The significance of the Lark Formation is underscored by the variations in regional depositional environments and climatic conditions that characterized the late Cenozoic sedimentary flux into the Danish North Sea basin. This study marks the first systematic investigation of sedimentary organic matter in the Lark Formation. A total of 391 drill cuttings from 7 wells in the Danish North Sea were collected and analyzed. All 391 samples were analyzed by pyrolysis geochemistry, and thirty-eight were examined petrographically using reflected light to document maceral composition. This allowed the investigation into spatial and temporal variations in the distribution and properties of organic matter within the Danish North Sea Basin from the latest Eocene to the Middle Miocene. The results reveal that the organic matter comprises primarily Type III kerogen and is thermally immature, as indicated by thermal indicators (Tmax < 430 °C, mean HRo = 0.3%, mean R/G = 0.51). The kerogen is predominantly composed of huminite (abundant), liptinite (less abundant), and inertinite (trace quantity) macerals.
The increasing trend in total organic carbon (TOC) commenced mainly in the northeastern part of the basin (F-1 well) in the late Oligocene. From the late Oligocene to the Early and Middle Miocene, there was a progressive clockwise shift in this increasing trend of sedimentary organic carbon content towards the southernmost part of the Danish North Sea basin (Adda-3, E-1, Dany-1X and Jens-1 wells). The results of the analysis further demonstrate that this rise in sedimentary organic carbon is primarily driven by the increased content of huminite and inertinite.
Given the immaturity of the organic matter and its consistent preservation conditions, the spatial and temporal increase in the abundance of huminite and inertinite is attributed to the influx of allochthonous organic matter from terrestrial sources. This influx was primarily influenced by climatic changes and subsequent alterations in runoff. Lower runoff during cooler and drier climates from the latest Eocene to the late Oligocene resulted in a low influx of allochthonous organic matter. Conversely, higher runoff during warmer and more humid conditions in the Early Miocene and earliest Middle Miocene markedly increased its influx. The distribution of allochthonous organic matter in the study area depended on the positioning of basin entrances and depocenters, which respectively determined the supply routes and accumulation sites. This further contributed to the relatively higher abundance of allochthonous organic matter in the areas near the corresponding stratum depocenters.
Molecular compounds present in biochar carbon structure are studied from biochar produced from forest, food, and agricultural wastes and sewage sludge using pyrolysis gas chromatography mass spectrometry (Py-GC/MS). The results show that with increasing biochar production temperature (PT), the total pyrolysis yield decreases, and the macromolecular structure becomes more condensed with the aromatic linkages becoming less alkylated, hence indicating a stable carbon structure. These highly stable biochar samples consist predominantly of inertinite and have the entire random reflectance (Ro) distributions above the inertinite benchmark (IBRo2%). The results are aligned with high carbon stability of high-temperature biochar. In contrast, biochar samples that were insufficiently carbonized and comprised of mainly semi-inertinitic biochar contain alkane traces, volatile compounds, and higher degrees of alkylation with aromatic linkages in their molecular structure. This indicates the more proneness to oxidative and microbial breakdown, and therefore a less condensed and less stable carbon structure. Additionally, occurrence of these compounds in inertinitic biochar indicate retention of free hydrocarbons within the biochar carbon structure. Complimenting microscopic and bulk geochemical data, Py-GC/MS data is additionally advantageous to assess the stability conditions of the biochar samples.
