Pub Date : 2022-06-24DOI: 10.1017/s1473550422000222
A. Lenardic, J. Seales, A. Covington
We address a recently posed question: ‘Why Do So Many Astronomy (and Astrobiology) Discoveries Fail to Live Up to the Hype?’ We expand it to cover hype within science in general. Our answer relies on working definitions of hype and skin in the game, as applied to research science, and a game theory model for the stability of cooperative science. Low skin in the game allows internal feedbacks, within the research science community, to initiate increased hype and a drift toward structural instability. The instability leads to the deterioration of cooperative equilibria, which further enhances hype. Along the drift, the number of results hyped as breakthroughs will increase and more claims will fail to live up to the hype. This can lead to the public perception that science is moving backwards and a shift in the perception of what scientists, and science, values. Although a hype instability can be initiated by external nudges, a bigger role is played by the internal dynamics of the system, i.e. the collective of working scientists. Corrections for a drift toward instability should, likewise, focus on internal structure. Proposed external shifts on how research is disseminated will add restrictions to a system that can do more harm than good.
{"title":"Hype, skin in the game, and the stability of cooperative science","authors":"A. Lenardic, J. Seales, A. Covington","doi":"10.1017/s1473550422000222","DOIUrl":"https://doi.org/10.1017/s1473550422000222","url":null,"abstract":"\u0000 We address a recently posed question: ‘Why Do So Many Astronomy (and Astrobiology) Discoveries Fail to Live Up to the Hype?’ We expand it to cover hype within science in general. Our answer relies on working definitions of hype and skin in the game, as applied to research science, and a game theory model for the stability of cooperative science. Low skin in the game allows internal feedbacks, within the research science community, to initiate increased hype and a drift toward structural instability. The instability leads to the deterioration of cooperative equilibria, which further enhances hype. Along the drift, the number of results hyped as breakthroughs will increase and more claims will fail to live up to the hype. This can lead to the public perception that science is moving backwards and a shift in the perception of what scientists, and science, values. Although a hype instability can be initiated by external nudges, a bigger role is played by the internal dynamics of the system, i.e. the collective of working scientists. Corrections for a drift toward instability should, likewise, focus on internal structure. Proposed external shifts on how research is disseminated will add restrictions to a system that can do more harm than good.","PeriodicalId":13879,"journal":{"name":"International Journal of Astrobiology","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43128149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-17DOI: 10.1017/s1473550422000167
Niamh Burns, William T. Parsons
Using a simple, coarse-grained Poisson process model, we calculate – for seven types of astrophysical catastrophe – both their individual and combined threat to complex lifeforms (extraterrestrial intelligences (ETIs)) throughout the Milky Way Galaxy. In terms of cumulative effects, we calculate that ETIs are likely to be astrophysically driven extinct on timescales of roughly once every 100 million years. In terms of comparative effects, large bolide impactors represent the most significant type of astrophysical contribution to the galaxy-wide debilitation of hypothesized ETI civilizations. Nonetheless, we conclude that astrophysical existential threats – whether taken singly or in combination – are likely insufficient, alone, to explain the Fermi Paradox. Astrophysical catastrophes, while both deadly and ubiquitous, do not appear to be frequent enough to wipe out every species in the Galaxy before they can attain or utilize spacefaring status.
{"title":"Astrophysical existential threats: a comparative analysis","authors":"Niamh Burns, William T. Parsons","doi":"10.1017/s1473550422000167","DOIUrl":"https://doi.org/10.1017/s1473550422000167","url":null,"abstract":"\u0000 Using a simple, coarse-grained Poisson process model, we calculate – for seven types of astrophysical catastrophe – both their individual and combined threat to complex lifeforms (extraterrestrial intelligences (ETIs)) throughout the Milky Way Galaxy. In terms of cumulative effects, we calculate that ETIs are likely to be astrophysically driven extinct on timescales of roughly once every 100 million years. In terms of comparative effects, large bolide impactors represent the most significant type of astrophysical contribution to the galaxy-wide debilitation of hypothesized ETI civilizations. Nonetheless, we conclude that astrophysical existential threats – whether taken singly or in combination – are likely insufficient, alone, to explain the Fermi Paradox. Astrophysical catastrophes, while both deadly and ubiquitous, do not appear to be frequent enough to wipe out every species in the Galaxy before they can attain or utilize spacefaring status.","PeriodicalId":13879,"journal":{"name":"International Journal of Astrobiology","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46141025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-15DOI: 10.1017/s1473550422000209
H. Veysi
It is currently believed that early Mars had a vast and shallow ocean, and microbial life may have formed in it, albeit for a short geological time. The geological evidence indicates that during the existence of this ocean, large collisions occurred on the surface of Mars, which led to the formation of megatsunamis in its palaeo-ocean. Previous research has reported on the effects of tsunami waves on microbial ecosystems in the Earth's oceans. This work indicates that tsunami waves can cause changes in the physico-chemical properties of seawater, as well as tsunami-affected land soils. These factors can certainly affect microbial life. Other researchers have shown that there are large microbial communities of marine prokaryotes (bacteria and archaea) in tsunami-induced sediments. These results led us to investigate the impact of tsunami waves on the proposed microbial life in the ancient Martian ocean, and its role in the preservation or non-preservation of Martian microbial life as a fossil signature.
