首页 > 最新文献

Astronomical Telescopes + Instrumentation最新文献

英文 中文
VOXI: Versatile Optics for X-ray Imaging VOXI: x射线成像的多功能光学
Pub Date : 2022-08-31 DOI: 10.1117/12.2630660
S. Romaine, J. Hong, M. Elvis
Versatile Optics for X-ray Imaging (VOXI) is a technology that enables a wide range of missions and opens up new opportunities for scientific research over multiple disciplines including fundamental physics, heliophysics, astrophysics, lunar and planetary science, and laboratory physics. VOXI is well-suited to SmallSats, which have become powerful platforms from which to conduct leading scientific investigations and cutting-edge technology developments at low cost with rapid turn-arounds. At the Center for Astrophysics | Harvard and Smithsonian, in collaboration with other institutions, we have developed VOXI, a Wolter-I Xray telescope with a focal length of < 1.5 m. In this paper we describe the potential of these optics, and the applications for VOXI optics considered to date.
用于x射线成像的多功能光学(VOXI)是一项能够实现广泛任务的技术,并为包括基础物理学、太阳物理学、天体物理学、月球和行星科学以及实验室物理学在内的多学科科学研究开辟了新的机会。VOXI非常适合小型卫星,小型卫星已经成为以低成本和快速周转进行领先科学研究和尖端技术开发的强大平台。在天体物理中心|哈佛大学和史密森尼与其他机构合作,我们开发了VOXI,这是一种焦距小于1.5米的Wolter-I x射线望远镜。在本文中,我们描述了这些光学器件的潜力,以及迄今为止在VOXI光学器件中的应用。
{"title":"VOXI: Versatile Optics for X-ray Imaging","authors":"S. Romaine, J. Hong, M. Elvis","doi":"10.1117/12.2630660","DOIUrl":"https://doi.org/10.1117/12.2630660","url":null,"abstract":"Versatile Optics for X-ray Imaging (VOXI) is a technology that enables a wide range of missions and opens up new opportunities for scientific research over multiple disciplines including fundamental physics, heliophysics, astrophysics, lunar and planetary science, and laboratory physics. VOXI is well-suited to SmallSats, which have become powerful platforms from which to conduct leading scientific investigations and cutting-edge technology developments at low cost with rapid turn-arounds. At the Center for Astrophysics | Harvard and Smithsonian, in collaboration with other institutions, we have developed VOXI, a Wolter-I Xray telescope with a focal length of < 1.5 m. In this paper we describe the potential of these optics, and the applications for VOXI optics considered to date.","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116747087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of the detection chain for Athena X-IFU 雅典娜X-IFU检测链设计
Pub Date : 2022-08-31 DOI: 10.1117/12.2629960
H. Geoffray, B. Jackson, S. Bandler, S. Smith, W. Doriese, M. Durkin, J. van der Kuur, B. van Leeuwen, M. Kirivanta, D. PRELE, L. Ravera, Y. Parot, H. V. van Weers, J. D. den Herder, Joseph Adams, J. Chervenak, C. Reintsema, J. Ullom, F. Brachet, A. Ledot, P. Peille, D. Barret
The x-ray integral field unit (X-IFU) instrument is the high-resolution x-ray spectrometer of the ESA Athena x-ray observatory. X-IFU will deliver spectra from 0.2 to 12 keV with a spectral resolution of 2.5 eV up to 7 keV from 5" pixels, with a hexagonal field of view of 5' equivalent diameter. The main sensor array and its associated detection chain is one of the major sub-systems of the X-IFU instrument, and is the main contributor to X-IFU’s performance. CNES (the French Space Agency) is leading the development of X-IFU; additional major partners are NASA-GFSC, SRON, VTT, APC, NIST, and IRAP. This paper updates the B-phase definition of the X-IFU detection chain. The readout is based on time-division multiplexing (TDM). The different sub-components of the detection chain (the main sensor array, the cold electronics stages, and the warm electronics) require global design optimization in order to achieve the best performance. The detection chain’s sensitivity to the EMI/EMC environment requires detailed analysis and implementation of dedicated design solutions. This paper focuses on these aspects while providing an update to the detection-chain design description.
