Xueying Feng, Min Zou, Jiong Liu, Liang Lv, Xiangfeng Meng, Yu Bai, Fei Zheng, Li Yu, Wen Ma, Yuanming Gao
High-temperature oxidation (1050°C) of Sr.9(Zr.9Yb.05Y.05)O2.85 (SZYY) thermal barrier coatings (TBCs) by suspension plasma spraying (SPS) and growth behavior of thermally grown oxide (TGO) were investigated. When the TBCs were exposed to high temperature for a period of time (∼5 h), the BC oxidized and TGO inevitably formed between the bond coating (BC) and the ceramic top coating (TC). The high-temperature oxidation behavior of the BC is generally manifested as the growth of TGO, which has four specific stages as follows: (1) formative oxidation stage (0‒10 h), (2) rapid oxidation stage (10‒50 h), (3) stable oxidation stage (50‒100 h), and (4) complex oxidation stage (100‒200 h). The main component of early TGO is α-Al2O3. It has a very low oxygen ion diffusivity and provides an excellent diffusion barrier, which has a positive effect on preventing further BC oxidation. However, as the heat treatment time increased, the Al consumption and the formation of a CNS layer (NiO, Co3O4, and spinel) in the BC eventually led to coating failure. The working life of TBCs can be improved by improving the ceramic TC structure and the Al content of BC. SZYY-TBCs have certain potential application value.
{"title":"High-temperature oxidation and TGO growth behavior of Sr.9(Zr.9Yb.05Y.05)O2.85 thermal barrier coatings","authors":"Xueying Feng, Min Zou, Jiong Liu, Liang Lv, Xiangfeng Meng, Yu Bai, Fei Zheng, Li Yu, Wen Ma, Yuanming Gao","doi":"10.1111/ijac.14870","DOIUrl":"10.1111/ijac.14870","url":null,"abstract":"<p>High-temperature oxidation (1050°C) of Sr<sub>.9</sub>(Zr<sub>.9</sub>Yb<sub>.05</sub>Y<sub>.05</sub>)O<sub>2.85</sub> (SZYY) thermal barrier coatings (TBCs) by suspension plasma spraying (SPS) and growth behavior of thermally grown oxide (TGO) were investigated. When the TBCs were exposed to high temperature for a period of time (∼5 h), the BC oxidized and TGO inevitably formed between the bond coating (BC) and the ceramic top coating (TC). The high-temperature oxidation behavior of the BC is generally manifested as the growth of TGO, which has four specific stages as follows: (1) formative oxidation stage (0‒10 h), (2) rapid oxidation stage (10‒50 h), (3) stable oxidation stage (50‒100 h), and (4) complex oxidation stage (100‒200 h). The main component of early TGO is α-Al<sub>2</sub>O<sub>3</sub>. It has a very low oxygen ion diffusivity and provides an excellent diffusion barrier, which has a positive effect on preventing further BC oxidation. However, as the heat treatment time increased, the Al consumption and the formation of a CNS layer (NiO, Co<sub>3</sub>O<sub>4</sub>, and spinel) in the BC eventually led to coating failure. The working life of TBCs can be improved by improving the ceramic TC structure and the Al content of BC. SZYY-TBCs have certain potential application value.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"21 6","pages":"4100-4113"},"PeriodicalIF":1.8,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141741371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Ti3SiC2/Cu composites were synthesized by spark plasma sintering (SPS) at 950°C, 1000°C, and 1050°C, and the as‐formed composites were oxidized at 700°C, 800°C, and 900°C. The effects of the sintering temperature and the oxidation temperature on the anti‐oxidation of the composites at high temperatures were explored. The samples were characterized by X‐ray diffraction, optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X‐ray photoelectron spectroscope. The results indicated that the sintering temperature significantly improved the oxidation resistance of the composites. With the increase of the sintering temperature, the weight gain of the oxidation of the composites decreased and the optimum sintering temperature was 1050°C. At an identical sintering temperature, with the increase of the oxidation temperature, the weight gain of the oxidation of the composites first decreased and then it increased. Thus, when the oxidation temperature was 800°C, the composites exhibited an excellent oxidation resistance (oxidation weight gain: .0042 × 10−5 g/mm2). The anti‐oxidation behavior of the composites benefited by the formation of an oxide layer. The oxide layer was composed by TiO2, CuO, and amorphous SiO2.
