Pub Date : 2024-08-30DOI: 10.1016/j.coal.2024.104603
Wei Ni , Jian Cao , Wenxuan Hu , Ruijie Zhang , Wenjun He , An Xie
Methane oxidation affects hydrocarbon accumulation and carbon cycling with important geological and paleoclimatic responses. However, the petrological and geochemical evidences that can clearly discern anaerobic (AOM) and thermochemical (TOM) oxidations in petroliferous basins are unclear, causing the disputes if these two processes can take place in specific conditions. Here, the Baikouquan Formation (T1b) in the Mahu Sag, Junggar Basin, China, was used as the first case study for comprehensive petrological and geochemical analyses to explore this scientific issue. Results indicate that the two main types of T1b calcite cement record different methane oxidation mechanisms. Calcite cements filling intergranular pores were formed during early diagenesis in relatively shallow-burial stages, through AOM with high-valence Mn oxides as electron acceptors, and with compositions of −47.5 ‰ < δ13C < −30.9 ‰, 1.1 wt% < MnO < 5.8 wt%, and 0.02 wt% < FeO < 0.13 wt%. Calcite cements filling intragranular dissolution pores were formed through TOM with high-valence Mn oxides as electron acceptors during mesogenesis during relatively deep-burial stages, with compositions of −39.7 ‰ < δ13C < −14.3 ‰, 0.43 wt% < MnO < 11.00 wt%, and 0.03 wt% < FeO < 0.36 wt%. Thus, methane oxidation underwent a transition from AOM to TOM with increasing depth, as recorded by the calcite cements with different occurrences. This transition may be a common feature of clastic strata in petroliferous basins.
{"title":"Petrological and geochemical evidences for anaerobic and thermochemical oxidations of methane in petroliferous basins","authors":"Wei Ni , Jian Cao , Wenxuan Hu , Ruijie Zhang , Wenjun He , An Xie","doi":"10.1016/j.coal.2024.104603","DOIUrl":"10.1016/j.coal.2024.104603","url":null,"abstract":"<div><p>Methane oxidation affects hydrocarbon accumulation and carbon cycling with important geological and paleoclimatic responses. However, the petrological and geochemical evidences that can clearly discern anaerobic (AOM) and thermochemical (TOM) oxidations in petroliferous basins are unclear, causing the disputes if these two processes can take place in specific conditions. Here, the Baikouquan Formation (T<sub>1</sub>b) in the Mahu Sag, Junggar Basin, China, was used as the first case study for comprehensive petrological and geochemical analyses to explore this scientific issue. Results indicate that the two main types of T<sub>1</sub>b calcite cement record different methane oxidation mechanisms. Calcite cements filling intergranular pores were formed during early diagenesis in relatively shallow-burial stages, through AOM with high-valence Mn oxides as electron acceptors, and with compositions of −47.5 ‰ < δ<sup>13</sup>C < −30.9 ‰, 1.1 wt% < MnO < 5.8 wt%, and 0.02 wt% < FeO < 0.13 wt%. Calcite cements filling intragranular dissolution pores were formed through TOM with high-valence Mn oxides as electron acceptors during mesogenesis during relatively deep-burial stages, with compositions of −39.7 ‰ < δ<sup>13</sup>C < −14.3 ‰, 0.43 wt% < MnO < 11.00 wt%, and 0.03 wt% < FeO < 0.36 wt%. Thus, methane oxidation underwent a transition from AOM to TOM with increasing depth, as recorded by the calcite cements with different occurrences. This transition may be a common feature of clastic strata in petroliferous basins.</p></div>","PeriodicalId":13864,"journal":{"name":"International Journal of Coal Geology","volume":"293 ","pages":"Article 104603"},"PeriodicalIF":5.6,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142128567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-29DOI: 10.1016/j.coal.2024.104591
Jamaluddin , Michael Wagreich , Kateřina Schöpfer , Reinhard F. Sachsenhofer , Maria , Diana Rahmawati
The Middle Miocene Balikpapan Formation is exposed in the Samarinda Anticlinorium, which forms part of the Lower Kutai Basin situated on East Kalimantan, Indonesia. The Balikpapan Formation is considered the main source rock for oil and gas fields in Lower Kutai Basin. This study integrates sedimentology, organic geochemistry, organic petrography and calcareous nannofossil analysis to characterize the depositional environment, to determine the source of the organic matter, and to assess the hydrocarbon potential of the Balikpapan Formation. The studied sections contain at one locality calcareous nannofossil assemblages with low diversity including Sphenolithus heteromorphus, suggesting nannofossil zones NN4 – NN5 (upper Burdigalian - Langhian-lower Serravallian) are restricted to the Air Putih section in the northeastern part of the study area. Six facies associations were identified in the study area, comprising eleven lithofacies, interpreted as fluvial-deltaic to shallow marine in origin. The fine-grained lithofacies include shale, coaly shale and coal while the coarse-grained facies include sandstone and sandy conglomerates. The geochemical results (TOC) indicate that the analyzed samples have strongly varying total organic carbon (TOC) contents. The organic matter is composed of type III (gas-prone) and type II-III (mixed oil and gas prone) kerogen, with HI values ranging from 32 to 252 mg HC/g TOC. The Rock-Eval parameter Tmax 409–441 °C and vitrinite reflectance values (0.40–0.67 %Rr) indicate that the sediments are immature to marginal mature. The rank of coal in the Balikpapan Formation ranges from the sub-bituminous to the high-volatile bituminous B stage.
