Yang Li, Xiao Bai, Dejian Zhang, Huilai Sun, Zhengang Guo, Shuyan Yang, Yong Wan
TC4 titanium alloy has been widely used in the automotive field due to its exceptional properties. However, inherent defects such as low hardness and poor wear resistance for TC4 alloy limited its wider application. The microarc oxidation (MAO) technique was employed in this paper to prepare MAO coatings on TC4 titanium alloy. The microstructure, phase structure, mechanical properties, and tribological performance were systematically evaluated. The results show that the coating contains a large amount of rutile TiO2 hard phase after MAO treatment, which significantly improves the mechanical properties of the substrate. The hardness of the MAO coating can reach 581 HV.05. Furthermore, the synergistic lubrication effect of onion-like carbon (OLC) nanoparticles and organic molybdenum dithiocarbamate (MoDTC) in PAO oil was observed for MAO-treated TC4. Particularly, when .01 wt.% OLC is used with 1 wt.% MoDTC oil, the coefficient of friction (COF) decreases to .062, and the wear rate decreases to 4.3 × 10−7 mm3/Nm. Combined Raman and X-ray photoelectron spectroscopy (XPS) analysis indicate that OLC is deposited on coating area to form a lubricating carbon film. Additionally, OLC can promote the decomposition of MoDTC during sliding to generate a tribofilm containing MoS2.
TC4 钛合金因其优异的性能而被广泛应用于汽车领域。然而,TC4 合金硬度低、耐磨性差等固有缺陷限制了它的广泛应用。本文采用微弧氧化(MAO)技术制备了 TC4 钛合金的 MAO 涂层。系统地评估了涂层的微观结构、相结构、机械性能和摩擦学性能。结果表明,经 MAO 处理后的涂层含有大量金红石型 TiO2 硬相,可显著提高基体的机械性能。MAO 涂层的硬度可达 581 HV.05。此外,在 MAO 处理过的 TC4 中还观察到了 PAO 油中洋葱状碳(OLC)纳米粒子和有机二硫代氨基甲酸钼(MoDTC)的协同润滑效果。特别是当 0.01 wt.% OLC 与 1 wt.% MoDTC 油一起使用时,摩擦系数 (COF) 降至 0.062,磨损率降至 4.3 × 10-7 mm3/Nm。拉曼光谱和 X 射线光电子能谱(XPS)分析表明,OLC 沉积在涂层区域,形成一层润滑碳膜。此外,OLC 还能促进 MoDTC 在滑动过程中分解,生成含有 MoS2 的三膜。
{"title":"Synergistic lubrication effect of OLC and MoDTC for reducing friction and wear of MAO ceramic coating on TC4 alloy","authors":"Yang Li, Xiao Bai, Dejian Zhang, Huilai Sun, Zhengang Guo, Shuyan Yang, Yong Wan","doi":"10.1111/ijac.14859","DOIUrl":"10.1111/ijac.14859","url":null,"abstract":"<p>TC4 titanium alloy has been widely used in the automotive field due to its exceptional properties. However, inherent defects such as low hardness and poor wear resistance for TC4 alloy limited its wider application. The microarc oxidation (MAO) technique was employed in this paper to prepare MAO coatings on TC4 titanium alloy. The microstructure, phase structure, mechanical properties, and tribological performance were systematically evaluated. The results show that the coating contains a large amount of rutile TiO<sub>2</sub> hard phase after MAO treatment, which significantly improves the mechanical properties of the substrate. The hardness of the MAO coating can reach 581 HV<sub>.05</sub>. Furthermore, the synergistic lubrication effect of onion-like carbon (OLC) nanoparticles and organic molybdenum dithiocarbamate (MoDTC) in PAO oil was observed for MAO-treated TC4. Particularly, when .01 wt.% OLC is used with 1 wt.% MoDTC oil, the coefficient of friction (COF) decreases to .062, and the wear rate decreases to 4.3 × 10<sup>−7</sup> mm<sup>3</sup>/Nm. Combined Raman and X-ray photoelectron spectroscopy (XPS) analysis indicate that OLC is deposited on coating area to form a lubricating carbon film. Additionally, OLC can promote the decomposition of MoDTC during sliding to generate a tribofilm containing MoS<sub>2</sub>.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141741313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Achraf Harrati, Youssef Arkame, Sanaa Adlane, Ahlam Essate, Brahim Achiou, Abdeslam El Bouari, Abdelleh Aaddane, Saad Alami Younssi, Chaouki Sadik
The aim of this work is to fabricate a low-cost ceramic microfiltration (MF) membrane made from a new geomaterial named peridotite. The membrane was prepared by uniaxial pressing and followed by sintering. The effect of sintering temperature, in the range of 1100–1225°C, on the permeability, porosity, mechanical strength, and pore size was investigated. The optimized MF membrane sintered at 1200°C exhibits 1198.9 L h−1 m−2 bar−1 of permeability, 36.41% of porosity, 12.9 MPa of mechanical strength, and 1.56 µm of pore size. The prepared membrane was used for the MF treatment of dairy wastewater. It was found that the membrane is able to remove 88.56% and 69.54% of turbidity and chemical oxygen demand, respectively. Furthermore, the cost of the peridotite membrane was estimated to be $10.3 m−2.