x射线积分场单元(X-IFU)仪器是ESA雅典娜x射线天文台的高分辨率x射线光谱仪。X-IFU将提供0.2至12 keV的光谱,光谱分辨率为2.5 eV,从5英寸像素到7 keV,具有5'等效直径的六角形视场。主传感器阵列及其相关的检测链是X-IFU仪器的主要子系统之一,是X-IFU仪器性能的主要贡献者。法国航天局(CNES)正在领导X-IFU的开发;其他主要合作伙伴包括NASA-GFSC、SRON、VTT、APC、NIST和IRAP。本文更新了X-IFU检测链的b相定义。读出基于时分多路复用(TDM)。检测链的不同子组件(主传感器阵列、冷电子级和热电子级)需要全局设计优化,以实现最佳性能。检测链对EMI/EMC环境的敏感性需要详细分析和实施专用设计解决方案。本文着重于这些方面,同时对检测链设计描述进行了更新。
{"title":"Design of the detection chain for Athena X-IFU","authors":"H. Geoffray, B. Jackson, S. Bandler, S. Smith, W. Doriese, M. Durkin, J. van der Kuur, B. van Leeuwen, M. Kirivanta, D. PRELE, L. Ravera, Y. Parot, H. V. van Weers, J. D. den Herder, Joseph Adams, J. Chervenak, C. Reintsema, J. Ullom, F. Brachet, A. Ledot, P. Peille, D. Barret","doi":"10.1117/12.2629960","DOIUrl":"https://doi.org/10.1117/12.2629960","url":null,"abstract":"The x-ray integral field unit (X-IFU) instrument is the high-resolution x-ray spectrometer of the ESA Athena x-ray observatory. X-IFU will deliver spectra from 0.2 to 12 keV with a spectral resolution of 2.5 eV up to 7 keV from 5\" pixels, with a hexagonal field of view of 5' equivalent diameter. The main sensor array and its associated detection chain is one of the major sub-systems of the X-IFU instrument, and is the main contributor to X-IFU’s performance. CNES (the French Space Agency) is leading the development of X-IFU; additional major partners are NASA-GFSC, SRON, VTT, APC, NIST, and IRAP. This paper updates the B-phase definition of the X-IFU detection chain. The readout is based on time-division multiplexing (TDM). The different sub-components of the detection chain (the main sensor array, the cold electronics stages, and the warm electronics) require global design optimization in order to achieve the best performance. The detection chain’s sensitivity to the EMI/EMC environment requires detailed analysis and implementation of dedicated design solutions. This paper focuses on these aspects while providing an update to the detection-chain design description.","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"104 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134491986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Development of Bragg reflection-type x-ray polarimeter based on a bent silicon crystal using hot plastic deformation 基于弯曲硅晶体热塑性变形的Bragg反射型x射线偏振计的研制
Pub Date : 2022-08-31 DOI: 10.1117/12.2629635
Y. Ueda, Tomoki Uchino, Daiki Ishi, Y. Ezoe, K. Ishikawa, M. Numazawa, Aoto Fukushima, Sae Sakuda, A. Inagaki, H. Morishita, Luna Sekiguchi, Takatoshi Murakawa, Yukine Tsuji, K. Mitsuda, K. Morishita, K. Nakajima
We are developing a novel Bragg reflection x-ray polarimeter using hot plastic deformation of silicon wafers. A Bragg reflection polarimeter has the advantage of simple principle and large modulation factor but suffers from the disadvantage of a narrow detectable energy band and difficulty to focus an incident beam. We overcome these disadvantages by bending a silicon wafer at high temperature. The bent Bragg reflection polarimeter have a wide energy band using different angles on the wafer and enable focusing. We have succeeded in measuring x-ray polarization with this method for the first time using a sample optic made from a 4-inch silicon (100) wafer.
我们正在开发一种新型的布拉格反射x射线偏振计,利用硅晶圆的热塑性变形。布拉格反射偏振计具有原理简单、调制因子大的优点,但存在探测能带窄、入射光束难以聚焦等缺点。我们通过在高温下弯曲硅片来克服这些缺点。弯曲布拉格反射偏振计具有宽的能量带,可以利用不同的角度在晶圆上聚焦。我们首次用这种方法成功地测量了x射线偏振,使用的是由4英寸硅(100)晶圆制成的光学样品。
{"title":"Development of Bragg reflection-type x-ray polarimeter based on a bent silicon crystal using hot plastic deformation","authors":"Y. Ueda, Tomoki Uchino, Daiki Ishi, Y. Ezoe, K. Ishikawa, M. Numazawa, Aoto Fukushima, Sae Sakuda, A. Inagaki, H. Morishita, Luna Sekiguchi, Takatoshi Murakawa, Yukine Tsuji, K. Mitsuda, K. Morishita, K. Nakajima","doi":"10.1117/12.2629635","DOIUrl":"https://doi.org/10.1117/12.2629635","url":null,"abstract":"We are developing a novel Bragg reflection x-ray polarimeter using hot plastic deformation of silicon wafers. A Bragg reflection polarimeter has the advantage of simple principle and large modulation factor but suffers from the disadvantage of a narrow detectable energy band and difficulty to focus an incident beam. We overcome these disadvantages by bending a silicon wafer at high temperature. The bent Bragg reflection polarimeter have a wide energy band using different angles on the wafer and enable focusing. We have succeeded in measuring x-ray polarization with this method for the first time using a sample optic made from a 4-inch silicon (100) wafer.","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116774920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design, integration, and test of the scientific payloads on-board the HERMES constellation and the SpIRIT mission 赫尔墨斯星座和勇气号任务上的科学有效载荷的设计、集成和测试
