R. Janssen, Dylan Joralmon, R. Keenan, Lun Liu, I. Lowe, P. Mauskopf, E. Mayer, R. Nie, Vesal Razavimaleki, Joseph G. Redford, Talia Saeid, I. Trumper, J. Vieira
The Terahertz Intensity Mapper (TIM) is a balloon-borne far-infrared imaging spectrometer designed to characterize the star formation history of the universe. In its Antarctic science flight, TIM will map the redshifted 158um line of ionized carbon over the redshift range 0.5-1.7 (lookback times of 5-10 Gyr). TIM will spectroscopically detect ~100 galaxies, determine the star formation rate history over this time interval through line intensity mapping, and measure the stacked CII emission from galaxies in its well-studied target fields (GOODS-S, SPT Deep Field). TIM consists of a 2-meter telescope feeding two grating spectrometers that that cover 240-420um at R~250 across a 1.3deg field of view, detected with 7200 kinetic inductance detectors and sampled through a novel RF system-on-chip readout. TIM will serve as an important scientific instrument, accessing wavelengths that cannot easily be studied from the ground, and as a testbed for future FIR space technology.
太赫兹强度绘图仪(TIM)是一种气球载远红外成像光谱仪,旨在描述宇宙恒星形成历史。在其南极科学飞行中,TIM将在红移0.5-1.7(回望时间为5-10 Gyr)范围内绘制电离碳的158um红移线。TIM将对约100个星系进行光谱探测,通过线强度映射确定这段时间内恒星形成速率的历史,并在其研究充分的目标场(GOODS-S, SPT Deep Field)中测量星系的堆叠CII发射。TIM由一个2米的望远镜提供两个光栅光谱仪,在R~250下覆盖240-420um,横跨1.3°视场,通过7200个动态电感探测器进行检测,并通过新颖的射频片上系统读出器进行采样。TIM将作为一种重要的科学仪器,获取不容易从地面研究的波长,并作为未来FIR空间技术的试验台。
{"title":"The terahertz intensity mapper: a balloon-borne imaging spectrometer for galaxy evolution","authors":"D. Marrone, J. Aguirre, J. Bracks, C. Bradford, Brockton S. Brendal, B. Bumble, A. J. Corso, M. Devlin, N. Emerson, J. Filippini, Jianyang Fu, V. Gasho, C. Groppi, S. Hailey-Dunsheath, J. Hoh, M. Hollister, R. Janssen, Dylan Joralmon, R. Keenan, Lun Liu, I. Lowe, P. Mauskopf, E. Mayer, R. Nie, Vesal Razavimaleki, Joseph G. Redford, Talia Saeid, I. Trumper, J. Vieira","doi":"10.1117/12.2630644","DOIUrl":"https://doi.org/10.1117/12.2630644","url":null,"abstract":"The Terahertz Intensity Mapper (TIM) is a balloon-borne far-infrared imaging spectrometer designed to characterize the star formation history of the universe. In its Antarctic science flight, TIM will map the redshifted 158um line of ionized carbon over the redshift range 0.5-1.7 (lookback times of 5-10 Gyr). TIM will spectroscopically detect ~100 galaxies, determine the star formation rate history over this time interval through line intensity mapping, and measure the stacked CII emission from galaxies in its well-studied target fields (GOODS-S, SPT Deep Field). TIM consists of a 2-meter telescope feeding two grating spectrometers that that cover 240-420um at R~250 across a 1.3deg field of view, detected with 7200 kinetic inductance detectors and sampled through a novel RF system-on-chip readout. TIM will serve as an important scientific instrument, accessing wavelengths that cannot easily be studied from the ground, and as a testbed for future FIR space technology.","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130031458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Grove, C. C. Cheung, M. Kerr, L. Mitchell, B. Phlips, R. Woolf, E. Wulf, C. Wilson-Hodge, D. Kocevski, M. Briggs, J. Perkins
In this paper we describe the characterization of the Glowbug instrument. Glowbug is a gamma-ray telescope for gamma ray bursts (GRBs) and other transients in the 50 keV to 2 MeV band funded by the NASA Astrophysics Research and Analysis (APRA) program. Built by the U.S. Naval Research Laboratory, the instrument will be launched to the International Space Station (ISS) by the Department of Defense (DOD) Space Test Program (STP) in early 2023. Glowbug’s primary science objective is the detection and localization of short GRBs, which are the result of mergers of stellar binaries involving a neutron star with either another neutron star or a black hole. While the instrument is designed to complement existing GRB detection systems, it serves as a technology demonstrator for future networks of sensitive, low-cost gamma-ray transient detectors that provide all-sky coverage and improved localization of such events. Of greatest interest are the binary neutron star systems within the detection horizon of ground-based gravitational-wave interferometers. In a full mission life, Glowbug will detect dozens of short GRBs and provide burst spectra, light curves, and positions for gamma-ray context in multi-wavelength and multi-messenger studies of these merger events. We will present the current state of Glowbug, which will include the hardware development, calibration, environmental testing, simulations, and expected on-orbit sensitivity.
