K. Mercier, F. Gonzalez, D. Götz, M. Boutelier, N. Boufracha, S. Clamagirand, Adrien Fort, A. Gomes, Emmanuel Guilhem, J. Le Duigou, Sophie Mazeau, J. Sanisidro, A. Meuris, C. Feldman, J. Pearson, R. Willingale, V. Burwitz, N. Meidinger, F. Robinet
SVOM (space-based multi-band astronomical variable objects monitor) is a mission developed within a Sino-French cooperation context and dedicated to the detection, localization and study of gamma ray bursts (GRBs) and other high-energy transient phenomena. Four instruments, operating in different wavelengths, are implemented on board in order to perform GRB detection and observations. The MXT instrument, developed by the National French Space Agency (CNES) in collaboration with CEA, MPE, IJCLab and the University of Leicester, is dedicated to the observation of GRB afterglows in the soft x-ray band and is one of the four instruments implemented on the Chinese satellite. First the design chosen of this instrument will be described and then the main results of the qualification campaign performed with the development models as EQM or STM and PFM models will be presented, as much at the instrument level as at the SVOM satellite QM level. Then, we will present how flight model design has been updated regarding the qualification campaign results. Furthermore, it will be presented how the performance of this kind of instrument is evaluated or measured through several models at sub system level or at instrument level. Finally, we will provide as a conclusion the main steps which have been achieved for this kind of development and give our main feedback.
{"title":"Results of the development of the MXT x-ray telescope for the SVOM mission","authors":"K. Mercier, F. Gonzalez, D. Götz, M. Boutelier, N. Boufracha, S. Clamagirand, Adrien Fort, A. Gomes, Emmanuel Guilhem, J. Le Duigou, Sophie Mazeau, J. Sanisidro, A. Meuris, C. Feldman, J. Pearson, R. Willingale, V. Burwitz, N. Meidinger, F. Robinet","doi":"10.1117/12.2630249","DOIUrl":"https://doi.org/10.1117/12.2630249","url":null,"abstract":"SVOM (space-based multi-band astronomical variable objects monitor) is a mission developed within a Sino-French cooperation context and dedicated to the detection, localization and study of gamma ray bursts (GRBs) and other high-energy transient phenomena. Four instruments, operating in different wavelengths, are implemented on board in order to perform GRB detection and observations. The MXT instrument, developed by the National French Space Agency (CNES) in collaboration with CEA, MPE, IJCLab and the University of Leicester, is dedicated to the observation of GRB afterglows in the soft x-ray band and is one of the four instruments implemented on the Chinese satellite. First the design chosen of this instrument will be described and then the main results of the qualification campaign performed with the development models as EQM or STM and PFM models will be presented, as much at the instrument level as at the SVOM satellite QM level. Then, we will present how flight model design has been updated regarding the qualification campaign results. Furthermore, it will be presented how the performance of this kind of instrument is evaluated or measured through several models at sub system level or at instrument level. Finally, we will provide as a conclusion the main steps which have been achieved for this kind of development and give our main feedback.","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124095294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. I. Gómez de Castro, Ana I De Isidro-Gómez, Diego de Leyva, Francesca Bachiotti, J. Leon, Pol Ribes, J. Casalta, C. Miravet, J. C. Vallejo, M. Sachkov, Ada Canet, B. Shustov, R. de la Fuente, K. France, Lucas Patty, S. Benetti, A. ud-Doula
The mission Ultraviolet Researcher to Investigate the Emergence of Life (URIEL) is designed to carry out low dispersion (600-1,000) UV spectropolarimetry in the 140-400 nm spectral range to investigate the formation of planetary systems, its interaction with stellar winds and search for signatures of prebiotic molecules by remote sensing of small bodies in the Solar System (comets and meteorites) in near Earth orbit. URIEL is conceived as a 50cm primary telescope with a RitcheyChrétien mounting. The telescope is equipped with a single instrument, the ultraviolet spectropolarimeter, whose low dispersion will enable resolving the main spectral features whilst guaranteeing enough flux per resolution element for the Stokes parameters to be measured to an accuracy of 500 ppm in the full range. According to recent calculations based on the chemical analysis of meteorites, this accuracy suffices for the remote detection of alanine by its optical activity at 180 nm in nearby minor bodies. In this sense, URIEL is a pathfinder mission to the technology that will enable remote sensing of amino acids and addressing the source of the chirality imbalance in Earth's bio-molecules.