Pub Date : 2022-08-31 DOI: 10.1117/12.2628978
Y. Evangelista, F. Fiore, R. Campana, F. Ceraudo, Giovanni Della Casa, E. Demenev, G. Dilillo, M. Fiorini, M. Grassi, A. Guzmán, P. Hedderman, E. Marchesini, G. Morgante, F. Mele, P. Nogara, A. Nuti, R. Piazzolla, Samuel Pliego Caballero, I. Rashevskaya, F. Russo, G. Sottile, C. Labanti, Giulia Baroni, P. Bellutti, G. Bertuccio, Jiewei Cao, Tianxiang Chen, I. Dedolli, M. Feroci, F. Fuschino, M. Gandola, N. Gao, F. Ficorella, P. Malcovati, A. Picciotto, A. Rachevski, A. Santangelo, C. Tenzer, A. Vacchi, Lingjun Wang, Yupeng Xu, G. Zampa, N. Zampa, N. Zorzi
HERMES (high energy rapid modular ensemble of satellites) is a space-borne mission based on a constellation of nano-satellites flying in a low-Earth orbit (LEO). The six 3U CubeSat buses host new miniaturized instruments hosting a hybrid silicon drift detector/GAGG:Ce scintillator photodetector system sensitive to x-rays and gamma-rays. HERMES will probe the temporal emission of bright high-energy transients such as gamma-ray bursts (GRBs), ensuring a fast transient localization (with arcmin-level accuracy) in a field of view of several steradians exploiting the triangulation technique. With a foreseen launch date in late 2023, HERMES transient monitoring represents a keystone capability to complement the next generation of gravitational wave experiments. Moreover, the HERMES constellation will operate in conjunction with the space industry responsive intelligent thermal (SpIRIT) 6U CubeSat, to be launched in early 2023. SpIRIT is an Australian-Italian mission for high-energy astrophysics that will carry in a sun-synchronous orbit (SSO) an actively cooled HERMES detector system payload. On behalf of the HERMES collaboration, in this paper we will illustrate the HERMES and SpIRIT payload design, integration and tests, highlighting the technical solutions adopted to allow a wide-energy-band and sensitive x-ray and gamma-ray detector to be accommodated in a 1U CubeSat volume.
HERMES(高能快速模块化卫星集成)是一项基于在低地球轨道(LEO)飞行的纳米卫星星座的星载任务。6个3U CubeSat总线承载了新的小型化仪器,其中包含对x射线和伽马射线敏感的混合硅漂移探测器/GAGG:Ce闪烁体光电探测器系统。HERMES将探测伽马射线暴(GRBs)等明亮的高能瞬态的时间发射,确保在利用三角测量技术的几个立体线视野内快速定位(具有弧平级精度)。预计发射日期为2023年底,HERMES瞬态监测代表了补充下一代引力波实验的关键能力。此外,HERMES星座将与航天工业响应智能热(SpIRIT) 6U立方体卫星一起运行,该卫星将于2023年初发射。“勇气”号是澳大利亚和意大利联合进行的高能天体物理学任务,将在太阳同步轨道(SSO)上携带主动冷却的HERMES探测器系统有效载荷。在本文中,我们将代表HERMES合作,说明HERMES和SpIRIT有效载荷的设计、集成和测试,重点介绍采用的技术解决方案,使宽波段和敏感的x射线和伽马射线探测器能够容纳在1U立方体卫星体积中。
{"title":"Design, integration, and test of the scientific payloads on-board the HERMES constellation and the SpIRIT mission","authors":"Y. Evangelista, F. Fiore, R. Campana, F. Ceraudo, Giovanni Della Casa, E. Demenev, G. Dilillo, M. Fiorini, M. Grassi, A. Guzmán, P. Hedderman, E. Marchesini, G. Morgante, F. Mele, P. Nogara, A. Nuti, R. Piazzolla, Samuel Pliego Caballero, I. Rashevskaya, F. Russo, G. Sottile, C. Labanti, Giulia Baroni, P. Bellutti, G. Bertuccio, Jiewei Cao, Tianxiang Chen, I. Dedolli, M. Feroci, F. Fuschino, M. Gandola, N. Gao, F. Ficorella, P. Malcovati, A. Picciotto, A. Rachevski, A. Santangelo, C. Tenzer, A. Vacchi, Lingjun Wang, Yupeng Xu, G. Zampa, N. Zampa, N. Zorzi","doi":"10.1117/12.2628978","DOIUrl":"https://doi.org/10.1117/12.2628978","url":null,"abstract":"HERMES (high energy rapid modular ensemble of satellites) is a space-borne mission based on a constellation of nano-satellites flying in a low-Earth orbit (LEO). The six 3U CubeSat buses host new miniaturized instruments hosting a hybrid silicon drift detector/GAGG:Ce scintillator photodetector system sensitive to x-rays and gamma-rays. HERMES will probe the temporal emission of bright high-energy transients such as gamma-ray bursts (GRBs), ensuring a fast transient localization (with arcmin-level accuracy) in a field of view of several steradians exploiting the triangulation technique. With a foreseen launch date in late 2023, HERMES transient monitoring represents a keystone capability to complement the next generation of gravitational wave experiments. Moreover, the HERMES constellation will operate in conjunction with the space industry responsive intelligent thermal (SpIRIT) 6U CubeSat, to be