{"title":"The anti‐oxidation behavior of the Ti3SiC2/Cu composites at high temperatures","authors":"Rui Zhang, Huiming Zhang, Fuyan Liu, Shuai Ma","doi":"10.1111/ijac.14869","DOIUrl":"https://doi.org/10.1111/ijac.14869","url":null,"abstract":"The Ti<jats:sub>3</jats:sub>SiC<jats:sub>2</jats:sub>/Cu composites were synthesized by spark plasma sintering (SPS) at 950°C, 1000°C, and 1050°C, and the as‐formed composites were oxidized at 700°C, 800°C, and 900°C. The effects of the sintering temperature and the oxidation temperature on the anti‐oxidation of the composites at high temperatures were explored. The samples were characterized by X‐ray diffraction, optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X‐ray photoelectron spectroscope. The results indicated that the sintering temperature significantly improved the oxidation resistance of the composites. With the increase of the sintering temperature, the weight gain of the oxidation of the composites decreased and the optimum sintering temperature was 1050°C. At an identical sintering temperature, with the increase of the oxidation temperature, the weight gain of the oxidation of the composites first decreased and then it increased. Thus, when the oxidation temperature was 800°C, the composites exhibited an excellent oxidation resistance (oxidation weight gain: .0042 × 10<jats:sup>−5</jats:sup> g/mm<jats:sup>2</jats:sup>). The anti‐oxidation behavior of the composites benefited by the formation of an oxide layer. The oxide layer was composed by TiO<jats:sub>2</jats:sub>, CuO, and amorphous SiO<jats:sub>2</jats:sub>.","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"30 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141741475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kai Zhu, Xiang Zhao, Mingxuan Hao, Daoyuan Yang, Huiyu Yuan
Direct ink writing (DIW) technology supersedes traditional mold-based forming methods, significantly enhancing the fabrication of personalized and customized products with complex structures. This technology particularly excels in achieving precise control over the porosity of porous constructs. This study employs inorganic Al2O3 as raw material, sodium hexametaphosphate as dispersing agent, and inorganic SiO2 micropowder as binding medium to fabricate lattice porous structures. One challenge encountered is the viscoelastic behavior of the extruded filament. When spanning the unsupported segments of the lower layer, the upper extruded filaments are susceptible to deflection or collapse, adversely affecting the porosity and dimensional fidelity of the final specimens. Experimental results revealed that a larger span and smaller modulus will cause the extruded filament to be more prone to deformation at the midpoint. The introduction of 2 wt% polyethylene glycol as a plasticizer mitigates this issue, ensuring nondeflection of the extruded filaments at a span of 6 mm. The deflection model for the extruded filament about span and modulus identifies the minimum modulus necessary to prevent or minimize deflection under given spans, which closely approximates our experimental findings, offering a valuable framework for guiding the production of high-precision, porosity-controlled porous structures.
