Shuaijun Yang, Mei Wang, Yetong Lv, Huilin Sheng, Yexia Qin
Oxidation resistance is crucial to the potential applications of high‐entropy carbides (HECs) at elevated temperatures. Here, we realize the exploration of (Hf, Ta, Zr, Cr)C high‐entropy carbides (HEC‐TM, TM = Hf, Zr, Ta, and Cr) with good oxidation resistance by optimizing their compositions. To be specific, 21 kinds of HEC‐xTM (x = 0–25 mol%) samples are fabricated by a high‐throughput ultrafast high‐temperature sintering technique, followed by oxidation testing at 1673 K for 30 min. Among all the HEC samples, the as‐fabricated HEC‐0Zr samples are proved to possess the best oxidation resistance with an oxidation depth of only 53 µm. Further study on isothermal oxidation kinetics demonstrates that the as‐fabricated HEC‐0Zr samples follow a linear oxidation law. The good oxidation resistance of the as‐fabricated HEC‐0Zr samples is believed to result from the (Ta, Me)2O5 phase with a low melting point, which can promote the densification of the oxide layer. This research opens up a new way for efficiently discovering new HECs for extreme applications.
{"title":"Composition optimization of (Hf, Ta, Zr, Cr)C high‐entropy carbides for good oxidation resistance","authors":"Shuaijun Yang, Mei Wang, Yetong Lv, Huilin Sheng, Yexia Qin","doi":"10.1111/ijac.14891","DOIUrl":"https://doi.org/10.1111/ijac.14891","url":null,"abstract":"Oxidation resistance is crucial to the potential applications of high‐entropy carbides (HECs) at elevated temperatures. Here, we realize the exploration of (Hf, Ta, Zr, Cr)C high‐entropy carbides (HEC‐TM, TM = Hf, Zr, Ta, and Cr) with good oxidation resistance by optimizing their compositions. To be specific, 21 kinds of HEC‐<jats:italic>x</jats:italic>TM (<jats:italic>x</jats:italic> = 0–25 mol%) samples are fabricated by a high‐throughput ultrafast high‐temperature sintering technique, followed by oxidation testing at 1673 K for 30 min. Among all the HEC samples, the as‐fabricated HEC‐0Zr samples are proved to possess the best oxidation resistance with an oxidation depth of only 53 µm. Further study on isothermal oxidation kinetics demonstrates that the as‐fabricated HEC‐0Zr samples follow a linear oxidation law. The good oxidation resistance of the as‐fabricated HEC‐0Zr samples is believed to result from the (Ta, Me)<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> phase with a low melting point, which can promote the densification of the oxide layer. This research opens up a new way for efficiently discovering new HECs for extreme applications.","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141940699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The rapid development of the power industry has resulted in a significant amount of electric porcelain solid waste. To address the challenges of small‐scale utilization and low added value associated with the current utilization of porcelain solid waste, a new high‐temperature resistant material was successfully developed using waste electric porcelain with varying particle sizes as the primary raw material. The dependence of composition, structure, and mechanical properties on fine particle size and sintering temperature was explored. The research has determined that the most effective particle size for the synthesis of refractory materials using waste electric porcelain is 120 mesh, and the optimal temperature is 1600°C. When the temperature exceeds 1500°C, the expansion generated by the decomposition of sillimanite will counteract the shrinkage of the liquid phase reaction, thereby maintaining the morphology of the sample. This process forms a unique interwoven mullite morphology through the decomposition of sillimanite, thereby enhancing the strength of the material. As a result, the optimal bending strength of 74 MPa and the optimal compression strength of 207 MPa were obtained. The realization of high‐temperature resistant materials based on discarded electric porcelain has shown foreseeable potential in large‐scale high‐value utilization.
