首页 > 最新文献

International Journal of Applied Chemistry最新文献

英文 中文
Physicochemical Characterization of Carbide Ash Wastes Collected from Ikorodu and Ajegunle Local Automobile Mechanic Workshops in Lagos State 从拉各斯州 Ikorodu 和 Ajegunle 当地汽车修理厂收集的硬质合金灰废料的物理化学特性分析
Pub Date : 2024-07-01 DOI: 10.14445/23939133/ijac-v11i2p101
Alegbe M.J, Moronkola B.A, Jaji S.O, Balogun R.S, Adejare A.A, Orungbamila F, Badmus A.W, Gbelekale O
- Some local government areas in Lagos State, Nigeria, revealed that the careless disposal of Carbide Ash Waste (CAW) produced by the local auto industry has raised serious environmental concerns because it has an impact on nearby humans and ecosystems. Examining and evaluating the wastes made of calcium carbide ash is the goal of this. Fourier transform infrared (FTIR) spectroscopy, Thermogravimetric Analysis (TGA), scanning electron microscopy (SEM), X-ray fluorescence (XRF)
- 尼日利亚拉各斯州的一些地方政府揭示,当地汽车工业产生的电石灰废物(CAW)处理不当已引起严重的环境问题,因为它会对附近的人类和生态系统造成影响。研究和评估电石灰废物是本研究的目标。傅立叶变换红外光谱(FTIR)、热重分析(TGA)、扫描电子显微镜(SEM)、X 射线荧光(XRF)
{"title":"Physicochemical Characterization of Carbide Ash Wastes Collected from Ikorodu and Ajegunle Local Automobile Mechanic Workshops in Lagos State","authors":"Alegbe M.J, Moronkola B.A, Jaji S.O, Balogun R.S, Adejare A.A, Orungbamila F, Badmus A.W, Gbelekale O","doi":"10.14445/23939133/ijac-v11i2p101","DOIUrl":"https://doi.org/10.14445/23939133/ijac-v11i2p101","url":null,"abstract":"- Some local government areas in Lagos State, Nigeria, revealed that the careless disposal of Carbide Ash Waste (CAW) produced by the local auto industry has raised serious environmental concerns because it has an impact on nearby humans and ecosystems. Examining and evaluating the wastes made of calcium carbide ash is the goal of this. Fourier transform infrared (FTIR) spectroscopy, Thermogravimetric Analysis (TGA), scanning electron microscopy (SEM), X-ray fluorescence (XRF)","PeriodicalId":13860,"journal":{"name":"International Journal of Applied Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141852532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Environment Changes on Biodiversity 环境变化对生物多样性的影响
Pub Date : 2024-07-01 DOI: 10.14445/23939133/ijac-v11i2p102
Shaziya Mohammed Irfan Momin
{"title":"Impact of Environment Changes on Biodiversity","authors":"Shaziya Mohammed Irfan Momin","doi":"10.14445/23939133/ijac-v11i2p102","DOIUrl":"https://doi.org/10.14445/23939133/ijac-v11i2p102","url":null,"abstract":"","PeriodicalId":13860,"journal":{"name":"International Journal of Applied Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141847622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Production of Biodiesel from Waste Cooking Oil using A Zinc-Based Metal-Organic Framework (Zn-MOF) As Catalyst 使用锌基金属有机框架 (Zn-MOF) 作为催化剂从废弃烹调油中生产生物柴油
Pub Date : 2024-01-30 DOI: 10.14445/23939133/ijac-v11i1p101
Okpara Sergeant Bull, Sunday Monsuru Adewale, Eyu Okpa
- Due to fossil fuel diminishing reserves, global warming, and high petroleum prices, there is a need to generate alternative, sustainable, renewable, and biodegradable biodiesel. In this paper, a zinc-based Metal-Organic Framework (Zn-MOF) was solvothermally synthesized, characterized and then used as a catalyst in place of the traditionally used toxic acids and bases as catalysts in biodiesel production. The Zn-MOF was synthesized using zinc nitrate hexahydrate, (ZnNO 3 ) 2. 6H 2 O as the source of metal ion (a Lewis acid), while benzene-1,4-dicarboxylic acid (BDCA) served as a ligand (a Lewis base). A mixture of dimethylacetamide (DMA) and H 2 O (1:1 ratio) functioned as solvent. In a clean and dry beaker, 0.297 g (0.999 mmol) of Zn(NO 3 ) 2. 