{"title":"Megatsunamis and microbial life on early Mars","authors":"H. Veysi","doi":"10.1017/s1473550422000209","DOIUrl":"https://doi.org/10.1017/s1473550422000209","url":null,"abstract":"\u0000 It is currently believed that early Mars had a vast and shallow ocean, and microbial life may have formed in it, albeit for a short geological time. The geological evidence indicates that during the existence of this ocean, large collisions occurred on the surface of Mars, which led to the formation of megatsunamis in its palaeo-ocean. Previous research has reported on the effects of tsunami waves on microbial ecosystems in the Earth's oceans. This work indicates that tsunami waves can cause changes in the physico-chemical properties of seawater, as well as tsunami-affected land soils. These factors can certainly affect microbial life. Other researchers have shown that there are large microbial communities of marine prokaryotes (bacteria and archaea) in tsunami-induced sediments. These results led us to investigate the impact of tsunami waves on the proposed microbial life in the ancient Martian ocean, and its role in the preservation or non-preservation of Martian microbial life as a fossil signature.","PeriodicalId":13879,"journal":{"name":"International Journal of Astrobiology","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47878357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-14DOI: 10.1017/S147355042200026X
D. Schleicher, S. Bovino
The Fermi paradox has given rise to various attempts to explain why no evidence of extraterrestrial civilizations was found so far on Earth and in our Solar System. Here, we present a dynamical model for the development of such civilizations, which accounts for self-destruction, colonization and astrophysical destruction mechanisms of civilizations including gamma-ray bursts, type Ia and type II supernovae as well as radiation from the supermassive black hole. We adopt conservative estimates regarding the efficiency of such processes and find that astrophysical effects can influence the development of intelligent civilizations and change the number of systems with such civilizations by roughly a factor of $2$ ; potentially more if the feedback is enhanced. Our results show that non-equilibrium evolution allows for solutions in-between extreme cases such as ‘rare Earth’ or extreme colonization, including scenarios with civilization fractions between $10^{-2}$ and $10^{-7}$ . These would imply still potentially large distances to the next such civilizations, particularly when persistence phenomena are being considered. As previous studies, we confirm that the main uncertainties are due to the lifetime of civilizations as well as the assumed rate of colonization. For SETI-like studies, we believe that unbiased searches are needed considering both the possibilities that the next civilizations are nearby or potentially very far away.
{"title":"The Fermi paradox: impact of astrophysical processes and dynamical evolution","authors":"D. Schleicher, S. Bovino","doi":"10.1017/S147355042200026X","DOIUrl":"https://doi.org/10.1017/S147355042200026X","url":null,"abstract":"\u0000 The Fermi paradox has given rise to various attempts to explain why no evidence of extraterrestrial civilizations was found so far on Earth and in our Solar System. Here, we present a dynamical model for the development of such civilizations, which accounts for self-destruction, colonization and astrophysical destruction mechanisms of civilizations including gamma-ray bursts, type Ia and type II supernovae as well as radiation from the supermassive black hole. We adopt conservative estimates regarding the efficiency of such processes and find that astrophysical effects can influence the development of intelligent civilizations and change the number of systems with such civilizations by roughly a factor of \u0000 \u0000 $2$\u0000 \u0000 \u0000 ; potentially more if the feedback is enhanced. Our results show that non-equilibrium evolution allows for solutions in-between extreme cases such as ‘rare Earth’ or extreme colonization, including scenarios with civilization fractions between \u0000 \u0000 $10^{-2}$\u0000 \u0000 \u0000 and \u0000 \u0000 $10^{-7}$\u0000 \u0000 \u0000 . These would imply still potentially large distances to the next such civilizations, particularly when persistence phenomena are being considered. As previous studies, we confirm that the main uncertainties are due to the lifetime of civilizations as well as the assumed rate of colonization. For SETI-like studies, we believe that unbiased searches are needed considering both the possibilities that the next civilizations are nearby or potentially very far away.","PeriodicalId":13879,"journal":{"name":"International Journal of Astrobiology","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43729792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-01DOI: 10.1017/s1473550422000210
K. Szocik, Rakhat Abylkasymova
In this paper we consider a scenario in which Carl Sagan ’ s Copernican principle is more likely than its negation. Thus, assuming that the existence of an extraterrestrial intelligence (ETI) is reasonably likely, the paper considers the possibility of an ETI that is unable to recognize humans as intelligent beings. The paper presents the rationale for such an assumption. It also discusses the possible consequences for humanity of such a scenario. In this paper, we argue why the scenario under discussion is actually more positive for humanity than a scenario in which ETI would be capable of recognizing humanity as an intelligent species. We also point to feminist approaches to SETI issues exposing the role played by the speci fi c evolutionary and developmental context of potential ETI.