This study investigates the geochemical and petrological characteristics of solid bitumen in the DBH15/73 core from the Furongian (upper Cambrian) and Miaolingian (middle Cambrian) Alum Shale in Billingen, south central Sweden. At Billingen a > 30 m thick Permian diabase (dolerite sill) intruded approximately 100 m above the Alum Shale that promoting the formation of solid bitumen in the uppermost half of the Alum Shale due to enhanced heat flow. The bitumen has been classified into bituminite/diagenetic solid bitumen (DSB), initial-oil solid bitumen (IOSB), and primary-oil solid bitumen (POSB) based on their genesis, morphology and random solid bitumen reflectance (BRo). The Miaolingian shale, constituting the lower part of the Alum Shale, is immature and contains solely bituminite and DSB, with measured BRo ranging from 0.40% to 0.48%. In contrast, the Furongian shale exhibits enrichment in IOSB and POSB and range from marginally mature to peak oil generation with towards the top of the section. Characteristics of uneven heating is seen in the IOSB (BRo: 0.97–1.08%) including oxidation rims and abnormally high maturity surrounding fractures. The POSB (BRo: 0.63–2.01%) is present not only in the Alum Shale but also in the overlying Ordovician Latorp limestone and the underlying Kakeled Limestone Bed, and shows flow structures which is further evidence for migration. The abundance of POSB and IOSB is determined through maceral point counting, revealing POSB as the dominant bitumen type (1.54–7.13 vol%), while IOSB constitutes the minority (0.05–0.31 vol%) within the Furongian shale. This distribution suggests rapid thermal evolution of organic matter within the oil generation window. Additionally, a reduction in free hydrocarbons (Rock-Eval S1), potential hydrocarbons (Rock-Eval S2), and unexpectedly low Tmax was observed in the Furongian shale. Results indicate that hydrocarbon generation resulting from thermal intrusion contributes to the relatively low S2. Migration of POSB and generated oil to adjacent layers leads to the loss of S1, while the reduced Tmax may be attributed to high uranium content which weakens carbon chain bond energy. These anomalies result in an underestimation when evaluating thermal maturity and kerogen type conversion based on Rock Eval data alone.
Superhigh-organic‑sulfur (SHOS) coals (coals with organic sulfur content >4 wt%) are unique coal deposits found at a few notable locations in the world. Specific peat accumulation and preservation conditions must be met to form SHOS coals. Organic sulfur is a major constituent of such coals, and it may have various sources depending on the prevailing paleomire conditions. Understanding such paleomire conditions sheds light on the formation mechanisms of SHOS coals. This investigation decodes the paleomire conditions of the Paleogene SHOS coals from Meghalaya, India, using sulfur isotopic compositions (δ34S) of organic sulfur (δ34SOS) and pyritic sulfur (δ34SPy) along with organic petrography, pyrite morphology and trace element ratios. Thirty coal samples were collected from the Jaintia Hills in the east, Khasi Hills in the middle, and Garo Hills in the west of Meghalaya. The organic sulfur content in the Garo, Khasi, and Jaintia coals varies from 1.0 to 3.3 wt%, 1.4 to 13.8 wt%, and 1.0 to 7.2 wt%, respectively. Further, after separation from pyritic sulfur and sulfate sulfur phases, the organic sulfur content ranges from 54.4 to 69.2%, 63.8 to 79.9%, and 59.3 to 73.8%, in the Garo, Khasi, and Jaintia Hills, respectively, suggesting the SHOS nature of these coal samples. The δ34SPy varies from −29.3 ‰ to +5.7 ‰, −21.3 ‰ to +27.3 ‰, and −12.1 ‰ to −4.3 ‰, in the Jaintia, Khasi, and Garo Hills, respectively, while the δ34SOS fluctuates from −4.6 ‰ to +3.7 ‰, −9.3 ‰ to +7.8 ‰, and − 9.0 ‰ to −5.0 ‰, respectively. The δ34S values of pyrite and organic sulfur (OS) in Jaintia coals are 34S depleted compared to seawater sulfate (+22 ‰), leading to fractionations in the range of −51.3 ‰ to −16.3 ‰ (mean − 31.6 ‰) and − 26.6 ‰ to −18.3 ‰ (mean − 23.1 ‰) for pyritic and organic sulfur (OS), respectively. Pyrite in Khasi coals show a relatively heavier δ34S composition averaging at −20.5 ‰, whereas organic sulfur (OS) isotope compositions range from −31.3 ‰ to −14.2 ‰ with a mean of −22.6 ‰. Pyrite and OS in the Garo coals are depleted compared to seawater sulfate. Isotope variations in the Jaintia, Khasi, and Garo coals indicate microbial sulfate reduction (MSR) of seawater sulfate. Large isotopic fractionations between Eocene seawater sulfate and pyritic sulfur (Δ34SSO4Eocene – pyrite = up to −51.3 ‰; mean − 31.6 ‰) in Jaintia coals indicate their possible formation in the water column/near the sediment-seawater interface (open system) and also hint toward dissimilatory sulfate reduction pathways that prevailed under anoxic redox conditions. However, mean values of Δ34SSO4Eocene – pyrite (−20.5 ‰) in the Khasi coals imply pyrite formation deeper in the sediments (more closed system) under d