中新世巴厘巴板地层出露于三马林达地层(Samarinda Anticlinorium),该地层是位于印度尼西亚东加里曼丹的下古泰盆地的一部分。巴厘巴板地层被认为是下古泰盆地油气田的主要源岩。这项研究综合了沉积学、有机地球化学、有机岩石学和钙质化石分析,以确定沉积环境的特征,确定有机物质的来源,并评估巴厘巴板地层的碳氢化合物潜力。所研究的地段中有一处钙质化石组合的多样性较低,其中包括异形石(Sphenolithus heteromorphus),这表明化石区 NN4 - NN5(上布迪加连统 - 朗希安统 - 下塞拉瓦利统)仅限于研究区东北部的 Air Putih 地段。研究区内发现了六个岩相组合,包括 11 个岩性,可解释为河流-三角洲-浅海成因。细粒岩相包括页岩、褐煤页岩和煤,粗粒岩相包括砂岩和砂砾岩。地球化学结果(总有机碳)表明,分析样本的总有机碳含量差异很大。有机质由 III 型(易生气)和 II-III 型(油气混合)角质组成,HI 值范围为 32 至 252 毫克 HC/g TOC。岩石评估参数 Tmax 409-441 °C 和玻璃光泽反射率值(0.40-0.67 %Rr)表明,沉积物从未成熟到边缘成熟。巴厘巴板地层的煤炭等级从亚烟煤到高挥发性烟煤 B 级不等。
{"title":"Hydrocarbon potential and depositional environment of the Middle Miocene Balikpapan Formation, lower Kutai Basin, Indonesia: Sedimentology, calcareous nannofossil, organic geochemistry, and organic petrography integrated approach","authors":"Jamaluddin , Michael Wagreich , Kateřina Schöpfer , Reinhard F. Sachsenhofer , Maria , Diana Rahmawati","doi":"10.1016/j.coal.2024.104591","DOIUrl":"10.1016/j.coal.2024.104591","url":null,"abstract":"<div><p>The Middle Miocene Balikpapan Formation is exposed in the Samarinda Anticlinorium, which forms part of the Lower Kutai Basin situated on East Kalimantan, Indonesia. The Balikpapan Formation is considered the main source rock for oil and gas fields in Lower Kutai Basin. This study integrates sedimentology, organic geochemistry, organic petrography and calcareous nannofossil analysis to characterize the depositional environment, to determine the source of the organic matter, and to assess the hydrocarbon potential of the Balikpapan Formation. The studied sections contain at one locality calcareous nannofossil assemblages with low diversity including <em>Sphenolithus heteromorphus</em>, suggesting nannofossil zones NN4 – NN5 (upper Burdigalian - Langhian-lower Serravallian) are restricted to the Air Putih section in the northeastern part of the study area. Six facies associations were identified in the study area, comprising eleven lithofacies, interpreted as fluvial-deltaic to shallow marine in origin. The fine-grained lithofacies include shale, coaly shale and coal while the coarse-grained facies include sandstone and sandy conglomerates. The geochemical results (TOC) indicate that the analyzed samples have strongly varying total organic carbon (TOC) contents. The organic matter is composed of type III (gas-prone) and type II-III (mixed oil and gas prone) kerogen, with HI values ranging from 32 to 252 mg HC/g TOC. The Rock-Eval parameter T<sub>max</sub> 409–441 °C and vitrinite reflectance values (0.40–0.67 %Rr) indicate that the sediments are immature to marginal mature. The rank of coal in the Balikpapan Formation ranges from the sub-bituminous to the high-volatile bituminous B stage.</p></div>","PeriodicalId":13864,"journal":{"name":"International Journal of Coal Geology","volume":"293 ","pages":"Article 104591"},"PeriodicalIF":5.6,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166516224001484/pdfft?md5=ff70757cc815fc2b8fb4b0c03eb84cca&pid=1-s2.0-S0166516224001484-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142088872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1016/j.coal.2024.104590
Tatiana Larikova , Ivana Sýkorová , Martin Racek , Martina Havelcová , Vladimír Machovič , Ladislav Lapčák
<div><p>The Bytíz deposit is a part of the Příbram uranium and base-metal ore district. It is an example of a vein-type deposit with polyphase hydrothermal mineralization. Samples of uraniferous solid bitumen from Bytíz with U content up to 38 wt% are characterized petrologically, geochemically, and mineralogically using EPMA, Raman and infrared microspectroscopy. The bitumen-bearing samples consist of base-metal sulfides: galena, sphalerite, pyrite, chalcopyrite, and also minor amounts of tetrahedrite, stibnite, and acanthite, associated with Mn-bearing calcite, quartz and silicates (chlorite, muscovite). Solid bitumens were found in the form of small veins and droplets, and roundish to irregular accumulations, in association with uraninite and carbonate veins.</p><p>U-bearing minerals in the studied samples are represented by uraninite and more rarely by coffinite. Three generations of uraninite in association with solid bitumen were distinguished: 1. spherulites and large grains, filled with organic phase in the cracks; 2. as a part of complex textures inside areas with organic matter; in this case, the uraninite was assumed to have been remobilized; and 3. small inclusions in the latest calcite veins.</p><p>More than 80 vol% of the solid bitumen from the vein fillings appeared to be radiolytically altered. Radiolytic alteration results in changes in optical properties and in composition, and in the formation of various textures around uraninite grains: halos, and irregular textures from simple massive to flow, dendritic, and fractured to a very complex morphology. The random reflectance values of unaltered mineral-free bitumen range from 0.45% to 0.99%, while in the radiolytically altered bitumen the average reflectance values are higher, from approximately 1.72% to 3.44%.</p><p>The degree of graphitization of the organic matter was assessed by infrared micro-spectroscopy. Spectral maps show significant destruction changes of the aliphatic C<img>H bonds and an increase in the content of oxygen functional groups in the vicinity of U minerals.</p><p>On the element distribution maps, obtained by EPMA, the distribution of S, U, Pb and other elements across solid bitumen in the vicinity of uraninite and coffinite has a very heterogeneous character. An elevated content of sulfur in bitumen was also found, as well as a clear interdependence between S and C. It is suggested that the presence of sulfur in solid bitumen may result in ‘clouding’ of the solid bitumen with tiny stibnite grains. The dark rims of the halos observed under the optical microscope may be due to an elevated U content at the rims around the uraninite.</p><p>Based on analysis of complex textural relationships of the solid bitumens with coexisting minerals, the formation of solid bitumen in association with uraninite is therefore assumed to relate to several stages of the influx of hydrothermal fluid. The temperature of the fluid, associated with bitumen formation was estimated to