{"title":"Study on filament deflection in lattice porous structures fabricated through direct ink writing","authors":"Kai Zhu, Xiang Zhao, Mingxuan Hao, Daoyuan Yang, Huiyu Yuan","doi":"10.1111/ijac.14868","DOIUrl":"10.1111/ijac.14868","url":null,"abstract":"<p>Direct ink writing (DIW) technology supersedes traditional mold-based forming methods, significantly enhancing the fabrication of personalized and customized products with complex structures. This technology particularly excels in achieving precise control over the porosity of porous constructs. This study employs inorganic Al<sub>2</sub>O<sub>3</sub> as raw material, sodium hexametaphosphate as dispersing agent, and inorganic SiO<sub>2</sub> micropowder as binding medium to fabricate lattice porous structures. One challenge encountered is the viscoelastic behavior of the extruded filament. When spanning the unsupported segments of the lower layer, the upper extruded filaments are susceptible to deflection or collapse, adversely affecting the porosity and dimensional fidelity of the final specimens. Experimental results revealed that a larger span and smaller modulus will cause the extruded filament to be more prone to deformation at the midpoint. The introduction of 2 wt% polyethylene glycol as a plasticizer mitigates this issue, ensuring nondeflection of the extruded filaments at a span of 6 mm. The deflection model for the extruded filament about span and modulus identifies the minimum modulus necessary to prevent or minimize deflection under given spans, which closely approximates our experimental findings, offering a valuable framework for guiding the production of high-precision, porosity-controlled porous structures.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"21 6","pages":"3876-3885"},"PeriodicalIF":1.8,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141741310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mingde Tong, Xinhao Shi, Tao Feng, Ying Dai, Pengfei He
To achieve the repeatability of aerospace thermal components, C/TaC‒SiC composites were fabricated. Cycle ablation and bending tests were carried out. After 3 × 60 s of ablation beyond 2100°C, the mechanical property retention rate was 80.9%. Interestingly, a reaction similar to “ouroboros ring,” in which the cyclic reactions of “TaC being oxidized to Ta2O5 and Ta2O5 being reduced to TaC,” occurred in the central ablation region of C/TaC‒SiC composites. On the one hand, the continuous generation of TaC could prevent liquid state Ta2O5 from being blown off central ablation region, playing a similar role in “water and soil conservation.” On the other hand, liquid Ta2O5 covered the surface of C/TaC‒SiC composites during ablation process, contributing to block the inward permeation of oxidized gases. In addition, novel “Grotto” structures were detected in the transitional ablation region of C/TaC‒SiC composites. The formation reason of the “Grotto” structure has also been discussed.
{"title":"Self-defending mechanism of C/TaC‒SiC composites under 2100°C cyclic ablation environment","authors":"Mingde Tong, Xinhao Shi, Tao Feng, Ying Dai, Pengfei He","doi":"10.1111/ijac.14867","DOIUrl":"10.1111/ijac.14867","url":null,"abstract":"<p>To achieve the repeatability of aerospace thermal components, C/TaC‒SiC composites were fabricated. Cycle ablation and bending tests were carried out. After 3 × 60 s of ablation beyond 2100°C, the mechanical property retention rate was 80.9%. Interestingly, a reaction similar to “ouroboros ring,” in which the cyclic reactions of “TaC being oxidized to Ta<sub>2</sub>O<sub>5</sub> and Ta<sub>2</sub>O<sub>5</sub> being reduced to TaC,” occurred in the central ablation region of C/TaC‒SiC composites. On the one hand, the continuous generation of TaC could prevent liquid state Ta<sub>2</sub>O<sub>5</sub> from being blown off central ablation region, playing a similar role in “water and soil conservation.” On the other hand, liquid Ta<sub>2</sub>O<sub>5</sub> covered the surface of C/TaC‒SiC composites during ablation process, contributing to block the inward permeation of oxidized gases. In addition, novel “Grotto” structures were detected in the transitional ablation region of C/TaC‒SiC composites. The formation reason of the “Grotto” structure has also been discussed.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"21 6","pages":"4127-4145"},"PeriodicalIF":1.8,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141741303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juan Liu, Yu Sun, Lilin Xiang, TuLai Sun, Zilong Yu, Bing Cui, Chuangui Jin
In the present study, SrTiO3 was selected to enhance the multiferroic characteristics of Bi0.88Sm0.12FeO3 (BSF) ceramics. With increasing SrTiO3 content, the principal phase of BSF ceramic transitions from rhombohedral R3c to Pna21. Through DSC and dielectric analysis, it was observed that both the Curie temperature and Néel temperature decreased proportionally with the augmentation of SrTiO3 content. When x = .1, the optimal ferroelectric performance is achieved, and the highest remanent polarization value is 55.47 µC/cm2, significantly surpassing that of BSF ceramics. Moreover, the PFM test results showed that as the substitution content increased, the domains in the BSF ceramic gradually transformed from normal ferroelectric domains to polar nanomicro-domains. Magnetic and magnetoelectric results show that when x = .1, the best magnetic properties are obtained, Mr = 59.7 emu/mol. The magnetoelectric coefficient αME initially increased and then decreased with the increasing SrTiO3 content, reaching its optimum magnetoelectric properties at x = .1, where αME = .47 mV cm–1 Oe–1. In summary, when the substitution amount of SrTiO3 reaches 10%, the ferroelectric, magnetic, and magnetoelectric properties of BSF ceramics are significantly improved.