A comparative analysis of the factors controlling organic matter (OM) enrichment between marine-continental transitional (transitional hereafter) and marine or lacustrine shales is lacking. The early Permian Taiyuan Formation in the Ordos Basin, deposited during a shift from marine to continental settings in northern China, provides a unique opportunity to unravel the differences in OM enrichment mechanisms among these shales. The Taiyuan Formation is characterized by high TOC content (average 4.50%) and kerogen type II2-III. Most samples are thermally mature with a few high to post-mature samples relating to the Late Jurassic–Early Cretaceous Yanshanian magmatism. Rare earth elements and yttrium (REY) are dominated by light- and medium-types enrichments, with distinctly positive Gd anomaly, likely due to seawater incursion. A warm and humid climate prevailed during deposition of the Taiyuan Formation, consistent with the tropical-subtropical location of the North China Plate in the early Permian. The climatic conditions promoted intense continental weathering as reflected by high Th/Sc ratios, chemical index of alteration values, and feldspar alteration to scaly kaolinite. The V/(V + Ni) ratio is inconsistent with the other redox proxies, presumably due to variations in the redox buffer supply in the transitional facies (e.g., OM and pyrite), varying burial rates and dissimilar redox potential of different elements. Hence, this proxy should be interpreted with caution in such settings. Most redox proxies indicate oxic bottom water during deposition of the Taiyuan Formation transitional shale, in contrast to typical OM enriched marine and lacustrine shales where redox stratification or euxinic conditions are common. Instead, the dominant factor for OM enrichment in transitional shales appears to have been a high influx of terrestrial weathering products, including abundant higher-plants OM, associated with preservation of OM due to rapid burial. This process minimizes the detrimental effects of oxic conditions on OM accumulation in the transitional shale facies. This mechanism may hold relevance for analogous basins elsewhere.
Sulfur stable isotope signatures are instrumental in tracing the sources and tracking the movement of sulfur in different environmental compartments, besides providing vital insights into the origin and transport dynamics. Sulfur stable isotope composition in coal can give valuable information regarding sulfur sources and the process of sulfur incorporation in coal. The present study was conducted to determine the total sulfur content and sulfur isotopic composition for bulk sulfur (bulk S δ34S) in Oligocene and Eocene coal samples from coal mines and a few coal stockings in northeast India. The results revealed that the total sulfur content in coal samples varied between 1.03 and 4.80 (wt%) with an average value of 2.64 wt%. The bulk S δ34S in coal samples exhibited a wide range between −4.66 ‰ to 14.78 ‰ (VCDT). Oligocene coal samples from mines in Arunachal Pradesh, Assam, and Nagaland were enriched with heavier sulfur isotopes relative to Eocene coal samples from the Jaintia Hills region of Meghalaya. A moderate positive correlation was observed in the Oligocene coal samples, in contrast to the moderate negative correlation found in the Eocene coal samples. The bulk S δ34S values and sulfur content in coal samples from coal stockings matched closely with Assam and Meghalaya mine samples. The findings of this study can be used to track the sources and movement of coal sulfur in various environmental compartments, besides providing valuable information about sulfur sources, the process of sulfur incorporation in coal, and the depositional environment.