{"title":"The ultraviolet researcher to investigate the emergence of life: a mission proposal to ESA's F-call","authors":"A. I. Gómez de Castro, Ana I De Isidro-Gómez, Diego de Leyva, Francesca Bachiotti, J. Leon, Pol Ribes, J. Casalta, C. Miravet, J. C. Vallejo, M. Sachkov, Ada Canet, B. Shustov, R. de la Fuente, K. France, Lucas Patty, S. Benetti, A. ud-Doula","doi":"10.1117/12.2630650","DOIUrl":"https://doi.org/10.1117/12.2630650","url":null,"abstract":"The mission Ultraviolet Researcher to Investigate the Emergence of Life (URIEL) is designed to carry out low dispersion (600-1,000) UV spectropolarimetry in the 140-400 nm spectral range to investigate the formation of planetary systems, its interaction with stellar winds and search for signatures of prebiotic molecules by remote sensing of small bodies in the Solar System (comets and meteorites) in near Earth orbit. URIEL is conceived as a 50cm primary telescope with a RitcheyChrétien mounting. The telescope is equipped with a single instrument, the ultraviolet spectropolarimeter, whose low dispersion will enable resolving the main spectral features whilst guaranteeing enough flux per resolution element for the Stokes parameters to be measured to an accuracy of 500 ppm in the full range. According to recent calculations based on the chemical analysis of meteorites, this accuracy suffices for the remote detection of alanine by its optical activity at 180 nm in nearby minor bodies. In this sense, URIEL is a pathfinder mission to the technology that will enable remote sensing of amino acids and addressing the source of the chirality imbalance in Earth's bio-molecules.","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125001127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Ezoe, R. Funase, H. Nagata, Y. Miyoshi, H. Nakajima, I. Mitsuishi, K. Ishikawa, Yosuke Kawabata, Shintaro Nakajima, Landon Kamps, M. Numazawa, T. Yoneyama, K. Hagino, Y. Matsumoto, K. Hosokawa, S. Kasahara, J. Hiraga, K. Mitsuda, M. Fujimoto, M. Ueno, A. Yamazaki, H. Hasegawa, T. Mitani, Y. Kawakatsu, T. Iwata, H. Koizumi, H. Sahara, Y. Kanamori, K. Morishita
GEO-X (GEOspace X-ray imager) is a small satellite mission aiming at visualization of the Earth’s magnetosphere by X-rays and revealing dynamical couplings between solar wind and magnetosphere. In-situ spacecraft have revealed various phenomena in the magnetosphere. In recent years, X-ray astronomy satellite observations discovered soft X-ray emission originated from the magnetosphere. We therefore develop GEO-X by integrating innovative technologies of the wide FOV X-ray instrument and the microsatellite technology for deep space exploration. GEO-X is a 50 kg class microsatellite carrying a novel compact X-ray imaging spectrometer payload. The microsatellite having a large delta v (<700 m/s) to increase an altitude at 40-60 RE from relatively lowaltitude (e.g., Geo Transfer Orbit) piggyback launch is necessary. We thus combine a 18U Cubesat with the hybrid kick motor composed of liquid N2O and polyethylene. We also develop a wide FOV (5×5 deg) and a good spatial resolution (10 arcmin) X-ray (0.3-2 keV) imager. We utilize a micromachined X-ray telescope, and a CMOS detector system with an optical blocking filter. We aim to launch the satellite around the 25th solar maximum.