launched in early 2023. SpIRIT is an Australian-Italian mission for high-energy astrophysics that will carry in a sun-synchronous orbit (SSO) an actively cooled HERMES detector system payload. On behalf of the HERMES collaboration, in this paper we will illustrate the HERMES and SpIRIT payload design, integration and tests, highlighting the technical solutions adopted to allow a wide-energy-band and sensitive x-ray and gamma-ray detector to be accommodated in a 1U CubeSat volume.","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122115198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The X/Gamma-ray Imaging Spectrometer (XGIS) for THESEUS and other mission opportunities 用于忒修斯和其他任务机会的X/伽马射线成像光谱仪(XGIS)
Pub Date : 2022-08-31 DOI: 10.1117/12.2630178
L. Amati, C. Labanti, S. Mereghetti, F. Frontera, R. Campana, N. Auricchio, G. Baldazzi, P. Bellutti, G. Bertuccio, M. Branchesi, R. C. Butler, M. Caballero-Garcia, A. Camisasca, A. Castro-Tirado, L. Cavazzini, R. Ciolfi, A. De Rosa, F. Evangelisti, R. Farinelli, L. Ferro, F. Ficorella, M. Fiorini, F. Fuschino, J. Gasent-Blesa, G. Ghirlanda, M. Grassi, C. Guidorzi, P. Hedderman, I. Kuvvetli, G. La Rosa, P. Lorenzi, P. Malcovati, E. Marchesini, M. Marisaldi, M. Melchiorri, F. Mele, Malgorzata Mikhalska, M. Orlandini, P. Orleanski, S. Pedersen, R. Piazzolla, A. Rachevski, I. Rashevskaya, P. Rosati, V. Reglero, S. Ronchini, A. Santangelo, R. Salvaterra, P. Sarra, F. Sortino, G. Sottile, G. Stratta, S. Squerzanti, J. Stephen, C. Tenzer, L. Terenzi, A. Trois, A. Vacchi, E. Virgilli, A. Volpe, M. Winkler, G. Zampa, N. Zampa, A. Zdziarski
We describe the science case, design and expected performances of the X/Gamma-ray Imaging Spectrometer (XGIS), a GRB and transients monitor developed and studied for the THESEUS mission project, capable of covering an exceptionally wide energy band (2 keV – 10 MeV), with imaging capabilities and location accuracy <15 arcmin up to 150 keV over a Field of View of 2sr, a few hundreds eV energy resolution in the X-ray band (<30 keV) and few micro seconds time resolution over the whole energy band. Thanks to a design based on a modular approach, the XGIS can be easily re-scaled and adapted for fitting the available resources and specific scientific objectives of future high-energy astrophysics missions, and especially those aimed at fully exploiting GRBs and high-energy transients for multi-messenger astrophysics and fundamental physics.
我们描述科学的情况下,设计和预期性能的X /伽马射线成像光谱仪(图诚科技),伽马线暴和瞬态监测忒修斯任务项目的开发和研究,能够覆盖异常宽能带(2凯文- 10兆电子伏),与成像功能和定位精度< 15弧分150 keV的视野2 sr,几百电动汽车能量分辨率X射线波段(< 30 keV)和几个微秒时间分辨率在整个能带。由于基于模块化方法的设计,XGIS可以很容易地重新缩放和调整,以适应未来高能天体物理任务的可用资源和特定科学目标,特别是那些旨在充分利用grb和高能瞬变的多信使天体物理和基础物理。
{"title":"The X/Gamma-ray Imaging Spectrometer (XGIS) for THESEUS and other mission opportunities","authors":"L. Amati, C. Labanti, S. Mereghetti, F. Frontera, R. Campana, N. Auricchio, G. Baldazzi, P. Bellutti, G. Bertuccio, M. Branchesi, R. C. Butler, M. Caballero-Garcia, A. Camisasca, A. Castro-Tirado, L. Cavazzini, R. Ciolfi, A. De Rosa, F. Evangelisti, R. Farinelli, L. Ferro, F. Ficorella, M. Fiorini, F. Fuschino, J. Gasent-Blesa, G. Ghirlanda, M. Grassi, C. Guidorzi, P. Hedderman, I. Kuvvetli, G. La Rosa, P. Lorenzi, P. Malcovati, E. Marchesini, M. Marisaldi, M. Melchiorri, F. Mele, Malgorzata Mikhalska, M. Orlandini, P. Orleanski, S. Pedersen, R. Piazzolla, A. Rachevski, I. Rashevskaya, P. Rosati, V. Reglero, S. Ronchini, A. Santangelo, R. Salvaterra, P. Sarra, F. Sortino, G. Sottile, G. Stratta, S. Squerzanti, J. Stephen, C. Tenzer, L. Terenzi, A. Trois, A. Vacchi, E. Virgilli, A. Volpe, M. Winkler, G. Zampa, N. Zampa, A. Zdziarski","doi":"10.1117/12.2630178","DOIUrl":"https://doi.org/10.1117/12.2630178","url":null,"abstract":"We describe the science case, design and expected performances of the X/Gamma-ray Imaging Spectrometer (XGIS), a GRB and transients monitor developed and studied for the THESEUS mission project, capable of covering an exceptionally wide energy band (2 keV – 10 MeV), with imaging capabilities and location accuracy <15 arcmin up to 150 keV over a Field of View of 2sr, a few hundreds eV energy resolution in the X-ray band (<30 keV) and few micro seconds time resolution over the whole energy band. Thanks to a design based on a modular approach, the XGIS can be easily re-scaled and adapted for fitting the available resources and specific scientific objectives of future high-energy astrophysics missions, and especially those aimed at fully exploiting GRBs and high-energy transients for multi-messenger astrophysics and fundamental physics.","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126034693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