{"title":"Simultaneously enhanced ferroelectric and magnetic properties of SrTiO3-modified Bi0.88Sm0.12FeO3 ceramics","authors":"Juan Liu, Yu Sun, Lilin Xiang, TuLai Sun, Zilong Yu, Bing Cui, Chuangui Jin","doi":"10.1111/ijac.14856","DOIUrl":"10.1111/ijac.14856","url":null,"abstract":"<p>In the present study, SrTiO<sub>3</sub> was selected to enhance the multiferroic characteristics of Bi<sub>0.88</sub>Sm<sub>0.12</sub>FeO<sub>3</sub> (BSF) ceramics. With increasing SrTiO<sub>3</sub> content, the principal phase of BSF ceramic transitions from rhombohedral <i>R3c</i> to <i>Pna2<sub>1</sub></i>. Through DSC and dielectric analysis, it was observed that both the Curie temperature and Néel temperature decreased proportionally with the augmentation of SrTiO<sub>3</sub> content. When <i>x</i> = .1, the optimal ferroelectric performance is achieved, and the highest remanent polarization value is 55.47 µC/cm<sup>2</sup>, significantly surpassing that of BSF ceramics. Moreover, the PFM test results showed that as the substitution content increased, the domains in the BSF ceramic gradually transformed from normal ferroelectric domains to polar nanomicro-domains. Magnetic and magnetoelectric results show that when <i>x </i>= .1, the best magnetic properties are obtained, <i>M</i><sub>r</sub> = 59.7 emu/mol. The magnetoelectric coefficient α<sub>ME</sub> initially increased and then decreased with the increasing SrTiO<sub>3</sub> content, reaching its optimum magnetoelectric properties at <i>x</i> = .1, where <i>α</i><sub>ME</sub> = .47 mV cm<sup>–1</sup> Oe<sup>–1</sup>. In summary, when the substitution amount of SrTiO<sub>3</sub> reaches 10%, the ferroelectric, magnetic, and magnetoelectric properties of BSF ceramics are significantly improved.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"21 6","pages":"4352-4365"},"PeriodicalIF":1.8,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141741302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yixuan Wang, Fenghao Zhang, Song Chen, Akiyoshi Osaka, Weiyi Chen
Titania nanotube (NT) arrays have been widely used as cell-supporting matrices. However, cells are always seeded on the porous surface of the NT array and have very limited interactions with each individual NT in the array. In this study, titania hollow microtubes (HMTs) were synthesized via a gelatin-template sol-gel route and then utilized as free-standing cell-supporting matrices for the first time. The resultant titania HMTs were studied by field emission scanning electron microscopy, energy-dispersed spectroscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. Each HMT was composed of rutile-type titania nanoparticles with diameters of 50–100 nm and a diameter of 50–100 µm. The results from a leaching liquor assay demonstrated good biocompatibility of titania HMTs. Each HMT has been demonstrated to independently support the adhesion and proliferation of osteoblast MC3T3-E1 cells. For comparison, titania NT arrays, not independent titania NT, only supported the adhesion of cells on their porous surface. Thus, the resultant titania HMTs are applicable to free-standing and biocompatible cell-supporting matrices.