GEO-X(地球空间x射线成像仪)是一个小型卫星任务,旨在通过x射线可视化地球磁层并揭示太阳风和磁层之间的动力学耦合。原位航天器揭示了磁层中的各种现象。近年来,x射线天文卫星观测发现软x射线发射起源于磁层。因此,我们将大视场x射线仪器的创新技术与深空探测微卫星技术相结合,开发GEO-X。GEO-X是一颗50公斤级微型卫星,携带新型紧凑x射线成像光谱仪有效载荷。具有较大δ v (<700 m/s)的微型卫星从相对较低的高度(例如,地球转移轨道)在40-60 RE时增加高度是必要的。因此,我们将18U立方体卫星与液体N2O和聚乙烯组成的混合踢腿电机结合起来。我们还开发了宽视场(5×5度)和良好的空间分辨率(10角分)x射线(0.3-2 keV)成像仪。我们利用一个微机械x射线望远镜,和一个CMOS探测器系统与光学阻塞滤波器。我们的目标是在第25次太阳活动极大期前后发射卫星。
{"title":"GEO-X (GEOspace X-ray imager)","authors":"Y. Ezoe, R. Funase, H. Nagata, Y. Miyoshi, H. Nakajima, I. Mitsuishi, K. Ishikawa, Yosuke Kawabata, Shintaro Nakajima, Landon Kamps, M. Numazawa, T. Yoneyama, K. Hagino, Y. Matsumoto, K. Hosokawa, S. Kasahara, J. Hiraga, K. Mitsuda, M. Fujimoto, M. Ueno, A. Yamazaki, H. Hasegawa, T. Mitani, Y. Kawakatsu, T. Iwata, H. Koizumi, H. Sahara, Y. Kanamori, K. Morishita","doi":"10.1117/12.2629107","DOIUrl":"https://doi.org/10.1117/12.2629107","url":null,"abstract":"GEO-X (GEOspace X-ray imager) is a small satellite mission aiming at visualization of the Earth’s magnetosphere by X-rays and revealing dynamical couplings between solar wind and magnetosphere. In-situ spacecraft have revealed various phenomena in the magnetosphere. In recent years, X-ray astronomy satellite observations discovered soft X-ray emission originated from the magnetosphere. We therefore develop GEO-X by integrating innovative technologies of the wide FOV X-ray instrument and the microsatellite technology for deep space exploration. GEO-X is a 50 kg class microsatellite carrying a novel compact X-ray imaging spectrometer payload. The microsatellite having a large delta v (<700 m/s) to increase an altitude at 40-60 RE from relatively lowaltitude (e.g., Geo Transfer Orbit) piggyback launch is necessary. We thus combine a 18U Cubesat with the hybrid kick motor composed of liquid N2O and polyethylene. We also develop a wide FOV (5×5 deg) and a good spatial resolution (10 arcmin) X-ray (0.3-2 keV) imager. We utilize a micromachined X-ray telescope, and a CMOS detector system with an optical blocking filter. We aim to launch the satellite around the 25th solar maximum.","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132455714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kosuke Sato, N. Yamasaki, S. Yamada, I. Mitsuishi, Y. Ichinohe, Hajime Omamiuda, Y. Uchida, K. Mitsuda, D. Nagai, K. Yoshikawa, K. Osato, K. Matsushita, Y. Fujita, Y. Ishisaki, Y. Ezoe, M. Ishida, Y. Maeda, N. Kawai, R. Fujimoto, T. Tsuru, N. Ota, Y. Nakashima
The super DIOS mission is a candidate of Japanese future satellite program after 2030’s and this scientific concept has been approved to establish an ISAS/JAXA research group. The main aim of the super DIOS is a x-ray survey to quantify of baryons, over several scales, from the circumgalactic medium around galaxies, cluster outskirts to the warm-hot intergalactic medium along the large cosmic structure by detections of the redshifted emission lines from OVII, OVIII and other ions, for investigating the dynamical state of baryons, including energy flow and metal cycles, in the universe. The super DIOS will have a resolution of 15 arcseconds and 3 kilo-pixels of transition edge sensor (TES) and its micro-wave SQUID multiplexer read-out system. This performance resolves most contaminating x-ray sources and reduces the level of diffuse x-ray background after subtracting point-like sources. The technical achievements of on-board cooling system reached by the Hitomi (ASTRO-H) and XRISM for microcalorimeter provide baseline technology for Super DIOS. We will also have a large scale collaborations with multi wave-length survey projects such as optical and radio survey observations.