In-orbit monitoring of the imaging x-ray polarimeters on-board IXPE IXPE上成像x射线偏振仪的在轨监测
Pub Date : 2022-08-31 DOI: 10.1117/12.2629413
A. Di Marco, F. Muleri, S. Fabiani, F. La Monaca, J. Rankin, P. Soffitta, L. Baldini, E. Costa, E. Del Monte, R. Ferrazzoli, C. Lefevre, L. Maiolo, F. Maita, A. Manfreda, A. Morbidini, S. O’Dell, B. Ramsey, A. Ratheesh, C. Sgro’, A. Trois, A. Tennant, M. Weisskopf
The imaging x-ray polarimetry explorer (IXPE) was launched on December 9, 2021, from Cape Canaveral into a low-Earth equatorial orbit. The mission, led by NASA in collaboration with the Italian Space Agency (ASI), features three identical telescopes, each with an imaging x-ray photoelectric polarimeter at the focus of an x-ray mirror assembly. Each focal-plane detector includes a set of four calibration sources powered by a 55Fe nuclide to monitor the detector’s performance. Of these sources, one produces polarized x-rays at two energies and the remaining three generate unpolarized radiation. Here we present the status of this monitoring program, starting from installation of the flight nuclides before on-ground environmental testing of the observatory through recent on-orbit measurements during science operations.
成像x射线偏振探测器(IXPE)于2021年12月9日从卡纳维拉尔角发射到近地赤道轨道。该任务由美国国家航空航天局(NASA)与意大利航天局(ASI)合作领导,以三个相同的望远镜为特色,每个望远镜在x射线反射镜组件的焦点处都有一个成像x射线光电偏振计。每个焦平面探测器包括一组四个校准源,由55Fe核素供电,以监测探测器的性能。在这些光源中,一个产生两种能量的偏振x射线,其余三个产生非偏振辐射。在这里,我们介绍了这一监测计划的现状,从安装飞行核素到对天文台进行地面环境测试,再到最近在科学操作期间的在轨测量。
{"title":"In-orbit monitoring of the imaging x-ray polarimeters on-board IXPE","authors":"A. Di Marco, F. Muleri, S. Fabiani, F. La Monaca, J. Rankin, P. Soffitta, L. Baldini, E. Costa, E. Del Monte, R. Ferrazzoli, C. Lefevre, L. Maiolo, F. Maita, A. Manfreda, A. Morbidini, S. O’Dell, B. Ramsey, A. Ratheesh, C. Sgro’, A. Trois, A. Tennant, M. Weisskopf","doi":"10.1117/12.2629413","DOIUrl":"https://doi.org/10.1117/12.2629413","url":null,"abstract":"The imaging x-ray polarimetry explorer (IXPE) was launched on December 9, 2021, from Cape Canaveral into a low-Earth equatorial orbit. The mission, led by NASA in collaboration with the Italian Space Agency (ASI), features three identical telescopes, each with an imaging x-ray photoelectric polarimeter at the focus of an x-ray mirror assembly. Each focal-plane detector includes a set of four calibration sources powered by a 55Fe nuclide to monitor the detector’s performance. Of these sources, one produces polarized x-rays at two energies and the remaining three generate unpolarized radiation. Here we present the status of this monitoring program, starting from installation of the flight nuclides before on-ground environmental testing of the observatory through recent on-orbit measurements during science operations.","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"71 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124186190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Exhaustive qualification and endurance testing of the 300 GHz frequency doubler of the sub-millimeter instrument of the Jupiter Icy Moon Explorer mission 木星冰月探测任务中亚毫米仪器300 GHz倍频器的详尽鉴定和耐久性测试
Pub Date : 2022-08-31 DOI: 10.1117/12.2630402
L. Gatilova, J. Valentin, J. Treuttel, A. Feret, G. Gay, S. Caroopen, T. Vacelet, S. Mignoni, J. Krieg, Y. Jin, J. Roux
The Submillimetre-Wave Instrument (SWI) is a passive microwave spectrometer of JUpiter ICy moons Explorer (JUICE), a large-class mission of ESA's Cosmic Vision. It consists of two 600 GHz and 1200 GHz dual channel radiometers that involve compact, non-cryogenic Schottky diodes based solid-state devices for the mixer and last stage local oscillator frequency multipliers that are passively cooled to 150K. In this paper we will present the exhaustive qualification and endurance testing of the 300 GHz doubler element, standing at the interface between the warm (300K) and cold (150K) electronic front-end for both 600GHz and 1200 GHz channels. We present its associated extensive set of screening and lot acceptance testing as a part of the delivery of the final MMIC subcomponents integrated in the flight and flight spare models including the test structures used, the tests conditions as well as the failure criteria (PDA, allowable drifts).