{"title":"Preparation of low-cost peridotite ceramic microfiltration membrane for treating industrial wastewater","authors":"Achraf Harrati, Youssef Arkame, Sanaa Adlane, Ahlam Essate, Brahim Achiou, Abdeslam El Bouari, Abdelleh Aaddane, Saad Alami Younssi, Chaouki Sadik","doi":"10.1111/ijac.14852","DOIUrl":"10.1111/ijac.14852","url":null,"abstract":"<p>The aim of this work is to fabricate a low-cost ceramic microfiltration (MF) membrane made from a new geomaterial named peridotite. The membrane was prepared by uniaxial pressing and followed by sintering. The effect of sintering temperature, in the range of 1100–1225°C, on the permeability, porosity, mechanical strength, and pore size was investigated. The optimized MF membrane sintered at 1200°C exhibits 1198.9 L h<sup>−1</sup> m<sup>−2</sup> bar<sup>−1</sup> of permeability, 36.41% of porosity, 12.9 MPa of mechanical strength, and 1.56 µm of pore size. The prepared membrane was used for the MF treatment of dairy wastewater. It was found that the membrane is able to remove 88.56% and 69.54% of turbidity and chemical oxygen demand, respectively. Furthermore, the cost of the peridotite membrane was estimated to be $10.3 m<sup>−2</sup>.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141741304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiefei Huang, Fuchu Liu, Guangchao Han, Zitian Fan
The effect of CaCO3 particle size on the viscosity of slurry, phase formation, microstructural evolution, and performances of the water‐soluble CaO‐based ceramic core sintered at different temperatures was systematically investigated and discussed, and the particle gradation orthogonal experiments were used to adjust flexural strength, water‐soluble rate, shrinkage rate, apparent porosity, and hygroscopicity rate. The results showed that the finer particle size increased the effective contact area between CaO and SiO2, which promoted the generation of CaO–SiO2 system phase and the dense microstructure in the sintered CaO‐based cores. The higher sintering resulted in dense microstructure. The optimal gradation scheme included 28 wt.%, 56 wt.%, and 16 wt.% CaCO3 powder with D50 = 11.0 µm, 6.17 µm, and 4.62 µm, respectively, and the resulting flexural strength was 9.57 MPa, water‐soluble rate was 65.37 g/h in 60°C water, shrinkage rate was 8.62%, porosity rate was 38.85%, presenting a well‐balanced comprehensive performance, which is significant for the complex internal castings.