{"title":"Formation and radiolytic alteration of uraniferous solid bitumen related to hydrothermal base-metal mineralization in the Bytíz deposit, Příbram district, Czech Republic","authors":"Tatiana Larikova , Ivana Sýkorová , Martin Racek , Martina Havelcová , Vladimír Machovič , Ladislav Lapčák","doi":"10.1016/j.coal.2024.104590","DOIUrl":"10.1016/j.coal.2024.104590","url":null,"abstract":"<div><p>The Bytíz deposit is a part of the Příbram uranium and base-metal ore district. It is an example of a vein-type deposit with polyphase hydrothermal mineralization. Samples of uraniferous solid bitumen from Bytíz with U content up to 38 wt% are characterized petrologically, geochemically, and mineralogically using EPMA, Raman and infrared microspectroscopy. The bitumen-bearing samples consist of base-metal sulfides: galena, sphalerite, pyrite, chalcopyrite, and also minor amounts of tetrahedrite, stibnite, and acanthite, associated with Mn-bearing calcite, quartz and silicates (chlorite, muscovite). Solid bitumens were found in the form of small veins and droplets, and roundish to irregular accumulations, in association with uraninite and carbonate veins.</p><p>U-bearing minerals in the studied samples are represented by uraninite and more rarely by coffinite. Three generations of uraninite in association with solid bitumen were distinguished: 1. spherulites and large grains, filled with organic phase in the cracks; 2. as a part of complex textures inside areas with organic matter; in this case, the uraninite was assumed to have been remobilized; and 3. small inclusions in the latest calcite veins.</p><p>More than 80 vol% of the solid bitumen from the vein fillings appeared to be radiolytically altered. Radiolytic alteration results in changes in optical properties and in composition, and in the formation of various textures around uraninite grains: halos, and irregular textures from simple massive to flow, dendritic, and fractured to a very complex morphology. The random reflectance values of unaltered mineral-free bitumen range from 0.45% to 0.99%, while in the radiolytically altered bitumen the average reflectance values are higher, from approximately 1.72% to 3.44%.</p><p>The degree of graphitization of the organic matter was assessed by infrared micro-spectroscopy. Spectral maps show significant destruction changes of the aliphatic C<img>H bonds and an increase in the content of oxygen functional groups in the vicinity of U minerals.</p><p>On the element distribution maps, obtained by EPMA, the distribution of S, U, Pb and other elements across solid bitumen in the vicinity of uraninite and coffinite has a very heterogeneous character. An elevated content of sulfur in bitumen was also found, as well as a clear interdependence between S and C. It is suggested that the presence of sulfur in solid bitumen may result in ‘clouding’ of the solid bitumen with tiny stibnite grains. The dark rims of the halos observed under the optical microscope may be due to an elevated U content at the rims around the uraninite.</p><p>Based on analysis of complex textural relationships of the solid bitumens with coexisting minerals, the formation of solid bitumen in association with uraninite is therefore assumed to relate to several stages of the influx of hydrothermal fluid. The temperature of the fluid, associated with bitumen formation was estimated to ","PeriodicalId":13864,"journal":{"name":"International Journal of Coal Geology","volume":"293 ","pages":"Article 104590"},"PeriodicalIF":5.6,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142099112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.coal.2024.104589
William Gaspard Owona Manga , Carolina Fonseca , Moise Bessong , Noelia Franco , Antonio Donizeti de Oliveira , Arsène Meying , Marie Diane Tonye , João Graciano Mendonça Filho
The Babouri-Figuil Basin is an intracratonic basin (half-graben) in northern Cameroon that is genetically connected to the Benue Trough from Nigeria, and is an area of interest in terms of petroleum prospectivity. Recent studies highlighted the presence of organic-rich formations in the basin. However, none of these works have identified factors that governed the accumulation of organic matter (OM) in the sediments. The main objective of this work is the characterization of these formations through palynofacies and organic geochemical techniques (total organic carbon - TOC, total sulfur, insoluble residue and biomarkers), in order to determine the organic facies, their depositional environments and the main drivers for organic enrichment in the basin. The current study reveals that black shale and massive claystone lithologies constitute the main organic-rich formations in the basin, with TOC reaching up to 26.08 wt%, being characterized by a dominance of bacterially-derived amorphous OM. Palynofacies and biomarker data revealed that these formations are positively associated with anoxic conditions and a partly highly saline and stratified lake water column. The deposition of organic-rich formations in the Babouri-Figuil Basin was mainly controlled by restriction conditions which developed in connection with the regional tectonic framework. The Lower Cretaceous rifting episode in the West and Central African Rift System (WCARS) basins led to the formation of accommodation space, a reduction in water levels, and the development of anoxic conditions within the basin, facilitating the deposition of organic-rich formations. Therefore, the organic enrichment of the Babouri-Figuil Basin has been predominantly controlled by its tectonic evolution, particularly during the syn-rift phase. This phase created favorable conditions for the deposition and preservation of OM, including the establishment of anoxic conditions. Additionally, the paleoclimate (arid conditions), the development of bacterial biomass, and the basin's paleogeography all played a significant role in this process. The organic-rich formations of the Babouri-Figuil Basin show characteristics of prospective petroleum source rocks (high organic content, high proportion of oil-prone kerogen, significant thickness and lateral extension). The combination of organic-rich formations with sandstone deposits above and extensive claystone/shale deposits on top can indicate the presence of an oil play in the basin. A detailed study with broader sampling is needed to investigate thoroughly the variation of organic facies and the influence of paleoenvironmental factors that control the deposition of thick source rock intervals.