{"title":"Super DIOS for exploring dark baryon","authors":"Kosuke Sato, N. Yamasaki, S. Yamada, I. Mitsuishi, Y. Ichinohe, Hajime Omamiuda, Y. Uchida, K. Mitsuda, D. Nagai, K. Yoshikawa, K. Osato, K. Matsushita, Y. Fujita, Y. Ishisaki, Y. Ezoe, M. Ishida, Y. Maeda, N. Kawai, R. Fujimoto, T. Tsuru, N. Ota, Y. Nakashima","doi":"10.1117/12.2629066","DOIUrl":"https://doi.org/10.1117/12.2629066","url":null,"abstract":"The super DIOS mission is a candidate of Japanese future satellite program after 2030’s and this scientific concept has been approved to establish an ISAS/JAXA research group. The main aim of the super DIOS is a x-ray survey to quantify of baryons, over several scales, from the circumgalactic medium around galaxies, cluster outskirts to the warm-hot intergalactic medium along the large cosmic structure by detections of the redshifted emission lines from OVII, OVIII and other ions, for investigating the dynamical state of baryons, including energy flow and metal cycles, in the universe. The super DIOS will have a resolution of 15 arcseconds and 3 kilo-pixels of transition edge sensor (TES) and its micro-wave SQUID multiplexer read-out system. This performance resolves most contaminating x-ray sources and reduces the level of diffuse x-ray background after subtracting point-like sources. The technical achievements of on-board cooling system reached by the Hitomi (ASTRO-H) and XRISM for microcalorimeter provide baseline technology for Super DIOS. We will also have a large scale collaborations with multi wave-length survey projects such as optical and radio survey observations.","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130439128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Salmaso, S. Basso, M. Ghigo, D. Spiga, Gabriele Vecchi, G. Sironi, V. Cotroneo, P. Conconi, E. Redaelli, Andrea Bianco, G. Pareschi, Gianpiero Tagliaferri, D. Sisana, C. Pelliciari, Mauro Fiorini, S. Incorvaia, M. Uslenghi, L. Paoletti, Claudio Ferrari, Andrea Zappettini, R. Lolli, M. Sanchez del Rio, G. Parodi, V. Burwitz, S. Rukdee, G. Hartner, T. Müller, T. Schmidt, A. Langmeier, D. Della Monica Ferreira, S. Massahi, N. Gellert, F. Christensen, M. Bavdaz, I. Ferreira, M. Collon, G. Vacanti, N. Barrière
The BEaTriX (Beam Expander Testing X-ray) facility is now operative at the INAF-Osservatorio Astronomico Brera (Merate, Italy). This facility has been specifically designed and built for the X-ray acceptance tests (PSF and Effective Area) of the ATHENA Silicon Pore Optics (SPO) Mirror Modules (MM). The unique setup creates a parallel, monochromatic, large X-ray beam, that fully illuminates the aperture of the MMs, generating an image at the ATHENA focal length of 12 m. This is made possible by a microfocus X-ray source followed by a chain of optical components (a paraboloidal mirror, 2 channel cut monochromators, and an asymmetric silicon crystal) able to expand the X-ray beam to a 6 cm × 17 cm size with a residual divergence of 1.5 arcsec (vertical) × 2.5 arcsec (horizontal). This paper reports the commissioning of the 4.5 keV beam line, and the first light obtained with a Mirror Module.
BEaTriX(波束扩展测试x射线)设备现在在意大利梅里特的国际天文研究所(inaf - observatorio Astronomico Brera)运行。该设施是专门为ATHENA硅孔光学(SPO)镜像模块(MM)的x射线验收测试(PSF和有效面积)而设计和建造的。独特的设置创造了一个平行的、单色的、大的x射线束,充分照亮mm的光圈,在雅典娜12米的焦距处产生图像。这可以通过微聚焦x射线源,然后是一系列光学元件(抛物面镜,2通道切割单色器和不对称硅晶体),能够将x射线束扩展到6厘米× 17厘米的尺寸,剩余散度为1.5弧秒(垂直)× 2.5弧秒(水平)。本文报道了4.5 keV光束线的调试,以及用反射镜模块获得的第一束光。
{"title":"X-ray tests of the ATHENA mirror modules in BEaTriX: from design to reality","authors":"B. Salmaso, S. Basso, M. Ghigo, D. Spiga, Gabriele Vecchi, G. Sironi, V. Cotroneo, P. Conconi, E. Redaelli, Andrea Bianco, G. Pareschi, Gianpiero Tagliaferri, D. Sisana, C. Pelliciari, Mauro Fiorini, S. Incorvaia, M. Uslenghi, L. Paoletti, Claudio Ferrari, Andrea Zappettini, R. Lolli, M. Sanchez del Rio, G. Parodi, V. Burwitz, S. Rukdee, G. Hartner, T. Müller, T. Schmidt, A. Langmeier, D. Della Monica Ferreira, S. Massahi, N. Gellert, F. Christensen, M. Bavdaz, I. Ferreira, M. Collon, G. Vacanti, N. Barrière","doi":"10.1117/12.2628227","DOIUrl":"https://doi.org/10.1117/12.2628227","url":null,"abstract":"The