{"title":"Characterization of Glowbug: a gamma-ray telescope for bursts and other transients","authors":"J. Grove, C. C. Cheung, M. Kerr, L. Mitchell, B. Phlips, R. Woolf, E. Wulf, C. Wilson-Hodge, D. Kocevski, M. Briggs, J. Perkins","doi":"10.1117/12.2630543","DOIUrl":"https://doi.org/10.1117/12.2630543","url":null,"abstract":"In this paper we describe the characterization of the Glowbug instrument. Glowbug is a gamma-ray telescope for gamma ray bursts (GRBs) and other transients in the 50 keV to 2 MeV band funded by the NASA Astrophysics Research and Analysis (APRA) program. Built by the U.S. Naval Research Laboratory, the instrument will be launched to the International Space Station (ISS) by the Department of Defense (DOD) Space Test Program (STP) in early 2023. Glowbug’s primary science objective is the detection and localization of short GRBs, which are the result of mergers of stellar binaries involving a neutron star with either another neutron star or a black hole. While the instrument is designed to complement existing GRB detection systems, it serves as a technology demonstrator for future networks of sensitive, low-cost gamma-ray transient detectors that provide all-sky coverage and improved localization of such events. Of greatest interest are the binary neutron star systems within the detection horizon of ground-based gravitational-wave interferometers. In a full mission life, Glowbug will detect dozens of short GRBs and provide burst spectra, light curves, and positions for gamma-ray context in multi-wavelength and multi-messenger studies of these merger events. We will present the current state of Glowbug, which will include the hardware development, calibration, environmental testing, simulations, and expected on-orbit sensitivity.","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"94 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125240333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Madsen, W. Baumgartner, Jeffrey R. Kegley, Ernie Wright, E. Breunig, V. Burwitz, I. Ferreira, A. Ptak
The x-ray and cryogenic facility is the baseline x-ray performance verification and calibration facility for the mirror demonstrator (MAMD), the qualification module (QM), and the flight module (FM) of the ATHENA ESA L-class mission. The ATHENA mirror will be the largest x-ray optic ever built, and due to its size and segmented nature it can only be partially illuminated during testing and calibration. Here we explore what this means for the method and procedure to align the mirror and obtain the effective area, point spread function, and focal length at the XRCF with raytracing and simulation. We will discuss the effects of gravity on such a large and heavy mirror, and investigate the challenge of stitching results together from different sectors due to sub-aperture illumination.