6H 2 O was completely dissolved in 2 ml of distilled water. In another clean and dry beaker, 0.166 g (0.999 mmol) of BDCA was dissolved in 2 mL of DMA. Then, both solutions were mixed together and then transferred into a Teflon-lined autoclave. The Teflon-lined autoclave containing the mixture was put in an oven and heated at 150 °C for 24 h. After this period, the Zn-MOF was formed as colourless plate crystalline solids. The Zn-MOF remain unmelted even beyond 360 °C. Furthermore, the Zn-MOF was characterized by FTIR and powder X-ray diffraction. The FTIR shows the incorporation of the ligand into the Zn-MOF. The melting point and the powder X-ray diffraction results agree with the properties of MOFs in the literature. After that, the Zn-MOF was used as a catalyst in the transesterification of treated Waste Cooking Oil (WCO) for biodiesel production. The biodiesel was obtained by transesterification process at a temperature of 60 °C using a 1:5 molar ratio of oil to methanol. The biodiesel yield was 96%. The biodiesel diesel produced was physicochemically characterized. The analysis results revealed that the experimentally obtained values for viscosity, density, flashpoint, cloud point and pour point were 4.1 cSt, 821 kg/m³, 170 °C, below 0 °C and 2 °C, respectively. These values, when compared with standards (ASTM), were in agreement. The Zn-MOF recovered and recycled five times without degradation. Hence, it can be said that Zn-MOF is a good catalyst in the transesterification process of biodiesel production and can, therefore, replace the traditionally used toxic acids and bases.
- 由于化石燃料储量不断减少、全球变暖和石油价格居高不下,人们需要生产可替代、可持续、可再生和可生物降解的生物柴油。本文对一种锌基金属有机框架(Zn-MOF)进行了溶热合成和表征,然后将其用作催化剂,以取代传统上用作生物柴油生产催化剂的有毒酸和碱。Zn-MOF 是以六水硝酸锌 (ZnNO 3 ) 2. 6H 2 O 作为金属离子源(一种路易斯酸),以苯-1,4-二甲酸 (BDCA) 作为配体(一种路易斯碱)合成的。二甲基乙酰胺(DMA)和 H 2 O(1:1 比例)的混合物用作溶剂。在一个干净干燥的烧杯中,将 0.297 克(0.999 毫摩尔)Zn(NO 3 ) 2.在另一个干净干燥的烧杯中,将 0.166 克(0.999 毫摩尔)BDCA 溶于 2 毫升 DMA 中。然后,将两种溶液混合在一起,再转移到特氟龙内衬高压釜中。将装有混合物的特氟龙内衬高压釜放入烤箱中,在 150 °C 的温度下加热 24 小时后,Zn-MOF 形成无色板状结晶固体。即使温度超过 360 °C,Zn-MOF 仍未熔化。此外,Zn-MOF 还通过傅立叶变换红外光谱和粉末 X 射线衍射进行了表征。傅立叶变换红外光谱显示了配体与 Zn-MOF 的结合。熔点和粉末 X 射线衍射结果与文献中的 MOF 特性一致。随后,Zn-MOF 被用作催化剂,用于经处理的废食用油(WCO)的酯交换反应,以生产生物柴油。生物柴油是在温度为 60 ℃、油与甲醇的摩尔比为 1:5 的条件下通过酯交换反应获得的。生物柴油的产量为 96%。对生产的生物柴油进行了物理化学表征。分析结果显示,实验得出的粘度、密度、闪点、浊点和倾点值分别为 4.1 cSt、821 kg/m³、170 °C、低于 0 °C 和 2 °C。这些数值与标准(ASTM)相比是一致的。Zn-MOF 经过五次回收和再循环,没有发生降解。因此,可以说 Zn-MOF 在生物柴油生产的酯交换过程中是一种很好的催化剂,因此可以取代传统使用的有毒酸和碱。
{"title":"Production of Biodiesel from Waste Cooking Oil using A Zinc-Based Metal-Organic Framework (Zn-MOF) As Catalyst","authors":"Okpara Sergeant Bull, Sunday Monsuru Adewale, Eyu Okpa","doi":"10.14445/23939133/ijac-v11i1p101","DOIUrl":"https://doi.org/10.14445/23939133/ijac-v11i1p101","url":null,"abstract":"- Due to fossil fuel diminishing reserves, global warming, and high petroleum prices, there is a need to generate alternative, sustainable, renewable, and biodegradable biodiesel. In this paper, a zinc-based Metal-Organic Framework (Zn-MOF) was solvothermally synthesized, characterized and then used as a catalyst in place of the traditionally used toxic acids and bases as catalysts in biodiesel production. The Zn-MOF was synthesized using zinc nitrate hexahydrate, (ZnNO 3 ) 2. 6H 2 O as the source of metal ion (a Lewis acid), while benzene-1,4-dicarboxylic acid (BDCA) served as a ligand (a Lewis base). A mixture of dimethylacetamide (DMA) and H 2 O (1:1 ratio) functioned as solvent. In a clean and dry beaker, 0.297 g (0.999 mmol) of Zn(NO 3 ) 2. 