{"title":"Facile synthesis, characterization, and in vitro biocompatibility of free-standing titania hollow microtubes","authors":"Yixuan Wang, Fenghao Zhang, Song Chen, Akiyoshi Osaka, Weiyi Chen","doi":"10.1111/ijac.14858","DOIUrl":"10.1111/ijac.14858","url":null,"abstract":"<p>Titania nanotube (NT) arrays have been widely used as cell-supporting matrices. However, cells are always seeded on the porous surface of the NT array and have very limited interactions with each individual NT in the array. In this study, titania hollow microtubes (HMTs) were synthesized via a gelatin-template sol-gel route and then utilized as free-standing cell-supporting matrices for the first time. The resultant titania HMTs were studied by field emission scanning electron microscopy, energy-dispersed spectroscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. Each HMT was composed of rutile-type titania nanoparticles with diameters of 50–100 nm and a diameter of 50–100 µm. The results from a leaching liquor assay demonstrated good biocompatibility of titania HMTs. Each HMT has been demonstrated to independently support the adhesion and proliferation of osteoblast MC3T3-E1 cells. For comparison, titania NT arrays, not independent titania NT, only supported the adhesion of cells on their porous surface. Thus, the resultant titania HMTs are applicable to free-standing and biocompatible cell-supporting matrices.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"21 6","pages":"3897-3905"},"PeriodicalIF":1.8,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141741314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Li, Xiao Bai, Dejian Zhang, Huilai Sun, Zhengang Guo, Shuyan Yang, Yong Wan
TC4 titanium alloy has been widely used in the automotive field due to its exceptional properties. However, inherent defects such as low hardness and poor wear resistance for TC4 alloy limited its wider application. The microarc oxidation (MAO) technique was employed in this paper to prepare MAO coatings on TC4 titanium alloy. The microstructure, phase structure, mechanical properties, and tribological performance were systematically evaluated. The results show that the coating contains a large amount of rutile TiO2 hard phase after MAO treatment, which significantly improves the mechanical properties of the substrate. The hardness of the MAO coating can reach 581 HV.05. Furthermore, the synergistic lubrication effect of onion-like carbon (OLC) nanoparticles and organic molybdenum dithiocarbamate (MoDTC) in PAO oil was observed for MAO-treated TC4. Particularly, when .01 wt.% OLC is used with 1 wt.% MoDTC oil, the coefficient of friction (COF) decreases to .062, and the wear rate decreases to 4.3 × 10−7 mm3/Nm. Combined Raman and X-ray photoelectron spectroscopy (XPS) analysis indicate that OLC is deposited on coating area to form a lubricating carbon film. Additionally, OLC can promote the decomposition of MoDTC during sliding to generate a tribofilm containing MoS2.
TC4 钛合金因其优异的性能而被广泛应用于汽车领域。然而,TC4 合金硬度低、耐磨性差等固有缺陷限制了它的广泛应用。本文采用微弧氧化(MAO)技术制备了 TC4 钛合金的 MAO 涂层。系统地评估了涂层的微观结构、相结构、机械性能和摩擦学性能。结果表明,经 MAO 处理后的涂层含有大量金红石型 TiO2 硬相,可显著提高基体的机械性能。MAO 涂层的硬度可达 581 HV.05。此外,在 MAO 处理过的 TC4 中还观察到了 PAO 油中洋葱状碳(OLC)纳米粒子和有机二硫代氨基甲酸钼(MoDTC)的协同润滑效果。特别是当 0.01 wt.% OLC 与 1 wt.% MoDTC 油一起使用时,摩擦系数 (COF) 降至 0.062,磨损率降至 4.3 × 10-7 mm3/Nm。拉曼光谱和 X 射线光电子能谱(XPS)分析表明,OLC 沉积在涂层区域,形成一层润滑碳膜。此外,OLC 还能促进 MoDTC 在滑动过程中分解,生成含有 MoS2 的三膜。
{"title":"Synergistic lubrication effect of OLC and MoDTC for reducing friction and wear of MAO ceramic coating on TC4 alloy","authors":"Yang Li, Xiao Bai, Dejian Zhang, Huilai Sun, Zhengang Guo, Shuyan Yang, Yong Wan","doi":"10.1111/ijac.14859","DOIUrl":"10.1111/ijac.14859","url":null,"abstract":"<p>TC4 titanium alloy has been widely used in the automotive field due to its exceptional properties. However, inherent defects such as low hardness and poor wear resistance for TC4 alloy limited its wider application. The microarc oxidation (MAO) technique was employed in this paper to prepare MAO coatings on TC4 titanium alloy. The microstructure, phase structure, mechanical properties, and tribological performance were systematically evaluated. The results show that the coating contains a large amount of rutile TiO<sub>2</sub> hard phase after MAO treatment, which significantly improves the mechanical properties of the substrate. The hardness of the MAO coating can reach 581 HV<sub>.05</sub>. Furthermore, the synergistic lubrication effect of onion-like carbon (OLC) nanoparticles and organic molybdenum dithiocarbamate (MoDTC) in PAO oil was observed for MAO-treated TC4. Particularly, when .01 wt.