x射线和低温设备是ATHENA ESA l级任务的镜像演示器(MAMD)、鉴定模块(QM)和飞行模块(FM)的基线x射线性能验证和校准设备。雅典娜反射镜将是迄今为止建造的最大的x射线光学系统,由于其尺寸和分段性质,它在测试和校准期间只能部分照明。在这里,我们探讨了这意味着什么方法和程序,以对准镜面,并获得有效面积,点扩散函数,并在XRCF与射线追踪和模拟焦距。我们将讨论重力对如此大而重的镜子的影响,并研究由于子孔径照明而将不同扇区的结果拼接在一起的挑战。
{"title":"Simulations of the ATHENA performance verification testing at XRCF","authors":"K. Madsen, W. Baumgartner, Jeffrey R. Kegley, Ernie Wright, E. Breunig, V. Burwitz, I. Ferreira, A. Ptak","doi":"10.1117/12.2630616","DOIUrl":"https://doi.org/10.1117/12.2630616","url":null,"abstract":"The x-ray and cryogenic facility is the baseline x-ray performance verification and calibration facility for the mirror demonstrator (MAMD), the qualification module (QM), and the flight module (FM) of the ATHENA ESA L-class mission. The ATHENA mirror will be the largest x-ray optic ever built, and due to its size and segmented nature it can only be partially illuminated during testing and calibration. Here we explore what this means for the method and procedure to align the mirror and obtain the effective area, point spread function, and focal length at the XRCF with raytracing and simulation. We will discuss the effects of gravity on such a large and heavy mirror, and investigate the challenge of stitching results together from different sectors due to sub-aperture illumination.","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130914459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Woodruff, C. Neiner, R. Casini, G. Vasudevan, T. Hull, P. Scowen
The Polstar NASA medium explorer (MIDEX) design configuration and implementation is strongly driven by the requirement to measure the state of polarization of stellar objects using a space-based sensor. Constraints include, but are not limited to, symmetry of geometry and coatings of the collecting aperture, angle of incidence at optical surfaces, coating uniformity, line of sight jitter and drift, orbit properties, thermal stability, and ground calibration. The Polstar MIDEX will observe scientifically interesting stars. Polstar will simultaneously measure all four Stokes parameters (I, Q, U, V) to high accuracy and precision (~0.001%) of the Stokes vector at high spectral resolving power. The 600-mm diameter aperture telescope images a selected star at the entrance slit of a spectrometer. Polstar offers two spectral channels within one spectrometer: a Far UV 122 nm to 200 nm Channel 1 with R~30K spectral resolving power and a low spectral resolution in Channel 2 channel covering 180 nm to 320 nm with R ~ 120 to 4K and spectroscopy over 115 nm to ~1,000nm. Channel 1 uses a cross-dispersed echelle spectrometer design. Channel 2 achieves its spectral dispersion with a MgF2 prism disperser. The two channels share a common array detector. The spectrometer includes rotating MgF2 retarders and a fixed MgF2 Wollaston prism analyzer to implement a dual beam polarization sensing function. Two orthogonal polarization states are imaged onto the array detector as interleaved echellograms (Channel 1) and as parallel spectra (Channel 2). This paper presents the design resulting from these design constraints and describes the approaches to calibrate the design pre-flight and during flight.
Polstar NASA介质探测器(MIDEX)的设计配置和实现受到使用天基传感器测量恒星物体偏振状态的需求的强烈驱动。约束条件包括(但不限于)几何和收集孔径涂层的对称性、光学表面入射角、涂层均匀性、瞄准线抖动和漂移、轨道特性、热稳定性和地面校准。Polstar MIDEX将观测科学上有趣的恒星。Polstar将同时测量所有四个Stokes参数(I, Q, U, V),在高光谱分辨能力下获得Stokes矢量的高精度和精密度(~0.001%)。直径600毫米的口径望远镜在分光仪的入口狭缝处对选定的恒星进行成像。Polstar在一台光谱仪内提供两个光谱通道:Far UV 122 nm至200 nm通道1,光谱分辨率为R~30K,通道2的低光谱分辨率覆盖180 nm至320 nm,光谱分辨率为R~ 120至4K,光谱范围为115 nm至~1,000nm。通道1使用交叉分散梯队光谱仪设计。通道2使用MgF2棱镜色散器实现其光谱色散。两个通道共享一个公共阵列检测器。该光谱仪包括旋转MgF2缓速器和固定MgF2沃拉斯顿棱镜分析仪,实现双光束偏振传感功能。两个正交偏振态以交错回波图(通道1)和平行光谱(通道2)的形式成像到阵列探测器上。本文介绍了基于这些设计约束的设计,并描述了在飞行前和飞行中校准设计的方法。