亚毫米波仪器(SWI)是木星冰卫星探测器(JUICE)的被动微波光谱仪,木星冰卫星探测器是欧空局“宇宙视野”的一个大型任务。它由两个600 GHz和1200 GHz双通道辐射计组成,其中包括用于混频器的紧凑型非低温肖特基二极管固态器件和被动冷却到150K的最后一级本地振荡器倍频器。在本文中,我们将在600GHz和1200 GHz通道的暖(300K)和冷(150K)电子前端之间的接口上对300ghz倍频元件进行详尽的鉴定和耐用性测试。我们提出了相关的广泛的筛选和批次验收测试,作为集成在飞行和飞行备用模型中的最终MMIC子组件交付的一部分,包括使用的测试结构,测试条件以及故障标准(PDA,允许漂移)。
{"title":"Exhaustive qualification and endurance testing of the 300 GHz frequency doubler of the sub-millimeter instrument of the Jupiter Icy Moon Explorer mission","authors":"L. Gatilova, J. Valentin, J. Treuttel, A. Feret, G. Gay, S. Caroopen, T. Vacelet, S. Mignoni, J. Krieg, Y. Jin, J. Roux","doi":"10.1117/12.2630402","DOIUrl":"https://doi.org/10.1117/12.2630402","url":null,"abstract":"The Submillimetre-Wave Instrument (SWI) is a passive microwave spectrometer of JUpiter ICy moons Explorer (JUICE), a large-class mission of ESA's Cosmic Vision. It consists of two 600 GHz and 1200 GHz dual channel radiometers that involve compact, non-cryogenic Schottky diodes based solid-state devices for the mixer and last stage local oscillator frequency multipliers that are passively cooled to 150K. In this paper we will present the exhaustive qualification and endurance testing of the 300 GHz doubler element, standing at the interface between the warm (300K) and cold (150K) electronic front-end for both 600GHz and 1200 GHz channels. We present its associated extensive set of screening and lot acceptance testing as a part of the delivery of the final MMIC subcomponents integrated in the flight and flight spare models including the test structures used, the tests conditions as well as the failure criteria (PDA, allowable drifts).","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129478869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Exploring the application of image slicers for the EUV for the next generation of solar space missions 探索新一代太阳空间任务中EUV图像切片机的应用
Pub Date : 2022-08-31 DOI: 10.1117/12.2626860
Ariadna Calcines-Rosario, S. Matthews, H. Reid
The Sun is a privileged place to study particle acceleration, a fundamental astrophysical problem throughout the universe. The extreme ultra-violet (EUV) contains a number of narrow emission lines formed in all layers of the solar atmosphere whose profiles allow the measurement of plasma properties like density and temperature, along with the presence of non-Maxwellian particle distributions to be diagnosed. The only way to observe is from space, since EUV radiation is absorbed by the Earth’s atmosphere. Integral field spectroscopy combined with polarimetry is key for the study of the Sun, but the current EUV technology is limiting: the transmission of optical fibers IFUs (integral field units) is low and in-flight effects affect polarisation measurements. The best solution seems to be image slicers. However, this technology has not yet been developed for the EUV spectral range. This communication explores a new highly efficient and compact integral field spectrograph layout based on the application of image slicers combining the surfaces of the IFU with those of the spectrograph, suitable for space applications.