% OLC is used with 1 wt.% MoDTC oil, the coefficient of friction (COF) decreases to .062, and the wear rate decreases to 4.3 × 10<sup>−7</sup> mm<sup>3</sup>/Nm. Combined Raman and X-ray photoelectron spectroscopy (XPS) analysis indicate that OLC is deposited on coating area to form a lubricating carbon film. Additionally, OLC can promote the decomposition of MoDTC during sliding to generate a tribofilm containing MoS<sub>2</sub>.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"21 6","pages":"4293-4303"},"PeriodicalIF":1.8,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141741313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, Ti2O3 thin films were successfully produced using magnetron sputtering. Through orthogonal gradient experiments, the impact of substrate temperature, sputtering vacuum, RF power, and sputtering duration on surface morphology, roughness, physical structure, and resistivity was investigated. Various analytical techniques were employed, including AFM and SEM for surface morphology observation, XRD and Raman for qualitative physical structure analysis, XPS for elemental valence examination, and the four‐probe method for resistivity measurements. The study identified optimal growth conditions for Ti2O3 films, demonstrating a low resistivity of 2.66 × 10−3 Ω cm under the following conditions: RF power of 200 W, sputtering vacuum of .6 Pa, substrate temperature of 600°C, and sputtering duration of 60 min. Additionally, the sensor arrays were efficiently fabricated using the Lift‐off method to evaluate the photoelectric performance of the films. A light responsiveness of approximately 6 µA/W was observed in the device when illuminated with 950 nm light for 10 s. This finding carries important implications for the use of Ti2O3 thin films in future photoelectric devices.
{"title":"Optimization of Ti2O3 thin films by magnetron sputtering and study of their photoelectric performance","authors":"Wenwei Wang, Jialiang He, Yingbang Yao","doi":"10.1111/ijac.14857","DOIUrl":"https://doi.org/10.1111/ijac.14857","url":null,"abstract":"In this study, Ti<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> thin films were successfully produced using magnetron sputtering. Through orthogonal gradient experiments, the impact of substrate temperature, sputtering vacuum, RF power, and sputtering duration on surface morphology, roughness, physical structure, and resistivity was investigated. Various analytical techniques were employed, including AFM and SEM for surface morphology observation, XRD and Raman for qualitative physical structure analysis, XPS for elemental valence examination, and the four‐probe method for resistivity measurements. The study identified optimal growth conditions for Ti<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> films, demonstrating a low resistivity of 2.66 × 10<jats:sup>−3</jats:sup> Ω cm under the following conditions: RF power of 200 W, sputtering vacuum of .6 Pa, substrate temperature of 600°C, and sputtering duration of 60 min. Additionally, the sensor arrays were efficiently fabricated using the Lift‐off method to evaluate the photoelectric performance of the films. A light responsiveness of approximately 6 µA/W was observed in the device when illuminated with 950 nm light for 10 s. This finding carries important implications for the use of Ti<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> thin films in future photoelectric devices.","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"9 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141741305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Achraf Harrati, Youssef Arkame, Sanaa Adlane, Ahlam Essate, Brahim Achiou, Abdeslam El Bouari, Abdelleh Aaddane, Saad Alami Younssi, Chaouki Sadik
The aim of this work is to fabricate a low-cost ceramic microfiltration (MF) membrane made from a new geomaterial named peridotite. The membrane was prepared by uniaxial pressing and followed by sintering. The effect of sintering temperature, in the range of 1100–1225°C, on the permeability, porosity, mechanical strength, and pore size was investigated. The optimized MF membrane sintered at 1200°C exhibits 1198.9 L h−1 m−2 bar−1 of permeability, 36.41% of porosity, 12.9 MPa of mechanical strength, and 1.56 µm of pore size. The prepared membrane was used for the MF treatment of dairy wastewater. It was found that the membrane is able to remove 88.56% and 69.54% of turbidity and chemical oxygen demand, respectively. Furthermore, the cost of the peridotite membrane was estimated to be $10.3 m−2.