{"title":"Design drivers for the Polstar spectropolarimeter: an FUV/NUV design achieving high spectral resolving power with precise 4-Stokes measurements","authors":"R. Woodruff, C. Neiner, R. Casini, G. Vasudevan, T. Hull, P. Scowen","doi":"10.1117/12.2629556","DOIUrl":"https://doi.org/10.1117/12.2629556","url":null,"abstract":"The Polstar NASA medium explorer (MIDEX) design configuration and implementation is strongly driven by the requirement to measure the state of polarization of stellar objects using a space-based sensor. Constraints include, but are not limited to, symmetry of geometry and coatings of the collecting aperture, angle of incidence at optical surfaces, coating uniformity, line of sight jitter and drift, orbit properties, thermal stability, and ground calibration. The Polstar MIDEX will observe scientifically interesting stars. Polstar will simultaneously measure all four Stokes parameters (I, Q, U, V) to high accuracy and precision (~0.001%) of the Stokes vector at high spectral resolving power. The 600-mm diameter aperture telescope images a selected star at the entrance slit of a spectrometer. Polstar offers two spectral channels within one spectrometer: a Far UV 122 nm to 200 nm Channel 1 with R~30K spectral resolving power and a low spectral resolution in Channel 2 channel covering 180 nm to 320 nm with R ~ 120 to 4K and spectroscopy over 115 nm to ~1,000nm. Channel 1 uses a cross-dispersed echelle spectrometer design. Channel 2 achieves its spectral dispersion with a MgF2 prism disperser. The two channels share a common array detector. The spectrometer includes rotating MgF2 retarders and a fixed MgF2 Wollaston prism analyzer to implement a dual beam polarization sensing function. Two orthogonal polarization states are imaged onto the array detector as interleaved echellograms (Channel 1) and as parallel spectra (Channel 2). This paper presents the design resulting from these design constraints and describes the approaches to calibrate the design pre-flight and during flight.","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"78 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114090571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Tollet, S. Bounissou, A. Aliane, C. Delisle, L. Dussopt, V. Goudon, H. Kaya, G. Lasfargues, A. Poglitsch, V. Révéret, L. Rodriguez
Two technologies of all-silicon on-chip spectrometers based on the Fabry-Perot interferometer principle are studied and under development for a target wavelength of 158µm ([CII]). We are developing these spectroscopic capabilities with the objective of including them in polarimetric detector arrays cooled at 50mK. The first solution is a tunable cavity Fabry-Perot with silicon mirrors driven by cryogenic piezoelectric motors with a sub-micron step size. Each mirror is a dielectric Bragg structure made of quarter-wave layers of silicon and air providing a high reflectivity without metal losses. The theoretical performance of a Fabry-Perot resonator with such Bragg mirrors has been confirmed by measurement in a low temperature FTS: the finesse of this interferometer is more than twice that of a traditional Fabry-Perot. The second solution is a fixed Fabry-Perot array with a silicon microstructured cavity, which allows having different optical indices in different areas. The cavity is made of deep-etched silicon microstructures whose section is adapted to obtain the adequate optical index. Therefore, multiple wavelengths around 158µm, distributed on the array, are transmitted by this Fabry-Perot. The mirrors of this spectrometer are metallic capacitive grids designed to be highly reflective at the targeted wavelength, easy to manufacture with reduced metal losses. The simulations show high performances in resolution, close to the Bragg mirrors Fabry-Perot. The first prototypes of this solution have been manufactured by the CEA/LETI and will be soon measured in the cryogenic facilities in Saclay.
{"title":"On-chip spectroscopic solutions for polarimetric bolometer arrays in submillimeter astronomy","authors":"T. Tollet, S. Bounissou, A. Aliane, C. Delisle, L. Dussopt, V. Goudon, H. Kaya, G. Lasfargues, A. Poglitsch, V. Révéret, L. Rodriguez","doi":"10.1117/12.2630087","DOIUrl":"https://doi.org/10.1117/12.2630087","url":null,"abstract":"Two technologies of all-silicon on-chip spectrometers based on the Fabry-Perot interferometer principle are studied and under development for a target wavelength of 158µm ([CII]). We are developing these spectroscopic capabilities with the objective of including them in polarimetric detector arrays cooled at 