{"title":"Property dependence on particle size and sintering temperature of waste porcelain high‐temperature resistant material","authors":"Zhenfei Lv, Yukun Cao, Chong Lan, Mengke Fan, Yanghui Ke, Wenbo Guo, Yixian Yang, Xin Wang, Xiulin Shen","doi":"10.1111/ijac.14890","DOIUrl":"https://doi.org/10.1111/ijac.14890","url":null,"abstract":"The rapid development of the power industry has resulted in a significant amount of electric porcelain solid waste. To address the challenges of small‐scale utilization and low added value associated with the current utilization of porcelain solid waste, a new high‐temperature resistant material was successfully developed using waste electric porcelain with varying particle sizes as the primary raw material. The dependence of composition, structure, and mechanical properties on fine particle size and sintering temperature was explored. The research has determined that the most effective particle size for the synthesis of refractory materials using waste electric porcelain is 120 mesh, and the optimal temperature is 1600°C. When the temperature exceeds 1500°C, the expansion generated by the decomposition of sillimanite will counteract the shrinkage of the liquid phase reaction, thereby maintaining the morphology of the sample. This process forms a unique interwoven mullite morphology through the decomposition of sillimanite, thereby enhancing the strength of the material. As a result, the optimal bending strength of 74 MPa and the optimal compression strength of 207 MPa were obtained. The realization of high‐temperature resistant materials based on discarded electric porcelain has shown foreseeable potential in large‐scale high‐value utilization.","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141925597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The hot corrosion behaviors of the Sc2O3–Gd2O3–Y2O3 co‐doped ZrO2 (SGYSZ) ceramics in Na2SO4 + V2O5 molten salts at high temperature were investigated in this work. The results show that the SGYSZ exhibits good hot corrosion resistance to the 50 wt% Na2SO4 + 50 wt% V2O5 molten salts at 1000°C. It is attributed to the doping of small Sc3+, which can decrease the M–O bonding length and increase the binding energy, and then reduce the dissolution and loss of the stabilizer as rare‐earth cations Gd3+ and Y3+ from the SGYSZ. The significant synergistic effects of Sc3+, Gd3+, and Y3+ are beneficial to enhance the phase stability and corrosion resistance of the zirconate ceramic due to the different ionic radius and basicity of rare‐earth oxides (RE2O3). More Gd3+ in SGYSZ can promote the forming and coarsening of the GdVO4 during mineralization, which can also decrease the loss of Y3+ from the SGYSZ. The corrosion mechanism is discussed in detail.
{"title":"Hot corrosion behaviors of Sc2O3–Gd2O3–Y2O3 co‐doped ZrO2 in Na2SO4 + V2O5 molten salts at 1000°C","authors":"Yifei Dai, Yuxuan Liao, Aoping He, Huan He, Tianquan Liang","doi":"10.1111/ijac.14882","DOIUrl":"https://doi.org/10.1111/ijac.14882","url":null,"abstract":"The hot corrosion behaviors of the Sc2O3–Gd2O3–Y2O3 co‐doped ZrO2 (SGYSZ) ceramics in Na2SO4 + V2O5 molten salts at high temperature were investigated in this work. The results show that the SGYSZ exhibits good hot corrosion resistance to the 50 wt% Na2SO4 + 50 wt% V2O5 molten salts at 1000°C. It is attributed to the doping of small Sc3+, which can decrease the M–O bonding length and increase the binding energy, and then reduce the dissolution and loss of the stabilizer as rare‐earth cations Gd3+ and Y3+ from the SGYSZ. The significant synergistic effects of Sc3+, Gd3+, and Y3+ are beneficial to enhance the phase stability and corrosion resistance of the zirconate ceramic due to the different ionic radius and basicity of rare‐earth oxides (RE2O3). More Gd3+ in SGYSZ can promote the forming and coarsening of the GdVO4 during mineralization, which can also decrease the loss of Y3+ from the SGYSZ. The corrosion mechanism is discussed in detail.","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141927451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aims to assess the lower limit of porosity that can be achieved in freeze‐cast sintered lithium titanate (LTO) materials while maintaining the characteristic pore directionality. LTO materials were fabricated with solid loading varying in the range of 30–37 vol.%. Sucrose and cationic dispersant were used to vary viscosity and total solute concentration in the aqueous LTO suspensions. Two series of suspension compositions were selected for freeze‐casting. In one series, aqueous suspensions were prepared by mixing deionized (DI) water, sucrose, and LTO powder, while in the other series, aqueous suspensions were prepared by mixing DI water, sucrose, cationic dispersant (1‐hexadecyl)trimethylammonium bromide (CTAB), and LTO powder. With increasing solid loading from 30 to 37 vol.%, porosity in the sintered materials decreased from about 50 to 36 vol.%. LTO materials fabricated from suspensions containing sucrose exhibited well‐developed characteristic freeze‐cast microstructure. Unexpectedly, LTO materials fabricated from suspensions containing sucrose and dispersant exhibited cellular pore morphology irrespective of the solid loading. Sample height had an impact on microstructure evolution in the transition zone and zone length. With the increasing solid loading from 30 to 37 vol.%, the compressive strength of sintered LTO materials having the characteristic freeze‐cast microstructure increased from about 110 to 240 MPa.