{"title":"Superior comprehensive performance CaO‐based core achieved by optimizing particle gradation via orthogonal experiments","authors":"Jiefei Huang, Fuchu Liu, Guangchao Han, Zitian Fan","doi":"10.1111/ijac.14853","DOIUrl":"https://doi.org/10.1111/ijac.14853","url":null,"abstract":"The effect of CaCO3 particle size on the viscosity of slurry, phase formation, microstructural evolution, and performances of the water‐soluble CaO‐based ceramic core sintered at different temperatures was systematically investigated and discussed, and the particle gradation orthogonal experiments were used to adjust flexural strength, water‐soluble rate, shrinkage rate, apparent porosity, and hygroscopicity rate. The results showed that the finer particle size increased the effective contact area between CaO and SiO2, which promoted the generation of CaO–SiO2 system phase and the dense microstructure in the sintered CaO‐based cores. The higher sintering resulted in dense microstructure. The optimal gradation scheme included 28 wt.%, 56 wt.%, and 16 wt.% CaCO3 powder with D50 = 11.0 µm, 6.17 µm, and 4.62 µm, respectively, and the resulting flexural strength was 9.57 MPa, water‐soluble rate was 65.37 g/h in 60°C water, shrinkage rate was 8.62%, porosity rate was 38.85%, presenting a well‐balanced comprehensive performance, which is significant for the complex internal castings.","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141644119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
LaB6–HfB2 composites with the different HfB2 contents (10 wt.%, 30 wt.%, 50 wt.%, 70 wt.%, and 90 wt.%) were densified by spark plasma sintering (SPS). Results showed that the densification mechanism of the composite transformed from the grain boundary diffusion into the dislocation climbing mechanism as the holding time was extended from 0 to 15 min under temperature range of 1750–1900°C. The HfB2 phase could effectively limit the grain growth of LaB6 phase, and the dynamic growth of the grain was governed by grain boundary diffusion. Both the Berkovich hardness and Vickers hardness obeyed the normal indentation size effect. LaB6–70 wt.% HfB2 composite had the highest fracture toughness of 3.98 ± .43 MPa m.5, whereas the highest current density of 18.34 A/cm2 belonged to LaB6–30 wt.% HfB2 composite. All the results demonstrated that LaB6–HfB2 composite was a promising material with the excellent structural and functional performance.
{"title":"Densification, microstructure, mechanical, and thermionic properties of spark plasma sintered LaB6–HfB2 composite","authors":"Ke Wang, Xinyu Yang, Wei Zhao, Zengjie Gu, Shifeng Luo, Jiuxing Zhang","doi":"10.1111/ijac.14862","DOIUrl":"10.1111/ijac.14862","url":null,"abstract":"<p>LaB<sub>6</sub>–HfB<sub>2</sub> composites with the different HfB<sub>2</sub> contents (10 wt.%, 30 wt.%, 50 wt.%, 70 wt.%, and 90 wt.%) were densified by spark plasma sintering (SPS). Results showed that the densification mechanism of the composite transformed from the grain boundary diffusion into the dislocation climbing mechanism as the holding time was extended from 0 to 15 min under temperature range of 1750–1900°C. The HfB<sub>2</sub> phase could effectively limit the grain growth of LaB<sub>6</sub> phase, and the dynamic growth of the grain was governed by grain boundary diffusion. Both the Berkovich hardness and Vickers hardness obeyed the normal indentation size effect. LaB<sub>6</sub>–70 wt.% HfB<sub>2</sub> composite had the highest fracture toughness of 3.98 ± .43 MPa m<sup>.5</sup>, whereas the highest current density of 18.34 A/cm<sup>2</sup> belonged to LaB<sub>6</sub>–30 wt.% HfB<sub>2</sub> composite. All the results demonstrated that LaB<sub>6</sub>–HfB<sub>2</sub> composite was a promising material with the excellent structural and functional performance.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141648167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yousif Alqenai, Mo Balapour, Mohammadamin Zooyousefin, Nishant Shresthal, Y. G. Hsuan, Y. Farnam
This study examines the effect of sintering mean residence time (MRT) on the engineering properties and morphological structure of lightweight aggregates (LWA) manufactured from waste coal combustion ash (W‐CCA). A thermodynamics‐based framework was used to tune LWA manufacturing processes. A minimum 35% liquid phase (by mass) and a lower bound viscosity of 100 Pa·s of molten material were found necessary to successfully produce LWA. Using W‐CCA's chemical composition and FactSage thermodynamic modeling, the sintering temperature for LWA was set to 1075°C. Green spherical pellets made using a pelletizer were sintered at MRT of 5.1, 14.8, and 25.9 min to test LWA physical‐mechanical properties including, unit weight, specific gravity, water absorption, and compressive strength. Results indicated that unit weight ranged from 752 to 800 kg/m3, providing desirable lightweight properties. Oven dry specific gravity ranged from 1.24 to 1.43, complying with ENI13055 specification for LWA. Water absorption capacity decreased as MRT extended from 5.1 to 14.8 min and then increased as MRT proceeded from 14.8 to 25.9 min, achieving an average absorption capacity of 26% ± 1.5%. The inverse effect was noticed for compressive strength as LWA sintered with an MRT of 14.8 min demonstrated the highest compressive strength of 14.7 ± 1.8 MPa. The initial decrease in water absorption and increase in compressive strength are attributed to the efficient sintering of the LWA's internal structure. The inverse effect observed as MRT proceeded from 14.8 to 25.9 min was believed to be a result of thermal cracking due to extensive heat exposure. MRT of 14.8 min is recommended for LWA production using the coal ash utilized in this study for its buoyancy characteristics, sufficient absorption capability, and higher compressive strength.