{"title":"Preparation of low-cost peridotite ceramic microfiltration membrane for treating industrial wastewater","authors":"Achraf Harrati, Youssef Arkame, Sanaa Adlane, Ahlam Essate, Brahim Achiou, Abdeslam El Bouari, Abdelleh Aaddane, Saad Alami Younssi, Chaouki Sadik","doi":"10.1111/ijac.14852","DOIUrl":"10.1111/ijac.14852","url":null,"abstract":"<p>The aim of this work is to fabricate a low-cost ceramic microfiltration (MF) membrane made from a new geomaterial named peridotite. The membrane was prepared by uniaxial pressing and followed by sintering. The effect of sintering temperature, in the range of 1100–1225°C, on the permeability, porosity, mechanical strength, and pore size was investigated. The optimized MF membrane sintered at 1200°C exhibits 1198.9 L h<sup>−1</sup> m<sup>−2</sup> bar<sup>−1</sup> of permeability, 36.41% of porosity, 12.9 MPa of mechanical strength, and 1.56 µm of pore size. The prepared membrane was used for the MF treatment of dairy wastewater. It was found that the membrane is able to remove 88.56% and 69.54% of turbidity and chemical oxygen demand, respectively. Furthermore, the cost of the peridotite membrane was estimated to be $10.3 m<sup>−2</sup>.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"21 6","pages":"4366-4379"},"PeriodicalIF":1.8,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141741304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
LaB6–HfB2 composites with the different HfB2 contents (10 wt.%, 30 wt.%, 50 wt.%, 70 wt.%, and 90 wt.%) were densified by spark plasma sintering (SPS). Results showed that the densification mechanism of the composite transformed from the grain boundary diffusion into the dislocation climbing mechanism as the holding time was extended from 0 to 15 min under temperature range of 1750–1900°C. The HfB2 phase could effectively limit the grain growth of LaB6 phase, and the dynamic growth of the grain was governed by grain boundary diffusion. Both the Berkovich hardness and Vickers hardness obeyed the normal indentation size effect. LaB6–70 wt.% HfB2 composite had the highest fracture toughness of 3.98 ± .43 MPa m.5, whereas the highest current density of 18.34 A/cm2 belonged to LaB6–30 wt.% HfB2 composite. All the results demonstrated that LaB6–HfB2 composite was a promising material with the excellent structural and functional performance.
{"title":"Densification, microstructure, mechanical, and thermionic properties of spark plasma sintered LaB6–HfB2 composite","authors":"Ke Wang, Xinyu Yang, Wei Zhao, Zengjie Gu, Shifeng Luo, Jiuxing Zhang","doi":"10.1111/ijac.14862","DOIUrl":"10.1111/ijac.14862","url":null,"abstract":"<p>LaB<sub>6</sub>–HfB<sub>2</sub> composites with the different HfB<sub>2</sub> contents (10 wt.%, 30 wt.%, 50 wt.%, 70 wt.%, and 90 wt.%) were densified by spark plasma sintering (SPS). Results showed that the densification mechanism of the composite transformed from the grain boundary diffusion into the dislocation climbing mechanism as the holding time was extended from 0 to 15 min under temperature range of 1750–1900°C. The HfB<sub>2</sub> phase could effectively limit the grain growth of LaB<sub>6</sub> phase, and the dynamic growth of the grain was governed by grain boundary diffusion. Both the Berkovich hardness and Vickers hardness obeyed the normal indentation size effect. LaB<sub>6</sub>–70 wt.% HfB<sub>2</sub> composite had the highest fracture toughness of 3.98 ± .43 MPa m<sup>.5</sup>, whereas the highest current density of 18.34 A/cm<sup>2</sup> belonged to LaB<sub>6</sub>–30 wt.% HfB<sub>2</sub> composite. All the results demonstrated that LaB<sub>6</sub>–HfB<sub>2</sub> composite was a promising material with the excellent structural and functional performance.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"21 6","pages":"3936-3949"},"PeriodicalIF":1.8,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141648167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}