BEaTriX (Beam Expander Testing X-ray) facility is now operative at the INAF-Osservatorio Astronomico Brera (Merate, Italy). This facility has been specifically designed and built for the X-ray acceptance tests (PSF and Effective Area) of the ATHENA Silicon Pore Optics (SPO) Mirror Modules (MM). The unique setup creates a parallel, monochromatic, large X-ray beam, that fully illuminates the aperture of the MMs, generating an image at the ATHENA focal length of 12 m. This is made possible by a microfocus X-ray source followed by a chain of optical components (a paraboloidal mirror, 2 channel cut monochromators, and an asymmetric silicon crystal) able to expand the X-ray beam to a 6 cm × 17 cm size with a residual divergence of 1.5 arcsec (vertical) × 2.5 arcsec (horizontal). This paper reports the commissioning of the 4.5 keV beam line, and the first light obtained with a Mirror Module.","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125714130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Boissay-Malaquin, T. Hayashi, K. Tamura, T. Okajima, Toshiki Sato, L. Olsen, R. Koenecke, Wilson Lara, Leor Bleier, M. Eckart, M. Leutenegger, T. Yaqoob, M. Chiao
We present a summary of the ground calibration of the x-ray mirror assemblies (XMAs) for the XRISM satellite, that has been performed at the x-ray beamline at NASA’s Goddard Space Flight Center. We used a scan method with a narrow x-ray pencil beam to calibrate both Resolve and Xtend XMAs, at eight different energies. In this paper, we give an overview of the measurement setup, and show the resulting on-axis and off-axis effective area response. Results of imaging performance, stray light, and performance variation across the aperture will be presented in separate publications.
{"title":"Ground calibration of the x-ray mirror assembly for the X-Ray Imaging and Spectroscopy Mission (XRISM) I-measurement setup and effective area","authors":"R. Boissay-Malaquin, T. Hayashi, K. Tamura, T. Okajima, Toshiki Sato, L. Olsen, R. Koenecke, Wilson Lara, Leor Bleier, M. Eckart, M. Leutenegger, T. Yaqoob, M. Chiao","doi":"10.1117/12.2627563","DOIUrl":"https://doi.org/10.1117/12.2627563","url":null,"abstract":"We present a summary of the ground calibration of the x-ray mirror assemblies (XMAs) for the XRISM satellite, that has been performed at the x-ray beamline at NASA’s Goddard Space Flight Center. We used a scan method with a narrow x-ray pencil beam to calibrate both Resolve and Xtend XMAs, at eight different energies. In this paper, we give an overview of the measurement setup, and show the resulting on-axis and off-axis effective area response. Results of imaging performance, stray light, and performance variation across the aperture will be presented in separate publications.","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133851257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Shy, C. Kierans, N. Cannady, R. Caputo, S. Griffin, E. Grove, E. Hays, E. Kong, N. Kirschner, I. Liceaga-Indart, J. Mcenery, J. Mitchell, A. Moiseev, L. Parker, J. Perkins, B. Phlips, M. Sasaki, Adam J. Schoenwald, C. Sleator, J. Smith, L. Smith, S. Wasti, R. Woolf, E. Wulf, A. Zajczyk
There is a growing interest in the science uniquely enabled by observations in the MeV range, particularly in light of multi-messenger astrophysics. The Compton Pair (ComPair) telescope, a prototype of the AMEGO Probe-class concept, consists of four subsystems that together detect and characterize gamma rays in the MeV regime. A double-sided strip silicon Tracker gives a precise measure of the first Compton scatter interaction and tracks pair-conversion products. A novel cadmium zinc telluride (CZT) detector with excellent position and energy resolution beneath the Tracker detects the Compton-scattered photons. A thick cesium iodide (CsI) calorimeter contains the high-energy Compton and pair events. The instrument is surrounded by a plastic anti-coincidence (ACD) detector to veto the cosmic-ray background. In this work, we will give an overview of the science motivation and a description of the prototype development and performance.