{"title":"Investigating effects of sintering mean residence time on engineering properties of coal ash‐based lightweight aggregate","authors":"Yousif Alqenai, Mo Balapour, Mohammadamin Zooyousefin, Nishant Shresthal, Y. G. Hsuan, Y. Farnam","doi":"10.1111/ijac.14854","DOIUrl":"https://doi.org/10.1111/ijac.14854","url":null,"abstract":"This study examines the effect of sintering mean residence time (MRT) on the engineering properties and morphological structure of lightweight aggregates (LWA) manufactured from waste coal combustion ash (W‐CCA). A thermodynamics‐based framework was used to tune LWA manufacturing processes. A minimum 35% liquid phase (by mass) and a lower bound viscosity of 100 Pa·s of molten material were found necessary to successfully produce LWA. Using W‐CCA's chemical composition and FactSage thermodynamic modeling, the sintering temperature for LWA was set to 1075°C. Green spherical pellets made using a pelletizer were sintered at MRT of 5.1, 14.8, and 25.9 min to test LWA physical‐mechanical properties including, unit weight, specific gravity, water absorption, and compressive strength. Results indicated that unit weight ranged from 752 to 800 kg/m3, providing desirable lightweight properties. Oven dry specific gravity ranged from 1.24 to 1.43, complying with ENI13055 specification for LWA. Water absorption capacity decreased as MRT extended from 5.1 to 14.8 min and then increased as MRT proceeded from 14.8 to 25.9 min, achieving an average absorption capacity of 26% ± 1.5%. The inverse effect was noticed for compressive strength as LWA sintered with an MRT of 14.8 min demonstrated the highest compressive strength of 14.7 ± 1.8 MPa. The initial decrease in water absorption and increase in compressive strength are attributed to the efficient sintering of the LWA's internal structure. The inverse effect observed as MRT proceeded from 14.8 to 25.9 min was believed to be a result of thermal cracking due to extensive heat exposure. MRT of 14.8 min is recommended for LWA production using the coal ash utilized in this study for its buoyancy characteristics, sufficient absorption capability, and higher compressive strength.","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141648684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maoqi Ju, Dongsheng Gao, Peiyuan Cong, Xiaocun Zhang, Wei Cai
This study aimed to compare and summarize the mullitization mechanism of the sillimanite group minerals and investigated its effect on the mechanical properties of Al2O3-SiC-C gunning materials. By comparing the phase composition and microstructure of kyanite, andalusite, and sillimanite at different temperatures, the mullitization mechanism of sillimanite group minerals was clarified. Furthermore, the Al2O3-SiC-C gunning materials with sillimanite group minerals addition were prepared by bauxite and fused brown corundum as aggregates, fused white corundum (≤0.045 mm), SiC (≤0.075 mm), α-Al2O3 (≤10 µm), pitch sphere, SiO2 micropowder (≤2 µm) as a matrix, and silica sol as a binder. Then, the effect of the addition of sillimanite group minerals on the mechanical properties of Al2O3-SiC-C gunning materials was characterized. The results indicate that kyanite requires the lowest temperature for mullitization compared to andalusite and sillimanite. The mullitization process involves the migration of Al3+ and Si4+, resulting in a decrease in the lattice constant of sillimanite group minerals followed by the production of mullite and SiO2. Incorporating sillimanite group minerals into Al2O3-SiC-C gunning materials effectively controls their linear change rate after firing while enhancing their mechanical properties. Notably, the addition of kyanite yields superior performance in Al2O3-SiC-C gunning materials.