50mK. The first solution is a tunable cavity Fabry-Perot with silicon mirrors driven by cryogenic piezoelectric motors with a sub-micron step size. Each mirror is a dielectric Bragg structure made of quarter-wave layers of silicon and air providing a high reflectivity without metal losses. The theoretical performance of a Fabry-Perot resonator with such Bragg mirrors has been confirmed by measurement in a low temperature FTS: the finesse of this interferometer is more than twice that of a traditional Fabry-Perot. The second solution is a fixed Fabry-Perot array with a silicon microstructured cavity, which allows having different optical indices in different areas. The cavity is made of deep-etched silicon microstructures whose section is adapted to obtain the adequate optical index. Therefore, multiple wavelengths around 158µm, distributed on the array, are transmitted by this Fabry-Perot. The mirrors of this spectrometer are metallic capacitive grids designed to be highly reflective at the targeted wavelength, easy to manufacture with reduced metal losses. The simulations show high performances in resolution, close to the Bragg mirrors Fabry-Perot. The first prototypes of this solution have been manufactured by the CEA/LETI and will be soon measured in the cryogenic facilities in Saclay.","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114518218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Mori, T. Tsuru, K. Nakazawa, Y. Ueda, Shin Watanabe, Takaaki Tanaka, M. Ishida, H. Matsumoto, H. Awaki, H. Murakami, M. Nobukawa, A. Takeda, Y. Fukazawa, H. Tsunemi, Tadayuki Takahashi, A. Hornschemeier, T. Okajima, Will Zhang, B. Williams, T. Venters, K. Madsen, M. Yukita, H. Akamatsu, A. Bamba, T. Enoto, Yutaka Fujita, A. Furuzawa, K. Hagino, K. Ishimura, M. Itoh, T. Kitayama, S. Kobayashi, T. Kohmura, A. Kubota, M. Mizumoto, T. Mizuno, H. Nakajima, K. Nobukawa, H. Noda, H. Odaka, N. Ota, Toshiki Sato, M. Shidatsu, Hiromasa Suzuki, H. Takahashi, A. Tanimoto, Y. Terada, Y. Terashima, H. Uchida, Y. Uchiyama, H. Yamaguchi, Y. Yatsu
In this multi-messenger astronomy era, all the observational probes are improving their sensitivities and overall performance. The Focusing on Relativistic universe and Cosmic Evolution (FORCE) mission, the product of a JAXA/NASA collaboration, will reach a 10 times higher sensitivity in the hard X-ray band (E > 10 keV) in comparison with any previous hard x-ray missions, and provide simultaneous soft x-ray coverage. FORCE aims to be launched in the early 2030s, providing a perfect hard x-ray complement to the ESA flagship mission Athena. FORCE will be the most powerful x-ray probe for discovering obscured/hidden black holes and studying high energy particle acceleration in our Universe and will address how relativistic processes in the universe are realized and how these affect cosmic evolution. FORCE, which will operate over 1–79 keV, is equipped with two identical pairs of supermirrors and wideband x-ray imagers. The mirror and imager are connected by a high mechanical stiffness extensible optical bench with alignment monitor systems with a focal length of 12 m. A light-weight silicon mirror with multi-layer coating realizes a high angular resolution of < 15′′ in half-power diameter in the broad bandpass. The imager is a hybrid of a brand-new SOI-CMOS silicon-pixel detector and a CdTe detector responsible for the softer and harder energy bands, respectively. FORCE will play an essential role in the multi-messenger astronomy in the 2030s with its broadband x-ray sensitivity.