6H 2 O was completely dissolved in 2 ml of distilled water. In another clean and dry beaker, 0.166 g (0.999 mmol) of BDCA was dissolved in 2 mL of DMA. Then, both solutions were mixed together and then transferred into a Teflon-lined autoclave. The Teflon-lined autoclave containing the mixture was put in an oven and heated at 150 °C for 24 h. After this period, the Zn-MOF was formed as colourless plate crystalline solids. The Zn-MOF remain unmelted even beyond 360 °C. Furthermore, the Zn-MOF was characterized by FTIR and powder X-ray diffraction. The FTIR shows the incorporation of the ligand into the Zn-MOF. The melting point and the powder X-ray diffraction results agree with the properties of MOFs in the literature. After that, the Zn-MOF was used as a catalyst in the transesterification of treated Waste Cooking Oil (WCO) for biodiesel production. The biodiesel was obtained by transesterification process at a temperature of 60 °C using a 1:5 molar ratio of oil to methanol. The biodiesel yield was 96%. The biodiesel diesel produced was physicochemically characterized. The analysis results revealed that the experimentally obtained values for viscosity, density, flashpoint, cloud point and pour point were 4.1 cSt, 821 kg/m³, 170 °C, below 0 °C and 2 °C, respectively. These values, when compared with standards (ASTM), were in agreement. The Zn-MOF recovered and recycled five times without degradation. Hence, it can be said that Zn-MOF is a good catalyst in the transesterification process of biodiesel production and can, therefore, replace the traditionally used toxic acids and bases.","PeriodicalId":13860,"journal":{"name":"International Journal of Applied Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140484694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analytical Tools for Characterization of the Micellar Surfactant System 表征胶束表面活性剂系统的分析工具
Pub Date : 2023-12-06 DOI: 10.37622/ijac/19.2.2023.99-107
Tejas Joshi
{"title":"Analytical Tools for Characterization of the Micellar Surfactant System","authors":"Tejas Joshi","doi":"10.37622/ijac/19.2.2023.99-107","DOIUrl":"https://doi.org/10.37622/ijac/19.2.2023.99-107","url":null,"abstract":"","PeriodicalId":13860,"journal":{"name":"International Journal of Applied Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138596370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Examine the Feasibility of Anaerobic Biohydrogen Production Starting from a 25%-75% Mixture of the Complex Feed and the Bulk Drug Wastewater 研究利用 25%-75% 的复合给料和大宗药物废水混合物进行厌氧生物制氢的可行性
Pub Date : 2023-11-30 DOI: 10.14445/23939133/ijac-v10i3p101
Hema Krishna R, Venkata Mohan S, Swamy A.V.V.S
{"title":"Examine the Feasibility of Anaerobic Biohydrogen Production Starting from a 25%-75% Mixture of the Complex Feed and the Bulk Drug Wastewater","authors":"Hema Krishna R, Venkata Mohan S, Swamy A.V.V.S","doi":"10.14445/23939133/ijac-v10i3p101","DOIUrl":"https://doi.org/10.14445/23939133/ijac-v10i3p101","url":null,"abstract":"","PeriodicalId":13860,"journal":{"name":"International Journal of Applied Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139196944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proximate Composition and Selected Physicochemical Parameters of Cake Prepared with Preservatives 用防腐剂制备的蛋糕的近似成分和部分理化参数
Pub Date : 2023-11-30 DOI: 10.14445/23939133/ijac-v10i3p102
Ndidi Nwachoko, Udiomine B. Akuru, Belema N Duke, C. O. Egbunefu