{"title":"Paleoenvironmental factors controlling organic-rich formations deposition in the Babouri-Figuil Basin (Northern Cameroon)","authors":"William Gaspard Owona Manga , Carolina Fonseca , Moise Bessong , Noelia Franco , Antonio Donizeti de Oliveira , Arsène Meying , Marie Diane Tonye , João Graciano Mendonça Filho","doi":"10.1016/j.coal.2024.104589","DOIUrl":"10.1016/j.coal.2024.104589","url":null,"abstract":"<div><p>The Babouri-Figuil Basin is an intracratonic basin (half-graben) in northern Cameroon that is genetically connected to the Benue Trough from Nigeria, and is an area of interest in terms of petroleum prospectivity. Recent studies highlighted the presence of organic-rich formations in the basin. However, none of these works have identified factors that governed the accumulation of organic matter (OM) in the sediments. The main objective of this work is the characterization of these formations through palynofacies and organic geochemical techniques (total organic carbon - TOC, total sulfur, insoluble residue and biomarkers), in order to determine the organic facies, their depositional environments and the main drivers for organic enrichment in the basin. The current study reveals that black shale and massive claystone lithologies constitute the main organic-rich formations in the basin, with TOC reaching up to 26.08 wt%, being characterized by a dominance of bacterially-derived amorphous OM. Palynofacies and biomarker data revealed that these formations are positively associated with anoxic conditions and a partly highly saline and stratified lake water column. The deposition of organic-rich formations in the Babouri-Figuil Basin was mainly controlled by restriction conditions which developed in connection with the regional tectonic framework. The Lower Cretaceous rifting episode in the West and Central African Rift System (WCARS) basins led to the formation of accommodation space, a reduction in water levels, and the development of anoxic conditions within the basin, facilitating the deposition of organic-rich formations. Therefore, the organic enrichment of the Babouri-Figuil Basin has been predominantly controlled by its tectonic evolution, particularly during the <em>syn</em>-rift phase. This phase created favorable conditions for the deposition and preservation of OM, including the establishment of anoxic conditions. Additionally, the paleoclimate (arid conditions), the development of bacterial biomass, and the basin's paleogeography all played a significant role in this process. The organic-rich formations of the Babouri-Figuil Basin show characteristics of prospective petroleum source rocks (high organic content, high proportion of oil-prone kerogen, significant thickness and lateral extension). The combination of organic-rich formations with sandstone deposits above and extensive claystone/shale deposits on top can indicate the presence of an oil play in the basin. A detailed study with broader sampling is needed to investigate thoroughly the variation of organic facies and the influence of paleoenvironmental factors that control the deposition of thick source rock intervals.</p></div>","PeriodicalId":13864,"journal":{"name":"International Journal of Coal Geology","volume":"292 ","pages":"Article 104589"},"PeriodicalIF":5.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142085180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-20DOI: 10.1016/j.coal.2024.104588
Sławomir Kędzior
The Orzesze-1 exploratory well with a depth of 3708 m (TVD) was drilled in 2019–2020 in the depocentre of the Upper Silesian Coal Basin (USCB). The methane content in the coal seams has been tested to a depth of 2840 m and the sorption capacity of the coal to a depth of 2576 m. These are the deepest measurements in the USCB so far. The vertical distribution of methane content in the borehole shows two depth zones of interest, the first at a depth 883 m to about 1300 m (maximum methane content about 12 m3/t coaldaf) and another in the range of 1500–2840 m, that is, to the maximum measurement depth, so the actual lower boundary depth of this zone is unknown. The maximum methane content here exceeds 18 m3/t coaldaf at a depth of >2800 m. Both zones are separated by an interval of reduced methane content of about 5 m3/t coaldaf at a depth of approximately 1400 m. The gas composition is dominated by methane (∼90%), and the content of carbon dioxide increases to approximately 15% at a depth of >2300 m. The methane-bearing zone at ∼900–1300 m corresponds to the zone of high- and medium-volatile bituminous coal (second coalification jump), while the highest methane content at a depth of >2800 m was determined in anthracite. The methane sorption capacity of the coal seams oscillates between 16 and 40 m3/t coaldaf with a maximum in anthracite at a depth of >2800 m, where the temperature of the rock approaches 100 °C and the deposit pressure exceeds 28 MPa. The highest sorption capacity in anthracite results from its inner structure characterised by the predominance of ordered aromatic lamellas and the dominance of vitrinite macerals (>70%), which contain coal micropores accumulating adsorbed methane. The comparison of the sorption capacity of the tested coal and the measured methane content displays undersaturation of 11–59%, however, due to significant gas content in the deep zone (depth > 1500 m), the drilling area can be considered as a prospect for further exploration and development of coalbed methane (CBM).
{"title":"The occurrence of coalbed methane in the depocentre of the Upper Silesian Coal Basin in the light of the research from the Orzesze-1 deep exploratory well","authors":"Sławomir Kędzior","doi":"10.1016/j.coal.2024.104588","DOIUrl":"10.1016/j.coal.2024.104588","url":null,"abstract":"<div><p>The Orzesze-1 exploratory well with a depth of 3708 m (TVD) was drilled in 2019–2020 in the depocentre of the Upper Silesian Coal Basin (USCB). The methane content in the coal seams has been tested to a depth of 2840 m and the sorption capacity of the coal to a depth of 2576 m. These are the deepest measurements in the USCB so far. The vertical distribution of methane content in the borehole shows two depth zones of interest, the first at a depth 883 m to about 1300 m (maximum methane content about 12 m<sup>3</sup>/t coal<sup>daf</sup>) and another in the range of 1500–2840 m, that is, to the maximum measurement depth, so the actual lower boundary depth of this zone is unknown. The maximum methane content here exceeds 18 m<sup>3</sup>/t coal<sup>daf</sup> at a depth of >2800 m. Both zones are separated by an interval of reduced methane content of about 5 m<sup>3</sup>/t coal<sup>daf</sup> at a depth of approximately 1400 m. The gas composition is dominated by methane (∼90%), and the content of carbon dioxide increases to approximately 15% at a depth of >2300 m. The methane-bearing zone at ∼900–1300 m corresponds to the zone of high- and medium-volatile bituminous coal (second coalification jump), while the highest methane content at a depth of >2800 m was determined in anthracite. The methane sorption capacity of the coal seams oscillates between 16 and 40 m<sup>3</sup>/t coal<sup>daf</sup> with a maximum in anthracite at a depth of >2800 m, where the temperature of the rock approaches 100 °C and the deposit pressure exceeds 28 MPa. The highest sorption capacity in anthracite results from its inner structure characterised by the predominance of ordered aromatic lamellas and the dominance of vitrinite macerals (>70%), which contain coal micropores accumulating adsorbed methane. The comparison of the sorption capacity of the tested coal and the measured methane content displays undersaturation of 11–59%, however, due to significant gas content in the deep zone (depth > 1500 m), the drilling area can be considered as a prospect for further exploration and development of coalbed methane (CBM).</p></div>","PeriodicalId":13864,"journal":{"name":"International Journal of Coal Geology","volume":"292 ","pages":"Article 104588"},"PeriodicalIF":5.6,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142085444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-09DOI: 10.1016/j.coal.2024.104587
Muhammad Usman , Sebastian Grohmann , Israa S. Abu-Mahfouz , Volker Vahrenkamp , Ralf Littke
Accurately identifying sweet spots remains a significant challenge for the petroleum industry despite the growing amount of information available for unconventional hydrocarbon resources. These challenges may stem from the inorganic geochemical heterogeneities in source rock composition that can vary within a given basin over time. This study investigates the relationship between source rock composition and the resulting hydrocarbon expulsion, retention, and thermal maturation behavior through artificial maturation experiments on Late Cretaceous (Maastrichtian) Jordanian source rocks (JSR). The JSR is a carbonate-rich Type IIS source rock, which is compositionally similar to major Arabian unconventional prospects (Tuwaiq Mtn, Hanifa, and Shilaif/Natih Fms) as well as other major carbonate source rocks (Eagle Ford & La Luna Fms). However, it is thermally immature and, therefore, can be considered as an immature analog to the mature unconventional Type IIS source rock prospects.
