Xiongwei Dong, Fenglan Han, Ning Li, Fuyuan Dong, Haipeng Liu, Yu Neng, Maohui Li
High-strength foamed ceramics were synthesized employing silicon-manganese slag (SM) and fluorgypsum (FG) as raw materials, with SiC serving as the foaming agent. Investigations into the influence of firing temperature and FG content on the phase structure, microstructure, and physical properties of foam ceramics were conducted. Characterization of the samples was performed through X-ray diffraction and scanning electron microscopy. Results indicate that an increase in FG content lowers the matrix melting point, promotes crystal growth, enhances compressive strength, and forms a uniform pore structure. At an FG content of 11%, ceramics prepared at a firing temperature of 1130°C exhibit a density of 0.56 g/cm3, porosity of 78.45%, and compressive strength of 3.05 MPa. This study explores the use of FG as a cost-effective alternative to borax, demonstrating a sustainable approach for foam ceramics preparation using silicomanganese slag and FG synergy.
{"title":"Preparation and characterization of foamed ceramics from silicomanganese and fluorgypsum waste","authors":"Xiongwei Dong, Fenglan Han, Ning Li, Fuyuan Dong, Haipeng Liu, Yu Neng, Maohui Li","doi":"10.1111/ijac.14850","DOIUrl":"10.1111/ijac.14850","url":null,"abstract":"<p>High-strength foamed ceramics were synthesized employing silicon-manganese slag (SM) and fluorgypsum (FG) as raw materials, with SiC serving as the foaming agent. Investigations into the influence of firing temperature and FG content on the phase structure, microstructure, and physical properties of foam ceramics were conducted. Characterization of the samples was performed through X-ray diffraction and scanning electron microscopy. Results indicate that an increase in FG content lowers the matrix melting point, promotes crystal growth, enhances compressive strength, and forms a uniform pore structure. At an FG content of 11%, ceramics prepared at a firing temperature of 1130°C exhibit a density of 0.56 g/cm<sup>3</sup>, porosity of 78.45%, and compressive strength of 3.05 MPa. This study explores the use of FG as a cost-effective alternative to borax, demonstrating a sustainable approach for foam ceramics preparation using silicomanganese slag and FG synergy.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"22 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141866061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elnaz Irom, Mohammad Zakeri, Mansour Razavi, Mohammad Farvizi
This study investigated the influences of WC and HfB2 additives along with SiC reinforcement (with various particle sizes) on densification, microstructure, and mechanical properties of ZrB2–SiC composites. The results showed that WC and HfB2 addition formed a solid solution of (Zr,W,Hf)B2 with a core–shell structure, whereas the remaining WC transformed into WB. Moreover, nano-sized SiC caused a much better impact on densification compared to micro-sized SiC. A small fraction of localized phases like ZrC, HfB, and (Hf,Zr)C in the form of solid solution were also formed. The maximum room temperature flexural strength and the fracture toughness of the sample containing 150 nm SiC and 8.9 wt.% WB were measured to be 682