{"title":"Study on mullitization of sillimanite group minerals and its effect on properties of the Al2O3-SiC-C gunning material","authors":"Maoqi Ju, Dongsheng Gao, Peiyuan Cong, Xiaocun Zhang, Wei Cai","doi":"10.1111/ijac.14863","DOIUrl":"10.1111/ijac.14863","url":null,"abstract":"<p>This study aimed to compare and summarize the mullitization mechanism of the sillimanite group minerals and investigated its effect on the mechanical properties of Al<sub>2</sub>O<sub>3</sub>-SiC-C gunning materials. By comparing the phase composition and microstructure of kyanite, andalusite, and sillimanite at different temperatures, the mullitization mechanism of sillimanite group minerals was clarified. Furthermore, the Al<sub>2</sub>O<sub>3</sub>-SiC-C gunning materials with sillimanite group minerals addition were prepared by bauxite and fused brown corundum as aggregates, fused white corundum (≤0.045 mm), SiC (≤0.075 mm), α-Al<sub>2</sub>O<sub>3</sub> (≤10 µm), pitch sphere, SiO<sub>2</sub> micropowder (≤2 µm) as a matrix, and silica sol as a binder. Then, the effect of the addition of sillimanite group minerals on the mechanical properties of Al<sub>2</sub>O<sub>3</sub>-SiC-C gunning materials was characterized. The results indicate that kyanite requires the lowest temperature for mullitization compared to andalusite and sillimanite. The mullitization process involves the migration of Al<sup>3+</sup> and Si<sup>4+</sup>, resulting in a decrease in the lattice constant of sillimanite group minerals followed by the production of mullite and SiO<sub>2</sub>. Incorporating sillimanite group minerals into Al<sub>2</sub>O<sub>3</sub>-SiC-C gunning materials effectively controls their linear change rate after firing while enhancing their mechanical properties. Notably, the addition of kyanite yields superior performance in Al<sub>2</sub>O<sub>3</sub>-SiC-C gunning materials.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141645497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aims to explore the influence of direct foaming methods on the early‐stage performance and microstructure of metakaolin‐based geopolymer foam. Metakaolin is utilized as the primary silica–aluminum raw material, with various foaming methods employed to produce metakaolin‐based foam geopolymers exhibiting different dry apparent density gradients. The investigation encompasses an assessment of hardening time, early‐stage compressive strength development, and water absorption behavior of the foam geopolymers. Employing scanning electron microscopy (SEM) for microscopic morphology analysis, mercury intrusion porosimetry (MIP), X‐ray diffraction (XRD), and hot disk transient plane source method for chemical structure analysis, the study delves into the underlying mechanisms. Results reveal that the early compressive strength development of metakaolin‐based foam geopolymer is notably rapid, with the hydrogen peroxide foaming method demonstrating the swiftest performance. Among foam geopolymers of equivalent density levels, those produced via physical foaming exhibit the highest compressive strength, while those utilizing silicon carbide foaming display the lowest. Across different foaming methods, the foam geopolymer consistently demonstrates specific trends in pore structure characteristics, with a predominance of macropores in the low‐density range and gel nanopores in the high‐density range.