This study utilized a thick JSR interval in the Al-Lajjun area of western Jordan, by using core samples from a 72 m long vertical well. Initial characterization of the source rock interval using bulk organic and inorganic geochemical parameters revealed three distinct geochemical cycles. Representative homogeneous plug samples from each cycle underwent artificial maturation experiments and showed differences in hydrocarbon expulsion and retention trends along with a difference in thermal maturity. Samples with higher silica content exhibited an early hydrocarbon expulsion as compared to Ca-dominated samples. The Ca-rich samples demonstrated a higher hydrocarbon retention and delayed expulsion at corresponding maturity stages as compared to the Si-rich samples. Additionally, the silica-rich samples also displayed lower Tmax values than the calcium-rich samples of similar thermal maturity.
The findings of this study highlight the significance of inorganic compositional heterogeneities within a source rock interval that can lead to the formation of multiple play fairways with varying hydrocarbon expulsion and thermal maturity characteristics. These insights emphasize the need for a more comprehensive understanding of source rock composition when assessing thermal maturity and identifying sweet spots for unconventional hydrocarbon exploration and production.
尽管有关非常规碳氢化合物资源的信息越来越多,但准确识别甜点仍是石油工业面临的一项重大挑战。这些挑战可能源于源岩成分中的无机地球化学异质性,这种异质性在特定盆地内会随着时间的推移而变化。本研究通过对晚白垩世(马斯特里赫特)约旦源岩(JSR)进行人工成熟实验,研究源岩成分与由此产生的碳氢化合物排出、保留和热成熟行为之间的关系。约旦源岩(JSR)是富含碳酸盐的 IIS 型源岩,其成分与阿拉伯主要非常规勘探区(Tuwaiq Mtn、Hanifa 和 Shilaif/Natih Fms)以及其他主要碳酸盐源岩(Eagle Ford & La Luna Fms)相似。本研究利用约旦西部 Al-Lajjun 地区的厚 JSR 区间,从一口 72 米长的垂直井中采集岩芯样本。利用大体积有机和无机地球化学参数对源岩层间进行的初步表征揭示了三个不同的地球化学循环。每个周期中具有代表性的均质堵塞样本都进行了人工成熟实验,结果表明碳氢化合物的排出和保留趋势不同,热成熟度也不同。与以钙为主的样本相比,硅含量较高的样本碳氢化合物排出较早。与富含硅的样品相比,富含钙的样品在相应的成熟阶段表现出更高的碳氢化合物保留率和延迟排出率。此外,富硅样本的 Tmax 值也低于热成熟度相似的富钙样本。这项研究的结果突出表明了源岩层间无机成分异质性的重要性,这种异质性可导致形成具有不同碳氢化合物排出和热成熟度特征的多条作业航道。这些见解强调,在评估热成熟度和确定非常规油气勘探与生产的最佳地点时,需要更全面地了解源岩成分。
{"title":"Effects of geochemical compositional heterogeneities on hydrocarbon expulsion and thermal maturation: An analog study of Maastrichtian source rocks from Jordan","authors":"Muhammad Usman , Sebastian Grohmann , Israa S. Abu-Mahfouz , Volker Vahrenkamp , Ralf Littke","doi":"10.1016/j.coal.2024.104587","DOIUrl":"10.1016/j.coal.2024.104587","url":null,"abstract":"<div><p>Accurately identifying sweet spots remains a significant challenge for the petroleum industry despite the growing amount of information available for unconventional hydrocarbon resources. These challenges may stem from the inorganic geochemical heterogeneities in source rock composition that can vary within a given basin over time. This study investigates the relationship between source rock composition and the resulting hydrocarbon expulsion, retention, and thermal maturation behavior through artificial maturation experiments on Late Cretaceous (Maastrichtian) Jordanian source rocks (JSR). The JSR is a carbonate-rich Type IIS source rock, which is compositionally similar to major Arabian unconventional prospects (Tuwaiq Mtn, Hanifa, and Shilaif/Natih Fms) as well as other major carbonate source rocks (Eagle Ford & La Luna Fms). However, it is thermally immature and, therefore, can be considered as an immature analog to the mature unconventional Type IIS source rock prospects.</p><p>This study utilized a thick JSR interval in the Al-Lajjun area of western Jordan, by using core samples from a 72 m long vertical well. Initial characterization of the source rock interval using bulk organic and inorganic geochemical parameters revealed three distinct geochemical cycles. Representative homogeneous plug samples from each cycle underwent artificial maturation experiments and showed differences in hydrocarbon expulsion and retention trends along with a difference in thermal maturity. Samples with higher silica content exhibited an early hydrocarbon expulsion as compared to Ca-dominated samples. The Ca-rich samples demonstrated a higher hydrocarbon retention and delayed expulsion at corresponding maturity stages as compared to the Si-rich samples. Additionally, the silica-rich samples also displayed lower Tmax values than the calcium-rich samples of similar thermal maturity.</p><p>The findings of this study highlight the significance of inorganic compositional heterogeneities within a source rock interval that can lead to the formation of multiple play fairways with varying hydrocarbon expulsion and thermal maturity characteristics. These insights emphasize the need for a more comprehensive understanding of source rock composition when assessing thermal maturity and identifying sweet spots for unconventional hydrocarbon exploration and production.</p></div>","PeriodicalId":13864,"journal":{"name":"International Journal of Coal Geology","volume":"294 ","pages":"Article 104587"},"PeriodicalIF":5.6,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166516224001447/pdfft?md5=3c64ffa852e1deaa42df13b276d8475e&pid=1-s2.0-S0166516224001447-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142229232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1016/j.coal.2024.104586
Wen Xi , Aaron Uthaia Kumaran , Yaser Hadi Gholami , Ryan T. Armstrong , Yu Jing , Joan Esterle , Klaus Regenauer Lieband , Peyman Mostaghimi
This research presents a new method for studying gas-water two-phase flow in fractured coal, integrating cutting-edge imaging techniques. We combine dynamic positron emission tomography (PET), high-resolution X-ray micro-computed tomography (micro-CT), and unsteady-state fluid flow experiments. First, micro-CT under reservoir pressure conditions maps the sample's fracture structure at high-resolution. Then, helium injection into a water-saturated sample simulates gas flow in a coal seam during production. Real-time PET monitoring captures the dynamic displacement process within the fractures. This approach yields crucial data on gas injection volume, pressure variations, and water production, enabling relative permeability curve prediction. Finally, multi-scale image analysis merges high-resolution micro-CT with dynamic PET images, overlaying the flow path onto the fracture network. This innovative method leverages the strengths of both PET and micro-CT, offering unprecedented visualization of gas-water flow behaviour in fractured coal. PET images play a crucial role in providing both spatial and temporal water saturation profiles since the activity mapping directly correlates with water volume distribution in the fractures. The consistency between the initial activity profile along the sample from PET and the fracture volume distribution calculated from micro-CT images confirms the reliability of PET data. The workflow proposed in this paper can be used to monitor two phase flow displacement in unconventional rocks such as coal and be applied for determination of relative permeability curves.