太阳是研究粒子加速的绝佳地点,粒子加速是整个宇宙的基本天体物理学问题。极紫外线(EUV)包含许多在太阳大气层各层形成的窄发射线,其轮廓允许测量等离子体特性,如密度和温度,以及非麦克斯韦粒子分布的存在。唯一的观测方法是从太空,因为极紫外辐射会被地球大气层吸收。积分场光谱与偏振测量相结合是研究太阳的关键,但目前的EUV技术是有限的:光纤的传输ifu(积分场单位)很低,飞行中的效应影响偏振测量。最好的解决方案似乎是图像切片器。然而,该技术尚未开发用于EUV光谱范围。本文探讨了一种新的高效紧凑的积分场光谱仪布局,该布局基于图像切片机的应用,将IFU表面与光谱仪表面相结合,适合于空间应用。
{"title":"Exploring the application of image slicers for the EUV for the next generation of solar space missions","authors":"Ariadna Calcines-Rosario, S. Matthews, H. Reid","doi":"10.1117/12.2626860","DOIUrl":"https://doi.org/10.1117/12.2626860","url":null,"abstract":"The Sun is a privileged place to study particle acceleration, a fundamental astrophysical problem throughout the universe. The extreme ultra-violet (EUV) contains a number of narrow emission lines formed in all layers of the solar atmosphere whose profiles allow the measurement of plasma properties like density and temperature, along with the presence of non-Maxwellian particle distributions to be diagnosed. The only way to observe is from space, since EUV radiation is absorbed by the Earth’s atmosphere. Integral field spectroscopy combined with polarimetry is key for the study of the Sun, but the current EUV technology is limiting: the transmission of optical fibers IFUs (integral field units) is low and in-flight effects affect polarisation measurements. The best solution seems to be image slicers. However, this technology has not yet been developed for the EUV spectral range. This communication explores a new highly efficient and compact integral field spectrograph layout based on the application of image slicers combining the surfaces of the IFU with those of the spectrograph, suitable for space applications.","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"341 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120969171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ground calibration of the x-ray mirror assembly for the X-Ray Imaging and Spectroscopy Mission (XRISM) II: imaging performance and stray light x射线成像和光谱学任务(XRISM) II x射线反射镜组件的地面校准:成像性能和杂散光
Pub Date : 2022-08-31 DOI: 10.1117/12.2629534
K. Tamura, T. Hayashi, R. Boissay-Malaquin, T. Okajima, Toshiki Sato, L. Olsen, R. Koenecke, Wilson Lara, Leor Bleier, M. Eckart, M. Leutenegger, T. Yaqoob, M. Chiao
The X-Ray Imaging and Spectroscopy Mission (XRISM) is an x-ray astronomy satellite being developed in collaboration between NASA, JAXA, and ESA, and is scheduled for launch in Japanese fiscal year 2022. The x-ray mirror assembly (XMA) for XRISM has been developed at NASA’s Goddard Space Flight Center (GSFC). Two units were fabricated, one each for a micro-calorimeter array (Resolve) and a CCD array (Xtend). The ground calibration and performance verification measurements for XRISM XMA were taken at the 100-m x-ray beamline at NASA/GSFC. X-ray images at the focal plane were taken by scanning across the entire mirror aperture with a 15 mm×15 mm pencil beam. These measurements were performed at seven different energies including 1.5 keV (Al Kα), 4.5 keV (Ti Kα), 6.4 keV (Fe Kα), 8.0 keV (Cu Kα), 9.4 keV (Pt Lα), 11.1 keV (Pt Lβ), 17.5 keV (Mo Kα). A method for background subtraction was developed using a back-illuminated CCD camera with a 30 mm×30 mm (i.e. 17′×17′) array at the focal plane. Results from the measurements on the imaging performance show a small energy dependence in the angular resolution. We will also present the results of the stray light measurements.
x射线成像和光谱任务(XRISM)是一颗x射线天文学卫星,由美国宇航局、日本宇宙航空研究开发机构和欧洲航天局合作开发,计划在日本2022财年发射。用于XRISM的x射线反射镜组件(XMA)是在美国宇航局戈达德太空飞行中心(GSFC)开发的。制作了两个单元,分别用于微热量计阵列(Resolve)和CCD阵列(Xtend)。XRISM XMA的地面校准和性能验证测量是在NASA/GSFC的100米x射线束线上进行的。焦平面上的x射线图像是用15 mm×15 mm的铅笔光束扫描整个反射镜孔径拍摄的。这些测量分别在1.5 keV (Al Kα)、4.5 keV (Ti Kα)、6.4 keV (Fe Kα)、8.0 keV (Cu Kα)、9.4 keV (Pt Lα)、11.1 keV (Pt Lβ)、17.5 keV (Mo Kα) 7种不同能量下进行。采用背照CCD相机,在焦平面上设置30 mm×30 mm(即17 ' ×17 ')阵列,开发了一种背景减影方法。对成像性能的测量结果表明,角分辨率的能量依赖性很小。我们还将介绍杂散光测量的结果。
{"title":"Ground calibration of the x-ray mirror assembly for the X-Ray Imaging and Spectroscopy Mission (XRISM) II: imaging performance and stray light","authors":"K. Tamura, T. Hayashi, R. Boissay-Malaquin, T. Okajima, Toshiki Sato, L. Olsen, R. Koenecke, Wilson Lara, Leor Bleier, M. Eckart, M. Leutenegger, T. Yaqoob, M. Chiao","doi":"10.1117/12.2629534","DOIUrl":"https://doi.org/10.1117/12.2629534","url":null,"abstract":"The X-Ray Imaging and Spectroscopy Mission (XRISM) is an x-ray astronomy satellite being developed in collaboration between NASA, JAXA, and ESA, and is scheduled for launch in Japanese fiscal year 2022. The x-ray mirror assembly (XMA) for XRISM has been developed at NASA’s Goddard Space Flight Center (GSFC). Two units were fabricated, one each for a micro-calorimeter array (Resolve) and a CCD array (Xtend). The ground calibration and performance verification measurements for XRISM XMA were taken at the 100-m x-ray beamline at NASA/GSFC. X-ray images at the focal plane were taken by scanning across the entire mirror aperture with a 15 mm×15 mm pencil beam. These measurements were performed at seven different energies including 1.5 keV (Al Kα), 4.5 keV (Ti Kα), 6.4 keV (Fe Kα), 8.0 keV (Cu Kα), 9.4 keV (Pt Lα), 11.1 keV (Pt Lβ), 17.5 keV (Mo Kα). A method for background subtraction was developed using a back-illuminated CCD camera with a 30 mm×30 mm (i.e. 17′×17′) array at the focal plane. Results from the measurements on the imaging performance show a small energy dependence in the angular resolution. We will also present the results of the stray light measurements.","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122883594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