{"title":"Proximate Composition and Selected Physicochemical Parameters of Cake Prepared with Preservatives","authors":"Ndidi Nwachoko, Udiomine B. Akuru, Belema N Duke, C. O. Egbunefu","doi":"10.14445/23939133/ijac-v10i3p102","DOIUrl":"https://doi.org/10.14445/23939133/ijac-v10i3p102","url":null,"abstract":"","PeriodicalId":13860,"journal":{"name":"International Journal of Applied Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139206750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of Green Chemistry for the One-pot Preparation of Tris (4-bromophenyl) Chlorosilane 绿色化学在一锅法制备三(4-溴苯基)氯硅烷中的应用
Pub Date : 2023-06-30 DOI: 10.14445/23939133/ijac-v10i2p101
O. S. Bull, E. Okpa
Among the twelve principles of green chemistry are the avoidance of waste, the use of benign chemicals, and the incorporation of the starting materials into the final product. To this end, a one-pot facile, more benign, less expensive and higher yield method has been used for the preparation of tris(4-bromophenyl)chlorosilane, which is a highly used precursor for the making of a rigid core carbosilane dendrimers. The reaction pathway for the synthesis of tris(4bromophenyl)chlorosilane is similar to the procedure followed for synthesising similar compounds in the literature but with differences in starting materials and modifications in the workup processes. The tris(4-bromophenyl)chlorosilane in this work was prepared by the dissolution of 1,4-dibromobenzene in dry ether at -76 °C, followed by the slow addition/stirring of n-BuLi. After 1 h of stirring, tetrachlorosilane was slowly added at temperature range of -70 to -75 °C. The reaction setup was allowed to stir further to room temperature for 24 h. The reaction was stopped, followed by a workup to obtain a colourless powder product with an 82% yield. The colourless powder was characterised by melting point (123.4 °C) and elemental analysis (Anal. Calc for C18H12ClBr3Si: C, 40.67; H, 2.28; found: C, 40.80; H, 2.26; as well as H NMR: δ (CDCl3 400 MHz) 7.44 (d, J = 8.4 Hz, 6H, Ar-H), 7.58 (d, J = 8.4 Hz, 6H, Ar-H); C{H}, NMR: δ (CDCl3, 101 MHz) 126.46, 130.66, 131.61, 136.53 ppm; Si{H}, NMR: δ (CDCl3, 79.5 MHz) 1.47 ppm. The results obtained from this one-pot synthetic method are in agreement with that reported in the literature for the multi-step pathway and more expensive starting materials.
绿色化学的十二项原则包括避免浪费,使用良性化学品,以及将原料纳入最终产品。为此,采用一锅简便、更温和、成本更低、收率更高的方法制备了三(4-溴苯基)氯硅烷。三(4-溴苯基)氯硅烷是制造刚性核碳硅烷树状大分子的常用前驱体。合成三(4溴苯基)氯硅烷的反应途径与文献中类似化合物的合成过程相似,但在起始原料和后处理过程中的修饰方面存在差异。本文采用-76℃将1,4-二溴苯溶解于干醚中,然后缓慢加入/搅拌n-BuLi制备了三(4-溴苯基)氯硅烷。搅拌1h后,在-70 ~ -75℃的温度范围内缓慢加入四氯硅烷。将反应装置进一步搅拌至室温24小时。停止反应,随后进行检查,获得收率为82%的无色粉末产品。通过熔点(123.4°C)和元素分析(Anal)表征该无色粉末。C18H12ClBr3Si的Calc: C, 40.67;H, 2.28;发现:C, 40.80;H, 2.26;δ (CDCl3 400 MHz) 7.44 (d, J = 8.4 Hz, 6H, Ar-H), 7.58 (d, J = 8.4 Hz, 6H, Ar-H);C{H}, NMR: δ (CDCl3, 101 MHz) 126.46, 130.66, 131.61, 136.53 ppm;Si{H}, NMR: δ (CDCl3, 79.5 MHz) 1.47 ppm。这种一锅法合成的结果与文献报道的多步途径和较昂贵的起始材料的结果一致。
{"title":"Application of Green Chemistry for the One-pot Preparation of Tris (4-bromophenyl) Chlorosilane","authors":"O. S. Bull, E. Okpa","doi":"10.14445/23939133/ijac-v10i2p101","DOIUrl":"https://doi.org/10.14445/23939133/ijac-v10i2p101","url":null,"abstract":"Among the twelve principles of green chemistry are the avoidance of waste, the use of benign chemicals, and the incorporation of the starting materials into the final product. To this end, a one-pot facile, more benign, less expensive and higher yield method has been used for the preparation of tris(4-bromophenyl)chlorosilane, which is a highly used precursor for the making of a rigid core carbosilane dendrimers. The reaction pathway for the synthesis of tris(4bromophenyl)chlorosilane is similar