{"title":"Assessing porosity limit in freeze‐cast sintered lithium titanate (Li4Ti5O12) materials","authors":"Rohan Parai, Dipankar Ghosh","doi":"10.1111/ijac.14883","DOIUrl":"https://doi.org/10.1111/ijac.14883","url":null,"abstract":"This study aims to assess the lower limit of porosity that can be achieved in freeze‐cast sintered lithium titanate (LTO) materials while maintaining the characteristic pore directionality. LTO materials were fabricated with solid loading varying in the range of 30–37 vol.%. Sucrose and cationic dispersant were used to vary viscosity and total solute concentration in the aqueous LTO suspensions. Two series of suspension compositions were selected for freeze‐casting. In one series, aqueous suspensions were prepared by mixing deionized (DI) water, sucrose, and LTO powder, while in the other series, aqueous suspensions were prepared by mixing DI water, sucrose, cationic dispersant (1‐hexadecyl)trimethylammonium bromide (CTAB), and LTO powder. With increasing solid loading from 30 to 37 vol.%, porosity in the sintered materials decreased from about 50 to 36 vol.%. LTO materials fabricated from suspensions containing sucrose exhibited well‐developed characteristic freeze‐cast microstructure. Unexpectedly, LTO materials fabricated from suspensions containing sucrose and dispersant exhibited cellular pore morphology irrespective of the solid loading. Sample height had an impact on microstructure evolution in the transition zone and zone length. With the increasing solid loading from 30 to 37 vol.%, the compressive strength of sintered LTO materials having the characteristic freeze‐cast microstructure increased from about 110 to 240 MPa.","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Spark plasma sintering (SPS) is an ultrafast sintering method for the preparation of ceramics and ceramic composites with simple geometrical shapes, with the combined application of uniaxial pressure. This study aims to propose an SPS densification method for Si3N4 ceramic balls without necessitating alterations to tools and equipment. The Si3N4 ceramic balls intended for sintering are positioned within a SiC powder bed inside the conventional die used in SPS. The study systematically investigates the effects of presintering temperature (1400°C, 1500°C, and 1600°C) and SPS temperature (1600°C, 1700°C, and 1800°C) on the sphericity, relative density, phase composition, microstructure, and mechanical properties of Si3N4 ceramic balls. Experimental findings reveal that Si3N4 ceramic balls exhibiting an optimal combination of sphericity (0.94 ± 0.02), relative density (98.4%), and mechanical properties (Vickers hardness: 17.5 ± 0.4 GPa, fracture toughness: 6.4 ± 0.1 MPa·m1/2) were successfully achieved at a pre-sintering temperature and SPS temperature of 1600°C, coupled with the use of a SiC powder bed and SPS method. Consequently, the SPS method demonstrates its capability to fabricate Si3N4 ceramic balls with excellent performance.