{"title":"Development of the ComPair gamma-ray telescope prototype","authors":"D. Shy, C. Kierans, N. Cannady, R. Caputo, S. Griffin, E. Grove, E. Hays, E. Kong, N. Kirschner, I. Liceaga-Indart, J. Mcenery, J. Mitchell, A. Moiseev, L. Parker, J. Perkins, B. Phlips, M. Sasaki, Adam J. Schoenwald, C. Sleator, J. Smith, L. Smith, S. Wasti, R. Woolf, E. Wulf, A. Zajczyk","doi":"10.1117/12.2628811","DOIUrl":"https://doi.org/10.1117/12.2628811","url":null,"abstract":"There is a growing interest in the science uniquely enabled by observations in the MeV range, particularly in light of multi-messenger astrophysics. The Compton Pair (ComPair) telescope, a prototype of the AMEGO Probe-class concept, consists of four subsystems that together detect and characterize gamma rays in the MeV regime. A double-sided strip silicon Tracker gives a precise measure of the first Compton scatter interaction and tracks pair-conversion products. A novel cadmium zinc telluride (CZT) detector with excellent position and energy resolution beneath the Tracker detects the Compton-scattered photons. A thick cesium iodide (CsI) calorimeter contains the high-energy Compton and pair events. The instrument is surrounded by a plastic anti-coincidence (ACD) detector to veto the cosmic-ray background. In this work, we will give an overview of the science motivation and a description of the prototype development and performance.","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"32 16","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131501883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benjamin Criton, J. Sauvageot, X. de la Broïse, S. Marnieros, C. Oriol, L. Bergé
Space-borne x-ray observations of supernova remnants, galactic clusters, x-ray binaries, and black holes are key elements in determining the structure of the universe. Astronomers require wide field of view with high spatial resolution but also very high spectral resolution to determine the physical conditions (temperatures, element abundances) with great accuracy. Today’s technologies (mostly TESs) obtain very high spectral resolutions to the detriment of power consumption, mostly due to their cold stage SQUID readout electronics. Their high power consumption limits the instrument’s field of view (FoV) by constraining the total number of pixels affordable at the 50 mK focal plane of a satellite cryostat. We use a new alloy technology: the high resistivity NbSi, enabling us to design TES sensors promising high spectral resolution and ultra low power consumption (below 10 pW). Their high impedance allows the use of a transistor readout at a hotter stage of the cryostat. This, in conjunction with the inherent ultra-low power dissipation of the sensors, raises drastically the number of pixels of the detector. In this article, we explore pixel optimization ways based on our electro-thermal model to reach spectral resolution of the order of 1.8 eV. We then use this model to manufacture a new batch of pixels on which we conduct experimental measurements. We measure the transient response, energy linearity and noise spectrum of our pixels with an Iron 55 source as well as an innovative on-chip pulse injection system. A low noise cryogenic amplifier as well as a cryogenic experimental setup have been designed to perform these measurements.
{"title":"Optimization and experimental measurements of high impedance niobium-silicon (NbSi) transition edge sensors (TES) for high spectral and spatial resolution x-ray space-borne telescopes","authors":"Benjamin Criton, J. Sauvageot, X. de la Broïse, S. Marnieros, C. Oriol, L. Bergé","doi":"10.1117/12.2630758","DOIUrl":"https://doi.org/10.1117/12.2630758","url":null,"abstract":"Space-borne x-ray observations of supernova remnants, galactic clusters, x-ray binaries, and black holes are key elements in determining the structure of the universe. Astronomers require wide field of view with high spatial resolution but also very high spectral resolution to determine the physical conditions (temperatures, element abundances) with great accuracy. Today’s technologies (mostly TESs) obtain very high spectral resolutions to the detriment of power consumption, mostly due to their cold stage SQUID readout electronics. Their high power consumption limits the instrument’s field of view (FoV) by constraining the total number of pixels affordable at the 50 mK focal plane of a satellite cryostat. We use a new alloy technology: the high resistivity NbSi, enabling us to design TES sensors promising high spectral resolution and ultra low power consumption (below 10 pW). Their high impedance allows the use of a transistor readout at a hotter stage of the cryostat. This, in conjunction with the inherent ultra-low power dissipation of the sensors, raises drastically the number of pixels of the detector. In this article, we explore pixel optimization ways based on our electro-thermal model to reach spectral resolution of the order of 1.8 eV. We then use this model to manufacture a new batch of pixels on which we conduct experimental measurements. We measure the transient response, energy linearity and noise spectrum of our pixels with an Iron 55 source as well as an innovative on-chip pulse injection system. A low noise cryogenic amplifier as well as a cryogenic experimental setup have been designed to perform these measurements.","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"162 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115757473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Nogara, G. Sottile, F. Russo, G. La Rosa, F. L. Lo Gerfo, M. Del Santo, Y. Evangelista, Riccardo Campana, F. Fuschino, F. Fiore
HERMES Pathfinder (High Energy Rapid Modular Ensemble of Satellites Pathfinder) is a space mission based on a constellation of nano-satellites in a low Earth Orbit, hosting new miniaturized detectors to probe the X-ray temporal emission of bright high-energy transients such as Gamma-Ray Bursts and the electromagnetic counterparts of Gravitational Waves. This ambitious goal will be achieved exploiting at most Commercial offthe-shelf components. For HERMES-SP, a custom Power Supply Unit board has been designed to supply the needed voltages to the payload and, at the same time, protecting it from Latch-Up events.