{"title":"A broadband x-ray imaging spectroscopy in the 2030s: the FORCE mission","authors":"K. Mori, T. Tsuru, K. Nakazawa, Y. Ueda, Shin Watanabe, Takaaki Tanaka, M. Ishida, H. Matsumoto, H. Awaki, H. Murakami, M. Nobukawa, A. Takeda, Y. Fukazawa, H. Tsunemi, Tadayuki Takahashi, A. Hornschemeier, T. Okajima, Will Zhang, B. Williams, T. Venters, K. Madsen, M. Yukita, H. Akamatsu, A. Bamba, T. Enoto, Yutaka Fujita, A. Furuzawa, K. Hagino, K. Ishimura, M. Itoh, T. Kitayama, S. Kobayashi, T. Kohmura, A. Kubota, M. Mizumoto, T. Mizuno, H. Nakajima, K. Nobukawa, H. Noda, H. Odaka, N. Ota, Toshiki Sato, M. Shidatsu, Hiromasa Suzuki, H. Takahashi, A. Tanimoto, Y. Terada, Y. Terashima, H. Uchida, Y. Uchiyama, H. Yamaguchi, Y. Yatsu","doi":"10.1117/12.2628772","DOIUrl":"https://doi.org/10.1117/12.2628772","url":null,"abstract":"In this multi-messenger astronomy era, all the observational probes are improving their sensitivities and overall performance. The Focusing on Relativistic universe and Cosmic Evolution (FORCE) mission, the product of a JAXA/NASA collaboration, will reach a 10 times higher sensitivity in the hard X-ray band (E > 10 keV) in comparison with any previous hard x-ray missions, and provide simultaneous soft x-ray coverage. FORCE aims to be launched in the early 2030s, providing a perfect hard x-ray complement to the ESA flagship mission Athena. FORCE will be the most powerful x-ray probe for discovering obscured/hidden black holes and studying high energy particle acceleration in our Universe and will address how relativistic processes in the universe are realized and how these affect cosmic evolution. FORCE, which will operate over 1–79 keV, is equipped with two identical pairs of supermirrors and wideband x-ray imagers. The mirror and imager are connected by a high mechanical stiffness extensible optical bench with alignment monitor systems with a focal length of 12 m. A light-weight silicon mirror with multi-layer coating realizes a high angular resolution of < 15′′ in half-power diameter in the broad bandpass. The imager is a hybrid of a brand-new SOI-CMOS silicon-pixel detector and a CdTe detector responsible for the softer and harder energy bands, respectively. FORCE will play an essential role in the multi-messenger astronomy in the 2030s with its broadband x-ray sensitivity.","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117248572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shawn W. Henderson, Z. Ahmed, J. D'Ewart, J. Frisch, R. Herbst, Chao Liu, Lili Ma, L. Ruckman, D. V. Van Winkle, Cyndia Yu
Low-energy threshold, high-resolution superconducting detector arrays with 103–105 pixels are increasingly necessary in ground- and space-based telescopes across the electromagnetic spectrum including mm-wave, far-infrared (Far-IR), near-infrared, X-ray, and gamma rays. Reading out such large numbers of sensors poses significant technical challenges, but recent cryogenic readout technology developments are enabling the simultaneous read out of significantly more channels with minimal performance impact. An especially promising set of cold readout technologies couple cryogenic sensors to superconducting resonators. These technologies rely on high-frequency RF electronics to interrogate and demodulate the sensors’ signals using digitally generated tones. Recently released Radio Frequency Systems-on-Chip (RFSoC) devices from Xilinx combine a FPGA with high-speed ADCs and DACs onto a single chip. These systems provide significant advantages for these applications, including lower cost, reduced size and weight, lower power consumption, and improved RF performance. While an RFSoC-based warm readout system would be attractive for a broad range of spacecraft applications, Xilinx has not announced plans for a space qualified version of its RFSoC devices and insufficient data is publicly available to evaluate the feasibility of using RFSoC devices in space. To evaluate the suitability of RFSoC devices for spacecraft applications, we have designed and built custom boards using all space-qualified components except for the RFSoC. In this contribution we present the design of our custom RFSoC board, measurements of critical aspects of board performance which relate to operation in the harsh space environment, and measurements of integrated RF performance targeting the readout of large superconducting sensor arrays and space-based radio spectrometry. In addition to a wide range of spacecraft applications including communications and radar, our RFSoC platform is a potentially critically enabling technology for missions prioritized by the recent 2020 Decadal Survey on Astronomy and Astrophysics including flagship Far-IR and X-ray missions, as well as Far-IR, X-ray, and Cosmic Microwave Background (CMB) probes.
