Pub Date : 2023-11-13DOI: 10.24425/ijet.2023.147687
—The paper discusses the phenomena accompanying switching the sinusoidal excitation of an antenna on and off when the antenna is excited by a train of sinusoids containing several to several hundred periods. Transient phenomena are presented against the background of the resonant properties of the antenna. The processes of turning the antenna on and off take place under different conditions and therefore are different. When the antenna is switched on, the transient processes are determined by the antenna properties and the excitation properties. When the antenna is switched off, excitation is no longer present, and the properties of the antenna determine the transient process. We define a new measure of time: the effective light meter.
{"title":"Transient Processes Associated with Turning an Antenna On and Off","authors":"","doi":"10.24425/ijet.2023.147687","DOIUrl":"https://doi.org/10.24425/ijet.2023.147687","url":null,"abstract":"—The paper discusses the phenomena accompanying switching the sinusoidal excitation of an antenna on and off when the antenna is excited by a train of sinusoids containing several to several hundred periods. Transient phenomena are presented against the background of the resonant properties of the antenna. The processes of turning the antenna on and off take place under different conditions and therefore are different. When the antenna is switched on, the transient processes are determined by the antenna properties and the excitation properties. When the antenna is switched off, excitation is no longer present, and the properties of the antenna determine the transient process. We define a new measure of time: the effective light meter.","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":"17 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136346867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-13DOI: 10.24425/ijet.2023.147694
— The article is devoted to the development of a method for increasing the efficiency of communication channels of unmanned aerial vehicles (UAVs) in the conditions of electronic warfare (EW). The author analyses the threats that may be caused by the use of electronic warfare against autonomous UAVs. A review of some technologies that can be used to create original algorithms for countering electronic warfare and increasing the autonomy of UAVs on the battlefield is carried out. The structure of modern digital communication systems is considered. The requirements of unmanned aerial vehicle manufacturers for on-board electronic equipment are analyzed, and the choice of the hardware platform of the target radio system is justified. The main idea and novelty of the proposed method are highlighted. The creation of a model of a cognitive radio channel for UAVs is considered step by step. The main steps of modelling the spectral activity of electronic warfare equipment are proposed. The main criteria for choosing a free spectral range are determined. The type of neural network for use in the target cognitive radio system is substantiated. The idea of applying adaptive coding in UAV communication channels using multicomponent turbo codes in combination with neural networks, which are simultaneously used for cognitive radio, has been further developed.
{"title":"Improving the Efficiency of UAV Communication Channels in the Context of Electronic Warfare","authors":"","doi":"10.24425/ijet.2023.147694","DOIUrl":"https://doi.org/10.24425/ijet.2023.147694","url":null,"abstract":"— The article is devoted to the development of a method for increasing the efficiency of communication channels of unmanned aerial vehicles (UAVs) in the conditions of electronic warfare (EW). The author analyses the threats that may be caused by the use of electronic warfare against autonomous UAVs. A review of some technologies that can be used to create original algorithms for countering electronic warfare and increasing the autonomy of UAVs on the battlefield is carried out. The structure of modern digital communication systems is considered. The requirements of unmanned aerial vehicle manufacturers for on-board electronic equipment are analyzed, and the choice of the hardware platform of the target radio system is justified. The main idea and novelty of the proposed method are highlighted. The creation of a model of a cognitive radio channel for UAVs is considered step by step. The main steps of modelling the spectral activity of electronic warfare equipment are proposed. The main criteria for choosing a free spectral range are determined. The type of neural network for use in the target cognitive radio system is substantiated. The idea of applying adaptive coding in UAV communication channels using multicomponent turbo codes in combination with neural networks, which are simultaneously used for cognitive radio, has been further developed.","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":"14 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136346710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-13DOI: 10.24425/ijet.2023.147693
— Acquiring labels in anomaly detection tasks is expensive and challenging. Therefore, as an effective way to improve efficiency, pretraining is widely used in anomaly detection models , which enriches the model's representation capabilities, thereby enhancing both performance and efficiency in anomaly detection. In most pretraining methods, the decoder is typically randomly initialized. Drawing inspiration from the diffusion model, this paper proposed to use denoising as a task to pretrain the decoder in anomaly detection, which is trained to reconstruct the original noise-free input. Denoising requires the model to learn the structure, patterns, and related features of the data, particularly when training samples are limited. This paper explored two approaches on anomaly detection: simultaneous denoising pretraining for encoder and decoder, denoising pretraining for only decoder. Experimental results demonstrate the effectiveness of this method on improving model’s performance. Particularly, when the number of samples is limited, the improvement is more pronounced.