{"title":"Fabrication of Si3N4 ceramic balls by SPS method with SiC powder bed","authors":"Zhen-Quan Liang, Jia-Ji Liang, Jun-Jie Yu, Pei-Bin Cai, Wei-Ming Guo, Hua-Tay Lin","doi":"10.1111/ijac.14879","DOIUrl":"10.1111/ijac.14879","url":null,"abstract":"<p>Spark plasma sintering (SPS) is an ultrafast sintering method for the preparation of ceramics and ceramic composites with simple geometrical shapes, with the combined application of uniaxial pressure. This study aims to propose an SPS densification method for Si<sub>3</sub>N<sub>4</sub> ceramic balls without necessitating alterations to tools and equipment. The Si<sub>3</sub>N<sub>4</sub> ceramic balls intended for sintering are positioned within a SiC powder bed inside the conventional die used in SPS. The study systematically investigates the effects of presintering temperature (1400°C, 1500°C, and 1600°C) and SPS temperature (1600°C, 1700°C, and 1800°C) on the sphericity, relative density, phase composition, microstructure, and mechanical properties of Si<sub>3</sub>N<sub>4</sub> ceramic balls. Experimental findings reveal that Si<sub>3</sub>N<sub>4</sub> ceramic balls exhibiting an optimal combination of sphericity (0.94 ± 0.02), relative density (98.4%), and mechanical properties (Vickers hardness: 17.5 ± 0.4 GPa, fracture toughness: 6.4 ± 0.1 MPa·m<sup>1/2</sup>) were successfully achieved at a pre-sintering temperature and SPS temperature of 1600°C, coupled with the use of a SiC powder bed and SPS method. Consequently, the SPS method demonstrates its capability to fabricate Si<sub>3</sub>N<sub>4</sub> ceramic balls with excellent performance.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141940700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A novel approach was applied to synthesize B6O using CaB6 and B2O3 powders as reactants. CaB6 and B2O3 were reacted to generate B6O and CaB2O4 at 1573 K, and the by‐product CaB2O4 was removed by acid leaching. It was found that the samples prepared in this work were oxygen deficient (B6Ox, x ≈ .76–.77). The optimal molar ratio of CaB6 to B2O3 was determined to be 3:5, and excess B2O3 could not lead to a change in the value of oxygen occupancy. Scanning electron microscope images showed that regular holes similar to the morphologies of CaB6 particles were exhibited in the final samples, which could be explained by the diffusion of CaB6 during the reaction process.
{"title":"A novel route to synthesize B6O powder via reaction between CaB6 and B2O3","authors":"Ya‐Long Wang, Xiao‐Hui Yang, Guo‐Hua Zhang","doi":"10.1111/ijac.14886","DOIUrl":"https://doi.org/10.1111/ijac.14886","url":null,"abstract":"A novel approach was applied to synthesize B<jats:sub>6</jats:sub>O using CaB<jats:sub>6</jats:sub> and B<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> powders as reactants. CaB<jats:sub>6</jats:sub> and B<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> were reacted to generate B<jats:sub>6</jats:sub>O and CaB<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub> at 1573 K, and the by‐product CaB<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub> was removed by acid leaching. It was found that the samples prepared in this work were oxygen deficient (B<jats:sub>6</jats:sub>O<jats:italic><jats:sub>x</jats:sub></jats:italic>, <jats:italic>x </jats:italic>≈ .76–.77). The optimal molar ratio of CaB<jats:sub>6</jats:sub> to B<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> was determined to be 3:5, and excess B<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> could not lead to a change in the value of oxygen occupancy. Scanning electron microscope images showed that regular holes similar to the morphologies of CaB<jats:sub>6</jats:sub> particles were exhibited in the final samples, which could be explained by the diffusion of CaB<jats:sub>6</jats:sub> during the reaction process.","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141940701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jamieson Brechtl, Marco C. Martinez, Bola Yoon, Joseph Cesarano, Edgar Lara‐Curzio, Kashif Nawaz
The mechanical behavior and cracking patterns of thermally‐shocked additively manufactured alumina were investigated. The flexural strength of test specimens that had been heated to temperatures ranging from 200°C to 1000°C and then rapidly quenched in water was determined at ambient temperature by four‐point bending. Results indicated that the surface cracking patterns had a multifractal structure and that an increase in the thermal shock temperature led to an increase in the density and uniformity of the crack network. The flexural strength results were analyzed with Weibull statistics, where the Weibull moduli for most of the thermal shock conditions tested were found to be statistically indistinguishable. It was also found that a significant decrease (∼50%) in flexural strength occurred for heating temperatures ≥300°C. The effect of the manufacturing method on cracking patterns is discussed, as well as the implication of the material behavior for practical applications of these materials.