{"title":"Advanced RFSoC readout for space-based superconducting sensor arrays","authors":"Shawn W. Henderson, Z. Ahmed, J. D'Ewart, J. Frisch, R. Herbst, Chao Liu, Lili Ma, L. Ruckman, D. V. Van Winkle, Cyndia Yu","doi":"10.1117/12.2630412","DOIUrl":"https://doi.org/10.1117/12.2630412","url":null,"abstract":"Low-energy threshold, high-resolution superconducting detector arrays with 103–105 pixels are increasingly necessary in ground- and space-based telescopes across the electromagnetic spectrum including mm-wave, far-infrared (Far-IR), near-infrared, X-ray, and gamma rays. Reading out such large numbers of sensors poses significant technical challenges, but recent cryogenic readout technology developments are enabling the simultaneous read out of significantly more channels with minimal performance impact. An especially promising set of cold readout technologies couple cryogenic sensors to superconducting resonators. These technologies rely on high-frequency RF electronics to interrogate and demodulate the sensors’ signals using digitally generated tones. Recently released Radio Frequency Systems-on-Chip (RFSoC) devices from Xilinx combine a FPGA with high-speed ADCs and DACs onto a single chip. These systems provide significant advantages for these applications, including lower cost, reduced size and weight, lower power consumption, and improved RF performance. While an RFSoC-based warm readout system would be attractive for a broad range of spacecraft applications, Xilinx has not announced plans for a space qualified version of its RFSoC devices and insufficient data is publicly available to evaluate the feasibility of using RFSoC devices in space. To evaluate the suitability of RFSoC devices for spacecraft applications, we have designed and built custom boards using all space-qualified components except for the RFSoC. In this contribution we present the design of our custom RFSoC board, measurements of critical aspects of board performance which relate to operation in the harsh space environment, and measurements of integrated RF performance targeting the readout of large superconducting sensor arrays and space-based radio spectrometry. In addition to a wide range of spacecraft applications including communications and radar, our RFSoC platform is a potentially critically enabling technology for missions prioritized by the recent 2020 Decadal Survey on Astronomy and Astrophysics including flagship Far-IR and X-ray missions, as well as Far-IR, X-ray, and Cosmic Microwave Background (CMB) probes.","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131713374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yining Zheng, Ying Chen, Yuan-Hung Xu, Huanqiang Zhang, Lihong Tang, Liliang Ying, Hangxing Xie, Bo Gao, Zhen Wang
Hot Universe Baryon Surveyor (HUBS) is a proposed Chinese space mission to search for the so-called “missing baryons”. HUBS will focus on soft X-ray detection. The central part of the HUBS telescope is a soft X-ray spectrometer that uses a large transition-edge sensors array to detect the photon emission from a warm-hot intergalactic medium. The detector array comprises more than 3600 pixels. To read such a large number of pixels, a multiplexed readout technique is obligatory. We aim to develop a time-division multiplexed (TDM) readout system for HUBS. We choose TDM because it is the most mature and common one among various multiplexed readout techniques. We started by developing a proto-type TDM system that uses a single-stage SQUID readout. The basic multiplexing unit is composed of a SQUID series array (SSA) in parallel with a SQUID-based superconducting/normal conducting switch (SN switch). The SSA is composed of 16 individual SQUID cell that adopts a 1st order serial gradiometer design. The switch is also made of SQUID cells connected in series. The SQUID cell for a switch can comprise two Josephson junctions (JJs) like a usual DC-SQUID. It can also take the form of a Zappe interferometer that consists of four JJs. We will present the design and the simulation results of the sensor SQUID array and the SN switches.
{"title":"Development of sensor SQUID and Zappe interferometer switch for HUBS","authors":"Yining Zheng, Ying Chen, Yuan-Hung Xu, Huanqiang Zhang, Lihong Tang, Liliang Ying, Hangxing Xie, Bo Gao, Zhen Wang","doi":"10.1117/12.2628454","DOIUrl":"https://doi.org/10.1117/12.2628454","url":null,"abstract":"Hot Universe Baryon Surveyor (HUBS) is a proposed Chinese space mission to search for the so-called “missing baryons”. HUBS will focus on soft X-ray detection. The central part of the HUBS telescope is a soft X-ray spectrometer that uses a large transition-edge sensors array to detect the photon emission from a warm-hot intergalactic medium. The detector array comprises more than 3600 pixels. To read such a large number of pixels, a multiplexed readout technique is obligatory. We aim to develop a time-division multiplexed (TDM) readout system for HUBS. We choose TDM because it is the most mature and common one among various multiplexed readout techniques. We started by developing a proto-type TDM system that uses a single-stage SQUID readout. The basic multiplexing unit is composed of a SQUID series array (SSA) in parallel with a SQUID-based superconducting/normal conducting switch (SN switch). The SSA is composed of 16 individual SQUID cell that adopts a 1st order serial gradiometer design. The switch is also made of SQUID cells connected in series. The SQUID cell for a switch can comprise two Josephson junctions (JJs) like a usual DC-SQUID. It can also take the form of a Zappe interferometer that consists of four JJs. We will present the design and the simulation results of the sensor SQUID array and the SN switches.","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"1652 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129310937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}