这项研究提出了一种研究煤炭裂缝中气水两相流的新方法,其中集成了最先进的成像技术。我们结合了动态正电子发射断层扫描(PET)、高分辨率 X 射线显微计算机断层扫描(micro-CT)和非稳态流体流动实验。首先,在储层压力条件下进行微计算机断层扫描,以高分辨率绘制样品的断裂结构图。然后,向水饱和样本注入氦气,模拟生产过程中煤层中的瓦斯流动。实时 PET 监测可捕捉裂缝内的动态位移过程。这种方法可获得有关瓦斯注入量、压力变化和产水量的重要数据,从而预测相对渗透率曲线。最后,多尺度图像分析将高分辨率显微 CT 与动态 PET 图像相结合,将流道叠加到裂缝网络上。这种创新方法充分利用了 PET 和显微 CT 的优势,为裂缝煤中的气-水流动行为提供了前所未有的可视化效果。PET 图像在提供空间和时间水饱和度剖面图方面起着至关重要的作用,因为活动图与裂缝中的水量分布直接相关。正电子发射计算机断层成像(PET)得出的沿样本的初始放射性剖面与微计算机断层扫描(Micro-CT)图像计算出的裂缝体积分布之间的一致性证实了 PET 数据的可靠性。本文提出的工作流程可用于监测煤炭等非常规岩石中的两相流动位移,并可用于确定相对渗透率曲线。
{"title":"Gas-water flow in fractured coal revealed by multimodal imaging","authors":"Wen Xi , Aaron Uthaia Kumaran , Yaser Hadi Gholami , Ryan T. Armstrong , Yu Jing , Joan Esterle , Klaus Regenauer Lieband , Peyman Mostaghimi","doi":"10.1016/j.coal.2024.104586","DOIUrl":"10.1016/j.coal.2024.104586","url":null,"abstract":"<div><p>This research presents a new method for studying gas-water two-phase flow in fractured coal, integrating cutting-edge imaging techniques. We combine dynamic positron emission tomography (PET), high-resolution X-ray micro-computed tomography (micro-CT), and unsteady-state fluid flow experiments. First, micro-CT under reservoir pressure conditions maps the sample's fracture structure at high-resolution. Then, helium injection into a water-saturated sample simulates gas flow in a coal seam during production. Real-time PET monitoring captures the dynamic displacement process within the fractures. This approach yields crucial data on gas injection volume, pressure variations, and water production, enabling relative permeability curve prediction. Finally, multi-scale image analysis merges high-resolution micro-CT with dynamic PET images, overlaying the flow path onto the fracture network. This innovative method leverages the strengths of both PET and micro-CT, offering unprecedented visualization of gas-water flow behaviour in fractured coal. PET images play a crucial role in providing both spatial and temporal water saturation profiles since the activity mapping directly correlates with water volume distribution in the fractures. The consistency between the initial activity profile along the sample from PET and the fracture volume distribution calculated from micro-CT images confirms the reliability of PET data. The workflow proposed in this paper can be used to monitor two phase flow displacement in unconventional rocks such as coal and be applied for determination of relative permeability curves.</p></div>","PeriodicalId":13864,"journal":{"name":"International Journal of Coal Geology","volume":"293 ","pages":"Article 104586"},"PeriodicalIF":5.6,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1016/j.coal.2024.104585
Vagia Ioanna Makri , Ioannis Oikonomopoulos , David Muirhead , Nikos Pasadakis
The importance of kerogen kinetics extends beyond hydrocarbon generation, encompassing thermal modeling, organic matter heterogeneity, and the assessment of thermal decomposition. Our study focuses on analyzing the organic and inorganic signatures of source rock intervals, by integrating also literature maceral compositions, to identify potential correlations between kinetics and the mineral matrix. To achieve this, nineteen samples from proved Mesozoic source rock intervals in Western Greece were analyzed. Rock-Eval 6 pyrolysis experiments identified thermally immature to slightly mature, mainly type II, and mixed I-II kerogens. X-ray fluorescence and X-ray diffraction analysis revealed a predominance of carbonate over silicate minerals, indicating a carbonate-dominated source rock character and predominantly reducing marine depositional conditions. High sulfur contents, primarily observed in the Late Triassic – Early Jurassic interval, suggest euxinic conditions and the presence of II(S) kerogens. Bulk rock kinetic analysis revealed activation energy distributions mainly ranging from 43 to 60 kcal/mol. The Late Triassic – Early Jurassic and Early – Mid Jurassic intervals show greater heterogeneity with broad distributions, while the Mid – Late Jurassic and Early Cretaceous intervals exhibit more homogeneity, with two to three principal activation energy peaks. Kerogen isolation revealed differences in activation energies and frequency factors between the bulk rock and the kerogen, with the mineral matrix potentially having a minimal effect in the reaction rate. This research offers insights into the bulk kinetics of marine source rocks linked with global oceanic anoxic events, with broader implications to the hydrocarbon exploration in the fold and thrust belt of Western Greece, and to analogue geological settings worldwide.