{"title":"Thermal shock resistance of additively manufactured alumina","authors":"Jamieson Brechtl, Marco C. Martinez, Bola Yoon, Joseph Cesarano, Edgar Lara‐Curzio, Kashif Nawaz","doi":"10.1111/ijac.14887","DOIUrl":"https://doi.org/10.1111/ijac.14887","url":null,"abstract":"The mechanical behavior and cracking patterns of thermally‐shocked additively manufactured alumina were investigated. The flexural strength of test specimens that had been heated to temperatures ranging from 200°C to 1000°C and then rapidly quenched in water was determined at ambient temperature by four‐point bending. Results indicated that the surface cracking patterns had a multifractal structure and that an increase in the thermal shock temperature led to an increase in the density and uniformity of the crack network. The flexural strength results were analyzed with Weibull statistics, where the Weibull moduli for most of the thermal shock conditions tested were found to be statistically indistinguishable. It was also found that a significant decrease (∼50%) in flexural strength occurred for heating temperatures ≥300°C. The effect of the manufacturing method on cracking patterns is discussed, as well as the implication of the material behavior for practical applications of these materials.","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141940702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yi Zhou, Yuan Liu, Jia‐Pei Chen, Wei‐Ming Guo, Si‐Chun Luo, Hua‐Tay Lin
This work investigated the formation mechanism and the effects of temperature on the microstructure and shear strength of vacuum‐brazed SiAlON ceramic/WC‐Co cemented carbide joints using an Ag–Cu–Ti active filler as the interlayer. The diffusion of Ti elements toward substrates and their subsequent reaction during the brazing process led to the formation of TiN, TiC, and Ti5Si3 phases, where the featured reaction layers were established. A continuous reaction layer of TiN in the SiAlON substrate side and TiC in the WC substrate side were formed. The ceramic phases (Ti5Si3 TiN, and TiC) were distributed in a brazed intermediate layer. The highest shear strength of the brazed joints obtained at 850°C was 325.28 ± 20.27 MPa, demonstrating the feasibility of the Ag–Cu–Ti active filler in producing robust joints.
{"title":"Brazing mechanism and shear strength of SiAlON/WC‐Co joint using Ag–Cu–Ti active filler","authors":"Yi Zhou, Yuan Liu, Jia‐Pei Chen, Wei‐Ming Guo, Si‐Chun Luo, Hua‐Tay Lin","doi":"10.1111/ijac.14881","DOIUrl":"https://doi.org/10.1111/ijac.14881","url":null,"abstract":"This work investigated the formation mechanism and the effects of temperature on the microstructure and shear strength of vacuum‐brazed SiAlON ceramic/WC‐Co cemented carbide joints using an Ag–Cu–Ti active filler as the interlayer. The diffusion of Ti elements toward substrates and their subsequent reaction during the brazing process led to the formation of TiN, TiC, and Ti<jats:sub>5</jats:sub>Si<jats:sub>3</jats:sub> phases, where the featured reaction layers were established. A continuous reaction layer of TiN in the SiAlON substrate side and TiC in the WC substrate side were formed. The ceramic phases (Ti<jats:sub>5</jats:sub>Si<jats:sub>3</jats:sub> TiN, and TiC) were distributed in a brazed intermediate layer. The highest shear strength of the brazed joints obtained at 850°C was 325.28 ± 20.27 MPa, demonstrating the feasibility of the Ag–Cu–Ti active filler in producing robust joints.","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141940703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Darko Kosanović, Suzana Filipović, Isaak Trajković, Nina Obradović, Paul M. Brune, Gregory E. Hilmas, William G. Fahrenholtz
The strength of zirconium diboride ceramics was tested by three different methods, 3‐point flexure, 4‐point flexure, and compression. Nearly full‐density ceramics were obtained by hot pressing commercial ZrB2 powder with the addition of .5 wt.% carbon as a sintering aid. The thermal properties and hardness were studied for ZrB2 milled with ZrB2 and WC media. Based on phase purity and higher thermal conductivity, ZrB2 ceramics prepared from powders milled with ZrB2 media were selected for mechanical property studies. The strength in 3‐point flexure was 546 ± 55 MPa. The flexure strength was 476 ± 41 MPa in 4‐point bending, which was ∼20% higher than the previously reported value of 398 MPa for ZrB2 with similar grain sizes due to higher relative density and lower impurity contents. Compression testing was performed at room temperature, and the strength was 1110 ± 358 MPa. Finally, the fracture toughness of pure ZrB2 ceramics was determined by the chevron‐notched beam method to be 3.6 ± .7 MPa m1/2. The strength and fracture toughness values are higher than those previously published for ZrB2 ceramics and can be attributed to higher density and lower grain size. The strength‐limiting flaw sizes were comparable to the grain size, suggesting that porosity and impurity phases did not play a significant role in the strength of these ceramics.