{"title":"Influence of direct foaming methods on the early performance and microstructure of metakaolin‐based foam geopolymers","authors":"Dawei Chen, Yajun Zhang, Wenxin Wang, Yangpiaoxue Shi, Jiaxi Mao, Yi Liu, Dongming Yan, Shikun Chen","doi":"10.1111/ijac.14848","DOIUrl":"https://doi.org/10.1111/ijac.14848","url":null,"abstract":"This study aims to explore the influence of direct foaming methods on the early‐stage performance and microstructure of metakaolin‐based geopolymer foam. Metakaolin is utilized as the primary silica–aluminum raw material, with various foaming methods employed to produce metakaolin‐based foam geopolymers exhibiting different dry apparent density gradients. The investigation encompasses an assessment of hardening time, early‐stage compressive strength development, and water absorption behavior of the foam geopolymers. Employing scanning electron microscopy (SEM) for microscopic morphology analysis, mercury intrusion porosimetry (MIP), X‐ray diffraction (XRD), and hot disk transient plane source method for chemical structure analysis, the study delves into the underlying mechanisms. Results reveal that the early compressive strength development of metakaolin‐based foam geopolymer is notably rapid, with the hydrogen peroxide foaming method demonstrating the swiftest performance. Among foam geopolymers of equivalent density levels, those produced via physical foaming exhibit the highest compressive strength, while those utilizing silicon carbide foaming display the lowest. Across different foaming methods, the foam geopolymer consistently demonstrates specific trends in pore structure characteristics, with a predominance of macropores in the low‐density range and gel nanopores in the high‐density range.","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141611965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mengjun Xu, Zhixin Luo, Xiaoyang Hou, Haoyu Wang, Zhen Wu, Lu Wang, Jingyang Wang
Traditional abradable seal coatings (ASCs) face huge challenges for the requirements of next-generation aero engines due to high inlet temperature (>1300°C) and non-matched coefficients of thermal expansion for SiC based composites. Herein, a novel Yb2Si2O7 seal coating was developed to meet the demands of high-temperature resistance and match the coefficient of thermal expansion with SiC. The prepared Yb2Si2O7 seal coating has excellent properties, including high porosity of 35.5%–23.3%, moderate hardness of 77.9–82.5 HR15Y, and high bond strength of 7.8–9.0 MPa. Adjusting spray current could effectively control the thickness, porosity, and hardness of the coating. More importantly, the coating also has good erosion resistance. Our results show that the fabricated porous Yb2Si2O7 coating would have promising applications in the field of high-temperature ASCs.
{"title":"Porous Yb2Si2O7 coating: A new-type high-temperature-resistant abradable seal coating","authors":"Mengjun Xu, Zhixin Luo, Xiaoyang Hou, Haoyu Wang, Zhen Wu, Lu Wang, Jingyang Wang","doi":"10.1111/ijac.14843","DOIUrl":"10.1111/ijac.14843","url":null,"abstract":"<p>Traditional abradable seal coatings (ASCs) face huge challenges for the requirements of next-generation aero engines due to high inlet temperature (>1300°C) and non-matched coefficients of thermal expansion for SiC based composites. Herein, a novel Yb<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> seal coating was developed to meet the demands of high-temperature resistance and match the coefficient of thermal expansion with SiC. The prepared Yb<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> seal coating has excellent properties, including high porosity of 35.5%–23.3%, moderate hardness of 77.9–82.5 HR15Y, and high bond strength of 7.8–9.0 MPa. Adjusting spray current could effectively control the thickness, porosity, and hardness of the coating. More importantly, the coating also has good erosion resistance. Our results show that the fabricated porous Yb<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> coating would have promising applications in the field of high-temperature ASCs.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141511861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luís Otávio Z. Falsetti, René Delfos, Florian Charruault, Bruno Luchini, Dirk Van Der Plas, Victor C. Pandolfelli
Ceramic refractory bubbling devices may be applied in the steel ladle to induce the flotation of non-metallic inclusions to the slag phase. These inclusions have many origins along the steelmaking process and induce a detrimental effect on the mechanical properties of these metals. Therefore, the design of high-performance ceramic plugs relies on understanding the fundamentals of non-metallic inclusions captured by the gas bubbles. This study investigated the flotation dynamics of hydrophobic and hydrophilic hollow glass particles through experimentation using a water model and quantifying the particle concentration via light scattering. Both types of particles exhibited a comparable natural flotation removal rate, whereas a 40% increase for hydrophobic particles was observed when introducing 1.1 mm bubbles (at 25 NL/h) enhancing the efficiency from 43.1% to 65.2%. For hydrophilic particles, the efficiency increased from 59.1% to 86.2% when bubbles were injected into the system, whereas the removal rate decreased by 2.1-fold. The consequence of the practice of inert gas purging to remove non-metallic inclusions is also discussed.