The Mini Astrophysical MeV Background Observatory (MAMBO) CubeSat mission for gamma-ray astronomy 迷你天体物理MeV背景天文台(MAMBO)立方体卫星任务,用于伽马射线天文学
Pub Date : 2022-08-31 DOI: 10.1117/12.2629069
P. Bloser, W. Vestrand, M. Hehlen, K. Katko, L. Parker, D. Beckman, J. Sedillo, Justin M. McGlown, John Michel, Rory H. Scobie, Anthony E. Nelson, T. Roth, Daniel C. Poulson
The origin of the cosmic diffuse gamma-ray (CDG) background in the 0.3–10 MeV energy range is a mystery that has persisted for over 40 years. The Mini Astrophysical MeV Background Observatory (MAMBO) is a new CubeSat mission under development at Los Alamos National Laboratory with the goal of addressing this longstanding puzzle. The concept is motivated by the fact that, since the MeV CDG is relatively bright, only a small detector is required to make high-quality measurements of it. Indeed, the sensitivity of space-based gamma-ray instruments to the CDG is limited not by size, but by the locally generated instrumental background produced by interactions of energetic particles in spacecraft materials. Comparatively tiny CubeSat platforms provide a uniquely quiet environment relative to previous MeV gamma-ray science missions. The MAMBO mission will provide the best measurements ever made of the MeV CDG spectrum and angular distribution, utilizing two key innovations: 1) low instrumental background on a 12U CubeSat platform; and 2) an innovative shielded spectrometer design that simultaneously measures signal and background. Los Alamos is partnering with commercial vendors for the 12U CubeSat bus and ground station network, which we expect will become a new paradigm for low-cost, fast-turnaround space science missions. We describe the MAMBO instrument and mission concept in detail and present the expected scientific return.
宇宙漫射伽马射线(CDG)背景在0.3-10 MeV能量范围内的起源是一个持续了40多年的谜。迷你天体物理MeV背景天文台(MAMBO)是洛斯阿拉莫斯国家实验室正在开发的一项新的立方体卫星任务,旨在解决这个长期存在的难题。由于MeV CDG相对明亮,因此只需要一个小型探测器就可以对其进行高质量的测量,这一事实激发了这个概念。实际上,天基伽玛射线仪器对CDG的灵敏度不受大小的限制,而是受航天器材料中高能粒子相互作用产生的局部仪器背景的限制。相对较小的立方体卫星平台提供了一个独特的安静环境,相对于以前的MeV伽马射线科学任务。MAMBO任务将提供MeV CDG频谱和角分布的最佳测量,利用两个关键创新:1)12U CubeSat平台上的低仪器背景;2)创新的屏蔽光谱仪设计,可以同时测量信号和背景。洛斯阿拉莫斯正在与商业供应商合作开发12U CubeSat总线和地面站网络,我们预计这将成为低成本、快速周转的空间科学任务的新范例。我们详细描述了MAMBO的仪器和任务概念,并提出了预期的科学回报。
{"title":"The Mini Astrophysical MeV Background Observatory (MAMBO) CubeSat mission for gamma-ray astronomy","authors":"P. Bloser, W. Vestrand, M. Hehlen, K. Katko, L. Parker, D. Beckman, J. Sedillo, Justin M. McGlown, John Michel, Rory H. Scobie, Anthony E. Nelson, T. Roth, Daniel C. Poulson","doi":"10.1117/12.2629069","DOIUrl":"https://doi.org/10.1117/12.2629069","url":null,"abstract":"The origin of the cosmic diffuse gamma-ray (CDG) background in the 0.3–10 MeV energy range is a mystery that has persisted for over 40 years. The Mini Astrophysical MeV Background Observatory (MAMBO) is a new CubeSat mission under development at Los Alamos National Laboratory with the goal of addressing this longstanding puzzle. The concept is motivated by the fact that, since the MeV CDG is relatively bright, only a small detector is required to make high-quality measurements of it. Indeed, the sensitivity of space-based gamma-ray instruments to the CDG is limited not by size, but by the locally generated instrumental background produced by interactions of energetic particles in spacecraft materials. Comparatively tiny CubeSat platforms provide a uniquely quiet environment relative to previous MeV gamma-ray science missions. The MAMBO mission will provide the best measurements ever made of the MeV CDG spectrum and angular distribution, utilizing two key innovations: 1) low instrumental background on a 12U CubeSat platform; and 2) an innovative shielded spectrometer design that simultaneously measures signal and background. Los Alamos is partnering with commercial vendors for the 12U CubeSat bus and ground station network, which we expect will become a new paradigm for low-cost, fast-turnaround space science missions. We describe the MAMBO instrument and mission concept in detail and present the expected scientific return.","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"409 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115855119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Astronomical Telescopes + Instrumentation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1