The COVID-19 pandemic is the most severe pandemic caused by a respiratory virus since the 1918 influenza pandemic. As is the case with other respiratory viruses, three modes of transmission have been invoked: contact (direct and through fomites), large droplets and aerosols. This narrative review makes the case that aerosol transmission is an important mode for COVID-19, through reviewing studies about bioaerosol physiology, detection of infectious SARS-CoV-2 in exhaled bioaerosols, prolonged SARS-CoV-2 infectivity persistence in aerosols created in the laboratory, detection of SARS-CoV-2 in air samples, investigation of outbreaks with manifest involvement of aerosols, and animal model experiments. SARS-CoV-2 joins influenza A virus as a virus with proven pandemic capacity that can be spread by the aerosol route. This has profound implications for the control of the current pandemic and for future pandemic preparedness.
The role of indirect contact in the transmission of SARS-CoV-2 is not clear. SARS-CoV-2 persists on dry surfaces for hours to days; published studies have largely focused on hard surfaces with less research being conducted on different porous surfaces, such as textiles. Understanding the potential risks of indirect transmission of COVID-19 is useful for settings where there is close contact with textiles, including healthcare, manufacturing and retail environments. This article aims to review current research on porous surfaces in relation to their potential as fomites of coronaviruses compared to non-porous surfaces. Current methodologies for assessing the stability and recovery of coronaviruses from surfaces are also explored. Coronaviruses are often less stable on porous surfaces than non-porous surfaces, for example, SARS-CoV-2 persists for 0.5 h-5 days on paper and 3-21 days on plastic; however, stability is dependent on the type of surface. In particular, the surface properties of textiles differ widely depending on their construction, leading to variation in the stability of coronaviruses, with longer persistence on more hydrophobic materials such as polyester (1-3 days) compared to highly absorbent cotton (2 h-4 days). These findings should be considered where there is close contact with potentially contaminated textiles.
There is an unprecedented concern regarding the viral strain SARS-CoV-2 and especially its respiratory disease more commonly known as COVID-19. SARS-CoV-2 virus has the ability to survive on different surfaces for extended periods, ranging from days up to months. The new infectious properties of SARS-CoV-2 vary depending on the properties of fomite surfaces. In this review, we summarize the risk factors involved in the indirect transmission pathways of SARS-CoV-2 strains on fomite surfaces. The main mode of indirect transmission is the contamination of porous and non-porous inanimate surfaces such as textile surfaces that include clothes and most importantly personal protective equipment like personal protective equipment kits, masks, etc. In the second part of the review, we highlight materials and processes that can actively reduce the SARS-CoV-2 surface contamination pattern and the associated transmission routes. The review also focuses on some general methodologies for designing advanced and effective antiviral surfaces by physical and chemical modifications, viral inhibitors, etc.
Ever since the devastating 1918-1919 influenza pandemic, policy makers have employed mathematical models to predict the course of epidemics and pandemics in an effort to mitigate their worst impacts. But while Britain has long been a pioneer of predictive epidemiology and disease modellers occupied influential positions on key committees that advised the government on its response to the coronavirus pandemic, as in 1918 Britain mounted one of the least effective responses to Covid-19 of any country in the world. Arguing that this 'failure of expertise' was the result of medical and political complacency and over-reliance on disease models predicated on influenza, this paper uses the lens of medical history to show how medical attitudes to Covid-19 mirrored those of the English medical profession in 1918. Rather than putting our faith in preventive medicine and statistical technologies to predict the course of epidemics and dictate suppressive measures in future, I argue we need to cultivate more profound forms of imaginative engagement with infectious disease outbreaks that take account of the long history of quarantines and the lived experiences of pandemics. A useful starting point would be to recognize that while measures such as the R° may be useful for calculating the reproductive rate of a virus, they can never capture the full risks of pandemics or their social complexity.
The coronavirus disease 2019 (COVID-19) pandemic has disrupted the lives of billions across the world. Mathematical modelling has been a key tool deployed throughout the pandemic to explore the potential public health impact of an unmitigated epidemic. The results of such studies have informed governments' decisions to implement non-pharmaceutical interventions to control the spread of the virus. In this article, we explore the complex relationships between models, decision-making, the media and the public during the COVID-19 pandemic in the United Kingdom of Great Britain and Northern Ireland (UK). Doing so not only provides an important historical context of COVID-19 modelling and how it has shaped the UK response, but as the pandemic continues and looking towards future pandemic preparedness, understanding these relationships and how they might be improved is critical. As such, we have synthesized information gathered via three methods: a survey to publicly list attendees of the Scientific Advisory Group for Emergencies, the Scientific Pandemic Influenza Group on Modelling and other comparable advisory bodies, interviews with science communication experts and former scientific advisors, and reviewing some of the key COVID-19 modelling literature from 2020. Our research highlights the desire for increased bidirectional communication between modellers, decision-makers and the public, as well as the need to convey uncertainty inherent in transmission models in a clear manner. These aspects should be considered carefully ahead of the next emergency response.
When the history of the COVID-19 pandemic is written, it is likely to show that the mental models held by scientists sometimes facilitated their thinking, thereby leading to lives saved, and at other times constrained their thinking, thereby leading to lives lost. This paper explores some competing mental models of how infectious diseases spread and shows how these models influenced the scientific process and the kinds of facts that were generated, legitimized and used to support policy. A central theme in the paper is the relative weight given by dominant scientific voices to probabilistic arguments based on experimental measurements versus mechanistic arguments based on theory. Two examples are explored: the cholera epidemic in nineteenth century London-in which the story of John Snow and the Broad Street pump is retold-and the unfolding of the COVID-19 pandemic in 2020 and early 2021-in which the evidence-based medicine movement and its hierarchy of evidence features prominently. In each case, it is shown that prevailing mental models-which were assumed by some to transcend theory but were actually heavily theory-laden-powerfully shaped both science and policy, with fatal consequences for some.
We begin by describing our observations of the ways in which the conduct of research has changed during the COVID-19 pandemic and go on to comment on the quality of the scientific advice that is provided to UK citizens, and especially to schools. Researchers, like many, have suffered from the effects of the pandemic. Those hardships notwithstanding, we suggest that research into COVID-19 has benefitted from a 'seed corn' of discovery science that has provided the basis for routine diagnostic PCR and antibody tests; for structural analyses of the way in which the SARS-CoV-2 virus interacts with cells; for the development of new treatments (and the debunking of ineffective ones); for studies of the genetics of susceptibility to SARS-CoV-2; and for the development of vaccines. The speed of dissemination of research has benefitted from the widespread use of pre-prints, and researchers and funders have become more nimble in their approaches to research and more willing to change their priorities in the face of the pandemic. In our experience, the advice provided to schools on the basis of this research was, however, often published at the last minute and was frequently flawed or inconsistent. This has led to a widening of the attainment gap between children from disadvantaged backgrounds and their peers and it has exacerbated the digital divide and holiday hunger. The consequences will be felt for many years to come and will jeopardize diversity in research and other careers.