to the procedure followed for synthesising similar compounds in the literature but with differences in starting materials and modifications in the workup processes. The tris(4-bromophenyl)chlorosilane in this work was prepared by the dissolution of 1,4-dibromobenzene in dry ether at -76 °C, followed by the slow addition/stirring of n-BuLi. After 1 h of stirring, tetrachlorosilane was slowly added at temperature range of -70 to -75 °C. The reaction setup was allowed to stir further to room temperature for 24 h. The reaction was stopped, followed by a workup to obtain a colourless powder product with an 82% yield. The colourless powder was characterised by melting point (123.4 °C) and elemental analysis (Anal. Calc for C18H12ClBr3Si: C, 40.67; H, 2.28; found: C, 40.80; H, 2.26; as well as H NMR: δ (CDCl3 400 MHz) 7.44 (d, J = 8.4 Hz, 6H, Ar-H), 7.58 (d, J = 8.4 Hz, 6H, Ar-H); C{H}, NMR: δ (CDCl3, 101 MHz) 126.46, 130.66, 131.61, 136.53 ppm; Si{H}, NMR: δ (CDCl3, 79.5 MHz) 1.47 ppm. The results obtained from this one-pot synthetic method are in agreement with that reported in the literature for the multi-step pathway and more expensive starting materials.","PeriodicalId":13860,"journal":{"name":"International Journal of Applied Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90978921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Green and Polymer-supported Periodates forms of Amberlyst a 26 and Amberlite IRA 904 for oxidation of 1-Phenyl alcohol Amberlyst a26和amberlyite IRA 904氧化1-苯基醇的绿色和聚合物负载高碘酸盐形式的开发
Pub Date : 2023-04-30 DOI: 10.14445/23939133/ijac-v10i1p101
V. Sonawane
{"title":"Development of Green and Polymer-supported Periodates forms of Amberlyst a 26 and Amberlite IRA 904 for oxidation of 1-Phenyl alcohol","authors":"V. Sonawane","doi":"10.14445/23939133/ijac-v10i1p101","DOIUrl":"https://doi.org/10.14445/23939133/ijac-v10i1p101","url":null,"abstract":"","PeriodicalId":13860,"journal":{"name":"International Journal of Applied Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76295078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extension of Hand Correlation Model to Obtain on Quarternary System (MTBE-hydroqinone-phenol-water) 扩展Hand相关模型求解季相体系(mtbe -氢醌-苯酚-水)
Pub Date : 2022-12-31 DOI: 10.14445/23939133/ijac-v9i3p103
Mervat. A. Ahmed, Mawa. G. Diab, E. M
{"title":"Extension of Hand Correlation Model to Obtain on Quarternary System (MTBE-hydroqinone-phenol-water)","authors":"Mervat. A. Ahmed, Mawa. G. Diab, E. M","doi":"10.14445/23939133/ijac-v9i3p103","DOIUrl":"https://doi.org/10.14445/23939133/ijac-v9i3p103","url":null,"abstract":"","PeriodicalId":13860,"journal":{"name":"International Journal of Applied Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74152599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distribution, Water Soluble ions, Monitoring of Indoor Particulate Matter PM10, PM10-2.5, CO and CO2 during Burning of Dhoop Samples 环样燃烧过程中室内颗粒物PM10、PM10-2.5、CO和CO2的分布、水溶性离子、监测
Pub Date : 2022-12-31 DOI: 10.14445/23939133/ijac-v9i3p102
S. Ramteke, B. Sahu
{"title":"Distribution, Water Soluble ions, Monitoring of Indoor Particulate Matter PM10, PM10-2.5, CO and CO2 during Burning of Dhoop Samples","authors":"S. Ramteke, B. Sahu","doi":"10.14445/23939133/ijac-v9i3p102","DOIUrl":"https://doi.org/10.14445/23939133/ijac-v9i3p102","url":null,"abstract":"","PeriodicalId":13860,"journal":{"name":"International Journal of Applied Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75846071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Applied Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1