{"title":"If extraterrestrial intelligence exists, it is unable to recognize humans as intelligent beings – ERRATUM","authors":"K. Szocik, Rakhat Abylkasymova","doi":"10.1017/s1473550422000210","DOIUrl":"https://doi.org/10.1017/s1473550422000210","url":null,"abstract":"In this paper we consider a scenario in which Carl Sagan ’ s Copernican principle is more likely than its negation. Thus, assuming that the existence of an extraterrestrial intelligence (ETI) is reasonably likely, the paper considers the possibility of an ETI that is unable to recognize humans as intelligent beings. The paper presents the rationale for such an assumption. It also discusses the possible consequences for humanity of such a scenario. In this paper, we argue why the scenario under discussion is actually more positive for humanity than a scenario in which ETI would be capable of recognizing humanity as an intelligent species. We also point to feminist approaches to SETI issues exposing the role played by the speci fi c evolutionary and developmental context of potential ETI.","PeriodicalId":13879,"journal":{"name":"International Journal of Astrobiology","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46606413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-01DOI: 10.1017/S1473550422000155
G. Micca Longo, S. Longo
Abstract In this work, we study the passage through the Martian atmosphere of micrometeorites with a white soft mineral (WSM) composition, which have been proposed as transporters of organic molecules in the solar system. The atmospheric entry model includes the dynamics of the atmospheric entry and the physico-chemical aspects of the thermal decomposition process. The results show that, due to the reduced entry speed, Mars may have been a promising collector of matter in this form. In particular, the chemical decomposition process is much more effective than in the case of the Earth's atmosphere in maintaining a moderate temperature of the micrometeorite during most of the entry process.
{"title":"Atmospheric entry of sub-millimetre-sized grains into Mars atmosphere: white soft mineral micrometeoroids","authors":"G. Micca Longo, S. Longo","doi":"10.1017/S1473550422000155","DOIUrl":"https://doi.org/10.1017/S1473550422000155","url":null,"abstract":"Abstract In this work, we study the passage through the Martian atmosphere of micrometeorites with a white soft mineral (WSM) composition, which have been proposed as transporters of organic molecules in the solar system. The atmospheric entry model includes the dynamics of the atmospheric entry and the physico-chemical aspects of the thermal decomposition process. The results show that, due to the reduced entry speed, Mars may have been a promising collector of matter in this form. In particular, the chemical decomposition process is much more effective than in the case of the Earth's atmosphere in maintaining a moderate temperature of the micrometeorite during most of the entry process.","PeriodicalId":13879,"journal":{"name":"International Journal of Astrobiology","volume":"21 1","pages":"392 - 404"},"PeriodicalIF":1.7,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42242540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-24DOI: 10.1017/S1473550422000106
A. Meneghin, J. Brucato, T. Fornaro, G. Poggiali
Abstract As soon as samples collected from Mars will be brought back to Earth, the samples will be placed inside a receiving facility to check for the presence of life. There is a large number of approaches that were proposed on the techniques to be used to investigate the presence of life and any biological risk in the returned samples. Another interesting approach was reported by Kminek in which suggestions were provided on how to organize the sample analysis sequence within the facility. Finally, another study suggested a long list of techniques capable of measuring biological signatures based on their general characteristics: global, morphological, mineralogical, organic, molecular and biochemical, isotopic analysis. Despite the effort of the cited studies, there is still the need of a critical approach to make an actual comparison between the techniques, with the aim to find a ranking. In this work, we focused on the construction of a correlation matrix with which to correlate biosignatures to analytical techniques. It is known that a number of techniques can detect biological signatures and, at the same time, each technique can be applied to multiple biological signatures. Using this method, it is possible to summarize all this information to be easily consulted, but also to define in a quantitative way how strong each correlation is.