{"title":"Wettability of non-metallic inclusions and its impact on bubble-induced flotation kinetics","authors":"Luís Otávio Z. Falsetti, René Delfos, Florian Charruault, Bruno Luchini, Dirk Van Der Plas, Victor C. Pandolfelli","doi":"10.1111/ijac.14849","DOIUrl":"10.1111/ijac.14849","url":null,"abstract":"<p>Ceramic refractory bubbling devices may be applied in the steel ladle to induce the flotation of non-metallic inclusions to the slag phase. These inclusions have many origins along the steelmaking process and induce a detrimental effect on the mechanical properties of these metals. Therefore, the design of high-performance ceramic plugs relies on understanding the fundamentals of non-metallic inclusions captured by the gas bubbles. This study investigated the flotation dynamics of hydrophobic and hydrophilic hollow glass particles through experimentation using a water model and quantifying the particle concentration via light scattering. Both types of particles exhibited a comparable natural flotation removal rate, whereas a 40% increase for hydrophobic particles was observed when introducing 1.1 mm bubbles (at 25 NL/h) enhancing the efficiency from 43.1% to 65.2%. For hydrophilic particles, the efficiency increased from 59.1% to 86.2% when bubbles were injected into the system, whereas the removal rate decreased by 2.1-fold. The consequence of the practice of inert gas purging to remove non-metallic inclusions is also discussed.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141511655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jonas H. M. Stiller, Daisy Nestler, Stefan Uhlmann, Martin Kausch, Gaston Rauchs, Lothar Kroll
This work investigates the material extrusion-based additive manufacturing (AM) process chain of a pure alumina-based oxide ceramic matrix composite, starting from material selection, large-scale compounding to pellets, the AM process itself, debinding and sintering as well as microstructural and mechanical characterization. The compounded pellets have a volume share of 50% binder (polyvinyl butyral [PVB], polyethylene glycol [PEG], and stearic acid) and 50% alumina (Al2O3, alumina powder, and Nextel 610 alumina fibers) with an aimed fiber volume share of 40% after sintering. The material is compounded on an industrial scale with approximately 10 kg/h and the material extrusion-based AM process reaches speeds of up to 1000 mm/s. A variation of the feed rate leads to a significant increase in surface roughness and an increase in mass of 30%, in thickness of 12% and in width of 25%. The flexural behavior in the four-point-bending test can be described by a fast first peak and reaching higher flexural strength after the first crack subsequent with averages of 23.8 ± 3.6 MPa below .1% elongation. The fracture surfaces show the expected failure mechanisms like pull-out and crack deflection. The resulting fiber length in the printed samples is 140 µm in average.
{"title":"Additive manufacturing of short fiber oxide ceramic matrix composite: Process analysis and material properties","authors":"Jonas H. M. Stiller, Daisy Nestler, Stefan Uhlmann, Martin Kausch, Gaston Rauchs, Lothar Kroll","doi":"10.1111/ijac.14842","DOIUrl":"10.1111/ijac.14842","url":null,"abstract":"<p>This work investigates the material extrusion-based additive manufacturing (AM) process chain of a pure alumina-based oxide ceramic matrix composite, starting from material selection, large-scale compounding to pellets, the AM process itself, debinding and sintering as well as microstructural and mechanical characterization. The compounded pellets have a volume share of 50% binder (polyvinyl butyral [PVB], polyethylene glycol [PEG], and stearic acid) and 50% alumina (Al<sub>2</sub>O<sub>3</sub>, alumina powder, and Nextel 610 alumina fibers) with an aimed fiber volume share of 40% after sintering. The material is compounded on an industrial scale with approximately 10 kg/h and the material extrusion-based AM process reaches speeds of up to 1000 mm/s. A variation of the feed rate leads to a significant increase in surface roughness and an increase in mass of 30%, in thickness of 12% and in width of 25%. The flexural behavior in the four-point-bending test can be described by a fast first peak and reaching higher flexural strength after the first crack subsequent with averages of 23.8 ± 3.6 MPa below .1% elongation. The fracture surfaces show the expected failure mechanisms like pull-out and crack deflection. The resulting fiber length in the printed samples is 140 µm in average.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ijac.14842","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141511653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}