{"title":"The power supply unit onboard the HERMES nano-satellite constellation","authors":"P. Nogara, G. Sottile, F. Russo, G. La Rosa, F. L. Lo Gerfo, M. Del Santo, Y. Evangelista, Riccardo Campana, F. Fuschino, F. Fiore","doi":"10.1117/12.2628540","DOIUrl":"https://doi.org/10.1117/12.2628540","url":null,"abstract":"HERMES Pathfinder (High Energy Rapid Modular Ensemble of Satellites Pathfinder) is a space mission based on a constellation of nano-satellites in a low Earth Orbit, hosting new miniaturized detectors to probe the X-ray temporal emission of bright high-energy transients such as Gamma-Ray Bursts and the electromagnetic counterparts of Gravitational Waves. This ambitious goal will be achieved exploiting at most Commercial offthe-shelf components. For HERMES-SP, a custom Power Supply Unit board has been designed to supply the needed voltages to the payload and, at the same time, protecting it from Latch-Up events.","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124924575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Staguhn, E. Sharp, S. Duff, G. Hilton, Ari D. Brown, F. Colazo, N. Costen, S. Moseley, Frederick H. Wang, Edward J. Wollack, Sang Yoon
Robust, high sensitivity kilopixel format arrays with large focal plane filling factors and low cosmic ray cross sections that operate over the entire far-IR regime are required for future NASA missions, such as Origins and a future far-IR Probe. Our kilopixel Backshort Under Grid (BUG) detectors are designed to meet all those requirements: By bump-bonding two-dimensional detector arrays to readout multiplexers are gaplessly tileable in one spatial direction with the integration of the multiplexer scalable beyond wafer sizes. The detector arrays provide high filling factors (<90% at 1mm pixel pitch) and are designed for low Cosmic ray cross sections. The major missing technology is a detector array architecture that can be gaplessly tiled to deliver the desired pixel counts of npixel ~105, while being providing a robust process to produce these detector arrays. We introduce a new array architecture that is very flexible allowing for a variety of tileable solutions and describe its individual components and the tests of those. Our results demonstrate that this architecture allows for flexible designs with high yields and reliable superconducting bump-bond connections of detectors and the cold readout SQUID multiplexers directly under the detector array, or on a different board that can be connected with e.g. flex lines for compact tiling.
{"title":"A robust, efficient process to produce scalable, superconducting kilopixel far-IR detector arrays","authors":"J. Staguhn, E. Sharp, S. Duff, G. Hilton, Ari D. Brown, F. Colazo, N. Costen, S. Moseley, Frederick H. Wang, Edward J. Wollack, Sang Yoon","doi":"10.1117/12.2629584","DOIUrl":"https://doi.org/10.1117/12.2629584","url":null,"abstract":"Robust, high sensitivity kilopixel format arrays with large focal plane filling factors and low cosmic ray cross sections that operate over the entire far-IR regime are required for future NASA missions, such as Origins and a future far-IR Probe. Our kilopixel Backshort Under Grid (BUG) detectors are designed to meet all those requirements: By bump-bonding two-dimensional detector arrays to readout multiplexers are gaplessly tileable in one spatial direction with the integration of the multiplexer scalable beyond wafer sizes. The detector arrays provide high filling factors (<90% at 1mm pixel pitch) and are designed for low Cosmic ray cross sections. The major missing technology is a detector array architecture that can be gaplessly tiled to deliver the desired pixel counts of npixel ~105, while being providing a robust process to produce these detector arrays. We introduce a new array architecture that is very flexible allowing for a variety of tileable solutions and describe its individual components and the tests of those. Our results demonstrate that this architecture allows for flexible designs with high yields and reliable superconducting bump-bond connections of detectors and the cold readout SQUID multiplexers directly under the detector array, or on a different board that can be connected with e.g. flex lines for compact tiling.","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"99 3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121055003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}