{"title":"Life detection in Martian returned samples: correlation between analytical techniques and biological signatures","authors":"A. Meneghin, J. Brucato, T. Fornaro, G. Poggiali","doi":"10.1017/S1473550422000106","DOIUrl":"https://doi.org/10.1017/S1473550422000106","url":null,"abstract":"Abstract As soon as samples collected from Mars will be brought back to Earth, the samples will be placed inside a receiving facility to check for the presence of life. There is a large number of approaches that were proposed on the techniques to be used to investigate the presence of life and any biological risk in the returned samples. Another interesting approach was reported by Kminek in which suggestions were provided on how to organize the sample analysis sequence within the facility. Finally, another study suggested a long list of techniques capable of measuring biological signatures based on their general characteristics: global, morphological, mineralogical, organic, molecular and biochemical, isotopic analysis. Despite the effort of the cited studies, there is still the need of a critical approach to make an actual comparison between the techniques, with the aim to find a ranking. In this work, we focused on the construction of a correlation matrix with which to correlate biosignatures to analytical techniques. It is known that a number of techniques can detect biological signatures and, at the same time, each technique can be applied to multiple biological signatures. Using this method, it is possible to summarize all this information to be easily consulted, but also to define in a quantitative way how strong each correlation is.","PeriodicalId":13879,"journal":{"name":"International Journal of Astrobiology","volume":"21 1","pages":"287 - 295"},"PeriodicalIF":1.7,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41938017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-21DOI: 10.1017/S1473550422000131
Claudia Mosca, A. Napoli, Claudia Fagliarone, A. Fujimori, R. Moeller, D. Billi
Abstract If life ever appeared on Mars and if it did refuge into sub-superficial environments when surface conditions turned too hostile, then it should have been periodically revived from the frozen, dormant state in order to repair the accumulated damage and reset the survival clock to zero for the next dormant phase. Thus, unravelling how long Earth dormant microorganisms can cope with high-LET radiation mimicking long-term irradiation is fundamental to get insights into the long-term resilience of a dormant microbial life in the Martian subsurface over geological timescales that might have taken advantage of periodically clement conditions that allowed the repair of the accumulated DNA damage. The exposure of dried cells of the radioresistant cyanobacterium Chroococcidiopsis sp. CCMEE 029 to 2 kGy of heavy-ion radiation (Fe ions) did not significantly reduce its survival, although DNA damage was accumulated. Upon rehydration, DNA lesions were repaired as suggested by the over-expression of genes involved in the repair of double strand breaks (DSBs), oxidized bases and apurinic-apyrimidinic sites. Indeed, the monitoring of repair genes upon rehydration suggested a key role of the RecF homologous recombination in repairing DSBs. While the fact that out of the eight genes of the BER system, only one was up-regulated, suggested the absence of DNA lesions generally induced by UV radiation. In conclusion, the non-significantly reduced survival of dried Chroococcidiopsis exposed to 2 kGy of Fe-ion radiation further expanded our appreciation of the resilience of a putative dormant life in the Martian subsurface. Moreover, it is also relevant when searching life on Europa and Enceladus where the radiation environment might critically affect the long-term survival of dormant, frozen life forms.