{"title":"Kerogen kinetics and the effect of rock matrix: Insights from Western Greece","authors":"Vagia Ioanna Makri , Ioannis Oikonomopoulos , David Muirhead , Nikos Pasadakis","doi":"10.1016/j.coal.2024.104585","DOIUrl":"10.1016/j.coal.2024.104585","url":null,"abstract":"<div><p>The importance of kerogen kinetics extends beyond hydrocarbon generation, encompassing thermal modeling, organic matter heterogeneity, and the assessment of thermal decomposition. Our study focuses on analyzing the organic and inorganic signatures of source rock intervals, by integrating also literature maceral compositions, to identify potential correlations between kinetics and the mineral matrix. To achieve this, nineteen samples from proved Mesozoic source rock intervals in Western Greece were analyzed. Rock-Eval 6 pyrolysis experiments identified thermally immature to slightly mature, mainly type II, and mixed I-II kerogens. X-ray fluorescence and X-ray diffraction analysis revealed a predominance of carbonate over silicate minerals, indicating a carbonate-dominated source rock character and predominantly reducing marine depositional conditions. High sulfur contents, primarily observed in the Late Triassic – Early Jurassic interval, suggest euxinic conditions and the presence of II(S) kerogens. Bulk rock kinetic analysis revealed activation energy distributions mainly ranging from 43 to 60 kcal/mol. The Late Triassic – Early Jurassic and Early – Mid Jurassic intervals show greater heterogeneity with broad distributions, while the Mid – Late Jurassic and Early Cretaceous intervals exhibit more homogeneity, with two to three principal activation energy peaks. Kerogen isolation revealed differences in activation energies and frequency factors between the bulk rock and the kerogen, with the mineral matrix potentially having a minimal effect in the reaction rate. This research offers insights into the bulk kinetics of marine source rocks linked with global oceanic anoxic events, with broader implications to the hydrocarbon exploration in the fold and thrust belt of Western Greece, and to analogue geological settings worldwide.</p></div>","PeriodicalId":13864,"journal":{"name":"International Journal of Coal Geology","volume":"292 ","pages":"Article 104585"},"PeriodicalIF":5.6,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141915357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Radiological and health risks arising from 226Ra, 232Th, and 40K in topsoil due to coal combustion in Plomin thermal power plant were assessed: outdoor absorbed dose rate in air (D), annual outdoor effective dose rate (Def), external hazard index (Hex), internal hazard index (Hin), and excess lifetime cancer risk outdoors (ELCRout). Spatial distribution of risks around the plant was studied and relative contributions of 226Ra, 232Th, and 40K to D (applies to Def and ELCRout as well), Hex, and Hin were determined. The risks were studied at two soil depths (A: 0–10 cm, B: 10–25 cm), radially around the plant at 1 km, 5 km, and 10 km distances from the plant, and in a downwind (SW) profile at 0.1–1 km distance from the plant. Elevated D, Def, Hin, and ELCRout were determined, while Hex was not elevated. Almost all D, Def, and ELCRout values were above the world average for soils (58 nGy/h, 0.07 mSv/y, and 0.29 × 10−3, respectively). D, Def, and ELCRout were: 32–338 nGy/h (mean value: 116 nGy/h), 0.039–0.414 mSv/y (mean value: 0.142 mSv/y), and 0.17 × 10−3–1.79 × 10−3 (mean value: 0.61 × 10−3), respectively. Hex was in the 0.18–1.98 range (mean value: 0.69), with only two extreme values above the recommended limit of 1. Hin was in the 0.22–3.67 range (mean value: 1.02), with most of the values above the recommended limit of 1 in the downwind profile and at one station with extremes (1 km from the plant). A “hot spot” was determined for all risks at 1 km distance from the plant in the wind direction (SW from the plant). The next highest, elevated, risks were observed in the downwind profile stations. The most important parameters influencing spatial distribution of risks are 226Ra activities in soil, wind direction, and distance from the plant. 226Ra is generally the most important contributor to risks in soils, while 40K is the least important. 226Ra and 232Th were found to be the most significant and comparable contributors to D, Def, Hex, and ELCRout. Only 226Ra was found as the most significant contributor to Hin in the studied area. Elevated risks are partially from the natural source (carbonate bedrock) and partially from the power plant (coal combustion and handling, ash deposition on soil).
{"title":"Radiological risks and excess lifetime cancer risk of the topsoil around the coal-fired Plomin thermal power plant (Istria, Croatia) and long-term effects after ceasing use of the coal with elevated radionuclides activities","authors":"Ivanka Lovrenčić Mikelić , Gorana Ernečić , Delko Barišić","doi":"10.1016/j.coal.2024.104576","DOIUrl":"10.1016/j.coal.2024.104576","url":null,"abstract":"<div><p>Radiological and health risks arising from <sup>226</sup>Ra, <sup>232</sup>Th, and <sup>40</sup>K in topsoil due to coal combustion in Plomin thermal power plant were assessed: outdoor absorbed dose rate in air (<em>D</em>), annual outdoor effective dose rate (<em>D</em><sub>ef</sub>), external hazard index (<em>H</em><sub>ex</sub>), internal hazard index (<em>H</em><sub>in</sub>), and excess lifetime cancer risk outdoors (<em>ELCR</em><sub>out</sub>). Spatial distribution of risks around the plant was studied and relative contributions of <sup>226</sup>Ra, <sup>232</sup>Th, and <sup>40</sup>K to <em>D</em> (applies to <em>D</em><sub>ef</sub> and <em>ELCR</em><sub>out</sub> as well), <em>H</em><sub>ex</sub>, and <em>H</em><sub>in</sub> were determined. The risks were studied at two soil depths (A: 0–10 cm, B: 10–25 cm), radially around the plant at 1 km, 5 km, and 10 km distances from the plant, and in a downwind (SW) profile at 0.1–1 km distance from the plant. Elevated <em>D</em>, <em>D</em><sub>ef</sub>, <em>H</em><sub>in</sub>, and <em>ELCR</em><sub>out</sub> were determined, while <em>H</em><sub>ex</sub> was not elevated. Almost all <em>D</em>, <em>D</em><sub>ef</sub>, and <em>ELCR</em><sub>out</sub> values were above the world average for soils (58 nGy/h, 0.07 mSv/y, and 0.29 × 10<sup>−3</sup>, respectively). <em>D</em>, <em>D</em><sub>ef</sub>, and <em>ELCR</em><sub>out</sub> were: 32–338 nGy/h (mean value: 116 nGy/h), 0.039–0.414 mSv/y (mean value: 0.142 mSv/y), and 0.17 × 10<sup>−3</sup>–1.79 × 10<sup>−3</sup> (mean value: 0.61 × 10<sup>−3</sup>), respectively. <em>H</em><sub>ex</sub> was in the 0.18–1.98 range (mean value: 0.69), with only two extreme values above the recommended limit of 1. <em>H</em><sub>in</sub> was in the 0.22–3.67 range (mean value: 1.02), with most of the values above the recommended limit of 1 in the downwind profile and at one station with extremes (1 km from the plant). A “hot spot” was determined for all risks at 1 km distance from the plant in the wind direction (SW from the plant). The next highest, elevated, risks were observed in the downwind profile stations. The most important parameters influencing spatial distribution of risks are <sup>226</sup>Ra activities in soil, wind direction, and distance from the plant. <sup>226</sup>Ra is generally the most important contributor to risks in soils, while <sup>40</sup>K is the least important. <sup>226</sup>Ra and <sup>232</sup>Th were found to be the most significant and comparable contributors to <em>D</em>, <em>D</em><sub>ef</sub>, <em>H</em><sub>ex</sub>, and <em>ELCR</em><sub>out</sub>. Only <sup>226</sup>Ra was found as the most significant contributor to <em>H</em><sub>in</sub> in the studied area. Elevated risks are partially from the natural source (carbonate bedrock) and partially from the power plant (coal combustion and handling, ash deposition on soil).</p></div>","PeriodicalId":13864,"journal":{"name":"International Journal of Coal Geology","volume":"291 ","pages":"Article 104576"},"PeriodicalIF":5.6,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141838768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-20DOI: 10.1016/j.coal.2024.104574