{"title":"Strength comparison for fully dense zirconium diboride ceramics tested by different methods","authors":"Darko Kosanović, Suzana Filipović, Isaak Trajković, Nina Obradović, Paul M. Brune, Gregory E. Hilmas, William G. Fahrenholtz","doi":"10.1111/ijac.14885","DOIUrl":"https://doi.org/10.1111/ijac.14885","url":null,"abstract":"The strength of zirconium diboride ceramics was tested by three different methods, 3‐point flexure, 4‐point flexure, and compression. Nearly full‐density ceramics were obtained by hot pressing commercial ZrB<jats:sub>2</jats:sub> powder with the addition of .5 wt.% carbon as a sintering aid. The thermal properties and hardness were studied for ZrB<jats:sub>2</jats:sub> milled with ZrB<jats:sub>2</jats:sub> and WC media. Based on phase purity and higher thermal conductivity, ZrB<jats:sub>2</jats:sub> ceramics prepared from powders milled with ZrB<jats:sub>2</jats:sub> media were selected for mechanical property studies. The strength in 3‐point flexure was 546 ± 55 MPa. The flexure strength was 476 ± 41 MPa in 4‐point bending, which was ∼20% higher than the previously reported value of 398 MPa for ZrB<jats:sub>2</jats:sub> with similar grain sizes due to higher relative density and lower impurity contents. Compression testing was performed at room temperature, and the strength was 1110 ± 358 MPa. Finally, the fracture toughness of pure ZrB<jats:sub>2</jats:sub> ceramics was determined by the chevron‐notched beam method to be 3.6 ± .7 MPa m<jats:sup>1/2</jats:sup>. The strength and fracture toughness values are higher than those previously published for ZrB<jats:sub>2</jats:sub> ceramics and can be attributed to higher density and lower grain size. The strength‐limiting flaw sizes were comparable to the grain size, suggesting that porosity and impurity phases did not play a significant role in the strength of these ceramics.","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141940726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhengyu Zhao, Hailong Wu, Anfu Guo, Dekun Kong, Lu Wang, Chang Liu, Lvfa Yin, Guojun Xia, Xiaofei Su
Vat photopolymerization (VPP) printing of ceramic parts offers advantages such as low cost, simple operation, and short fabrication cycles. However, drawbacks include low toughness and brittleness in the printed parts. This study explores enhancing the toughness and strength of alumina (Al2O3) ceramics by incorporating silicon carbide (SiC) particles as additives. The impact of varying SiC contents on the quality of VPP‐printed Al2O3 parts is examined, encompassing microstructure, physical properties, and mechanical properties. Results indicate that optimal SiC addition reduces Al2O3 ceramics' porosity, enhances crystalline quality, and boosts mechanical properties. Excessive SiC, however, diminishes these benefits. The most significant strengthening of Al2O3 parts occurred with a 1.5 wt.% SiC content, increasing bending strength and fracture toughness by 239.7% and 564.7%, respectively. This underscore SiC's positive role in enhancing the quality of VPP‐printed Al2O3 parts.
{"title":"Effect of silicon carbide content on microstructure, physical and mechanical properties in vat photopolymerization of alumina","authors":"Zhengyu Zhao, Hailong Wu, Anfu Guo, Dekun Kong, Lu Wang, Chang Liu, Lvfa Yin, Guojun Xia, Xiaofei Su","doi":"10.1111/ijac.14877","DOIUrl":"https://doi.org/10.1111/ijac.14877","url":null,"abstract":"Vat photopolymerization (VPP) printing of ceramic parts offers advantages such as low cost, simple operation, and short fabrication cycles. However, drawbacks include low toughness and brittleness in the printed parts. This study explores enhancing the toughness and strength of alumina (Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>) ceramics by incorporating silicon carbide (SiC) particles as additives. The impact of varying SiC contents on the quality of VPP‐printed Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> parts is examined, encompassing microstructure, physical properties, and mechanical properties. Results indicate that optimal SiC addition reduces Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> ceramics' porosity, enhances crystalline quality, and boosts mechanical properties. Excessive SiC, however, diminishes these benefits. The most significant strengthening of Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> parts occurred with a 1.5 wt.% SiC content, increasing bending strength and fracture toughness by 239.7% and 564.7%, respectively. This underscore SiC's positive role in enhancing the quality of VPP‐printed Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> parts.","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141866060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}