{"title":"Role of DNA repair pathways in the recovery of a dried, radioresistant cyanobacterium exposed to high-LET radiation: implications for the habitability of Mars","authors":"Claudia Mosca, A. Napoli, Claudia Fagliarone, A. Fujimori, R. Moeller, D. Billi","doi":"10.1017/S1473550422000131","DOIUrl":"https://doi.org/10.1017/S1473550422000131","url":null,"abstract":"Abstract If life ever appeared on Mars and if it did refuge into sub-superficial environments when surface conditions turned too hostile, then it should have been periodically revived from the frozen, dormant state in order to repair the accumulated damage and reset the survival clock to zero for the next dormant phase. Thus, unravelling how long Earth dormant microorganisms can cope with high-LET radiation mimicking long-term irradiation is fundamental to get insights into the long-term resilience of a dormant microbial life in the Martian subsurface over geological timescales that might have taken advantage of periodically clement conditions that allowed the repair of the accumulated DNA damage. The exposure of dried cells of the radioresistant cyanobacterium Chroococcidiopsis sp. CCMEE 029 to 2 kGy of heavy-ion radiation (Fe ions) did not significantly reduce its survival, although DNA damage was accumulated. Upon rehydration, DNA lesions were repaired as suggested by the over-expression of genes involved in the repair of double strand breaks (DSBs), oxidized bases and apurinic-apyrimidinic sites. Indeed, the monitoring of repair genes upon rehydration suggested a key role of the RecF homologous recombination in repairing DSBs. While the fact that out of the eight genes of the BER system, only one was up-regulated, suggested the absence of DNA lesions generally induced by UV radiation. In conclusion, the non-significantly reduced survival of dried Chroococcidiopsis exposed to 2 kGy of Fe-ion radiation further expanded our appreciation of the resilience of a putative dormant life in the Martian subsurface. Moreover, it is also relevant when searching life on Europa and Enceladus where the radiation environment might critically affect the long-term survival of dormant, frozen life forms.","PeriodicalId":13879,"journal":{"name":"International Journal of Astrobiology","volume":"21 1","pages":"380 - 391"},"PeriodicalIF":1.7,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43977574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-11DOI: 10.1017/s1473550422000118
J. Mejsnar, V. Proks, P. Hezký, Marie Černá
The experimental study aimed to select the spectrometric results of the solar flare that meet the mathematical conditions for integration, to measure the power of this integrated flux, and to test the integrated power, whether it is able to form a peptide bond between two molecules of selected amino acids on the Earth's surface. Results show that the radiation power of the X17 solar flare scanned by the SOLSTICE and SIM spectrometers aboard the NASA SORCE spacecraft, when used for experimental irradiance of the same parameters, is sufficient to form methionine, alanine, glutamine and proline dipeptides in aqueous solution with pyrophosphate or carbonyl sulphide at laboratory temperature. The experiments, with their successful outcome, provide insight into the biological significance of the narrowband solar flare anchored in the broadband UV solar radiation.
{"title":"Amino acid dipeptide formation induced by experimental irradiance of a solar flare power","authors":"J. Mejsnar, V. Proks, P. Hezký, Marie Černá","doi":"10.1017/s1473550422000118","DOIUrl":"https://doi.org/10.1017/s1473550422000118","url":null,"abstract":"\u0000 The experimental study aimed to select the spectrometric results of the solar flare that meet the mathematical conditions for integration, to measure the power of this integrated flux, and to test the integrated power, whether it is able to form a peptide bond between two molecules of selected amino acids on the Earth's surface. Results show that the radiation power of the X17 solar flare scanned by the SOLSTICE and SIM spectrometers aboard the NASA SORCE spacecraft, when used for experimental irradiance of the same parameters, is sufficient to form methionine, alanine, glutamine and proline dipeptides in aqueous solution with pyrophosphate or carbonyl sulphide at laboratory temperature. The experiments, with their successful outcome, provide insight into the biological significance of the narrowband solar flare anchored in the broadband UV solar radiation.","PeriodicalId":13879,"journal":{"name":"International Journal of Astrobiology","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42355513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-08DOI: 10.1017/S147355042200012X
Niklas A. Döbler
Abstract Solutions to the Fermi paradox either deny the existence of extraterrestrials or offer alternative reasons to explain the non-occurrence of a first contact. While the latter, more optimistic approaches generally assume the existence of extraterrestrials, they simultaneously hint to limited future detectability. If solutions to the Fermi paradox are accepted as true, they must be evaluated in terms of how they affect the likelihood of success of future SETI efforts. Some solutions may lead to the so-called Fermi constraint: in order to explain why there has not been any contact so far, optimistic solutions to the Fermi paradox have to accept assumptions that, if the solution is assumed to be correct, indicate a very low probability of future contact. In other words: they are not here, and that is why they may never appear.
{"title":"Where will they be: hidden implications of solutions to the Fermi paradox","authors":"Niklas A. Döbler","doi":"10.1017/S147355042200012X","DOIUrl":"https://doi.org/10.1017/S147355042200012X","url":null,"abstract":"Abstract Solutions to the Fermi paradox either deny the existence of extraterrestrials or offer alternative reasons to explain the non-occurrence of a first contact. While the latter, more optimistic approaches generally assume the existence of extraterrestrials, they simultaneously hint to limited future detectability. If solutions to the Fermi paradox are accepted as true, they must be evaluated in terms of how they affect the likelihood of success of future SETI efforts. Some solutions may lead to the so-called Fermi constraint: in order to explain why there has not been any contact so far, optimistic solutions to the Fermi paradox have to accept assumptions that, if the solution is assumed to be correct, indicate a very low probability of future contact. In other words: they are not here, and that is why they may never appear.","PeriodicalId":13879,"journal":{"name":"International Journal of Astrobiology","volume":"21 1","pages":"200 - 204"},"PeriodicalIF":1.7,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41561088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}