Yabing Lin , Shuangming Wang , Junwei Qiao , Hui Zhang , Ermeng Zhang , Yue Ma , Yutong Hao
The chemical characteristics of coal reservoir water are important for studying the formation and enrichment of biogenic coalbed methane (BCM). Based on geological and sampling test data, this paper studied the geochemical characteristics and formation mechanisms of high-salinity coal reservoir water (CRW) in the Jurassic Yan'an Formation of the Binchang area in the southern Ordos Basin. The results show that the TDS contents of the CRW in the Binchang area are between 7577.38 and 15,138.61 mg/L (av. 13,268.95 mg/L), which is high-salinity brackish water. The ion types of CRW are mainly Na+, Cl− and HCO3−, and the correlations between TDS and Na+ and Cl− are close to 1. The Piper trilinear diagram indicates that the evolution direction of the CRW is deep concentrated brine, and the hydrochemical type is the NaCl type. The 127I concentrations of CRW are between 285 and 484 μg/L, which are much higher than the values of 55.88 μg/L for seawater. The results of 129I dating show that the minimum age of the CRW in the study area is between 6.7 Ma and 39.97 Ma, which is much younger than the actual geological age of the Yan'an Formation. The hydrogen and oxygen isotope results show that the CRW in the study area experiences an apparent oxygen drift, indicating that the coal reservoir of the Yan'an Formation has good sealing and a long retention time for the CRW. The hydrodynamic factors show that the hydrodynamic conditions of the coal reservoir are weak, and the primary ions in the CRW originated from the dissolution of salt rocks. The main ion differentiation indices show that high-salinity coal seam water is mainly formed by evaporation, and the ion exchange between CRW and the surrounding rock and the alternating adsorption of cations in water are very weak. Evaporation and diagenesis lead to an increase in the contents of Na+, Cl− and I+ in coalbed water, which in turn leads to an increase in the total dissolved solids contents of CRW and its evolution toward concentrated brine. The genesis and evolution of the CRW in the study area are affected by the combination of the relationships among the paleoclimate, aquifers and aquifuges, and tectonic evolution processes. The CRW in the study area has experienced five evolution stages, i.e., sedimentary water and diagenetic water, high-salinity infiltration water, primary mixed water, paleoatmospheric precipitation recharge water, and secondary mixed water. The above understanding can provide a basis for studying the formation period and accumulation mechanism of BCM and provide a hydrogeological basis for water resource utilisation and pollution prevention and the control of high-salinity water.
{"title":"Chemical characteristics, formation mechanisms, and geological evolution processes of high-salinity coal reservoir water in the Binchang area of the southern Ordos Basin, China","authors":"Yabing Lin , Shuangming Wang , Junwei Qiao , Hui Zhang , Ermeng Zhang , Yue Ma , Yutong Hao","doi":"10.1016/j.coal.2024.104574","DOIUrl":"10.1016/j.coal.2024.104574","url":null,"abstract":"<div><p>The chemical characteristics of coal reservoir water are important for studying the formation and enrichment of biogenic coalbed methane (BCM). Based on geological and sampling test data, this paper studied the geochemical characteristics and formation mechanisms of high-salinity coal reservoir water (CRW) in the Jurassic Yan'an Formation of the Binchang area in the southern Ordos Basin. The results show that the TDS contents of the CRW in the Binchang area are between 7577.38 and 15,138.61 mg/L (av. 13,268.95 mg/L), which is high-salinity brackish water. The ion types of CRW are mainly Na<sup>+</sup>, Cl<sup>−</sup> and HCO<sub>3</sub><sup>−</sup>, and the correlations between TDS and Na<sup>+</sup> and Cl<sup>−</sup> are close to 1. The Piper trilinear diagram indicates that the evolution direction of the CRW is deep concentrated brine, and the hydrochemical type is the Na<img>Cl type. The <sup>127</sup>I concentrations of CRW are between 285 and 484 μg/L, which are much higher than the values of 55.88 μg/L for seawater. The results of <sup>129</sup>I dating show that the minimum age of the CRW in the study area is between 6.7 Ma and 39.97 Ma, which is much younger than the actual geological age of the Yan'an Formation. The hydrogen and oxygen isotope results show that the CRW in the study area experiences an apparent oxygen drift, indicating that the coal reservoir of the Yan'an Formation has good sealing and a long retention time for the CRW. The hydrodynamic factors show that the hydrodynamic conditions of the coal reservoir are weak, and the primary ions in the CRW originated from the dissolution of salt rocks. The main ion differentiation indices show that high-salinity coal seam water is mainly formed by evaporation, and the ion exchange between CRW and the surrounding rock and the alternating adsorption of cations in water are very weak. Evaporation and diagenesis lead to an increase in the contents of Na<sup>+</sup>, Cl<sup>−</sup> and I<sup>+</sup> in coalbed water, which in turn leads to an increase in the total dissolved solids contents of CRW and its evolution toward concentrated brine. The genesis and evolution of the CRW in the study area are affected by the combination of the relationships among the paleoclimate, aquifers and aquifuges, and tectonic evolution processes. The CRW in the study area has experienced five evolution stages, i.e., sedimentary water and diagenetic water, high-salinity infiltration water, primary mixed water, paleoatmospheric precipitation recharge water, and secondary mixed water. The above understanding can provide a basis for studying the formation period and accumulation mechanism of BCM and provide a hydrogeological basis for water resource utilisation and pollution prevention and the control of high-salinity water.</p></div>","PeriodicalId":13864,"journal":{"name":"International Journal of Coal Geology","volume":"291 ","pages":"Article 104574"},"PeriodicalIF":5.6,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141836826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}