{"title":"147693","authors":"","doi":"10.24425/ijet.2023.147693","DOIUrl":"https://doi.org/10.24425/ijet.2023.147693","url":null,"abstract":"— Acquiring labels in anomaly detection tasks is expensive and challenging. Therefore, as an effective way to improve efficiency, pretraining is widely used in anomaly detection models , which enriches the model's representation capabilities, thereby enhancing both performance and efficiency in anomaly detection. In most pretraining methods, the decoder is typically randomly initialized. Drawing inspiration from the diffusion model, this paper proposed to use denoising as a task to pretrain the decoder in anomaly detection, which is trained to reconstruct the original noise-free input. Denoising requires the model to learn the structure, patterns, and related features of the data, particularly when training samples are limited. This paper explored two approaches on anomaly detection: simultaneous denoising pretraining for encoder and decoder, denoising pretraining for only decoder. Experimental results demonstrate the effectiveness of this method on improving model’s performance. Particularly, when the number of samples is limited, the improvement is more pronounced.","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":"54 17","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134992924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-13DOI: 10.24425/ijet.2023.147685
— The future Internet of Things (IoT) era is anticipated to support computation-intensive and time-critical applications using edge computing for mobile (MEC), which is regarded as promising technique. However, the transmitting uplink performance will be highly impacted by the hostile wireless channel, the low bandwidth, and the low transmission power of IoT devices. Using edge computing for mobile (MEC) to offload tasks becomes a crucial technology to reduce service latency for computation-intensive applications and reduce the computational workloads of mobile devices. Under the restrictions of computation latency and cloud computing capacity, our goal is to reduce the overall energy consumption of all users, including transmission energy and local computation energy. In this article, the Deep Q Network Algorithm (DQNA) to deal with the data rates with respect to the user base in different time slots of 5G NOMA network. The DQNA is optimized by considering more number of cell structures like 2, 4, 6 and 8. Therefore, the DQNA provides the optimal distribution of power among all 3 users in the 5G network, which gives the increased data rates. The existing various power distribution algorithms like frequent pattern (FP), weighted least squares mean error weighted least squares mean error (WLSME), and Random Power and Maximal Power allocation are used to justify the proposed DQNA technique. The proposed technique which gives 81.6% more the data rates when increased the cell structure to 8. Thus 25% more in comparison to other algorithms like FP, WLSME Random Power and Maximal Power allocation
{"title":"Minimization of Energy and Service Latency Computation Offloading using Neural Network in 5G NOMA System","authors":"","doi":"10.24425/ijet.2023.147685","DOIUrl":"https://doi.org/10.24425/ijet.2023.147685","url":null,"abstract":"— The future Internet of Things (IoT) era is anticipated to support computation-intensive and time-critical applications using edge computing for mobile (MEC), which is regarded as promising technique. However, the transmitting uplink performance will be highly impacted by the hostile wireless channel, the low bandwidth, and the low transmission power of IoT devices. Using edge computing for mobile (MEC) to offload tasks becomes a crucial technology to reduce service latency for computation-intensive applications and reduce the computational workloads of mobile devices. Under the restrictions of computation latency and cloud computing capacity, our goal is to reduce the overall energy consumption of all users, including transmission energy and local computation energy. In this article, the Deep Q Network Algorithm (DQNA) to deal with the data rates with respect to the user base in different time slots of 5G NOMA network. The DQNA is optimized by considering more number of cell structures like 2, 4, 6 and 8. Therefore, the DQNA provides the optimal distribution of power among all 3 users in the 5G network, which gives the increased data rates. The existing various power distribution algorithms like frequent pattern (FP), weighted least squares mean error weighted least squares mean error (WLSME), and Random Power and Maximal Power allocation are used to justify the proposed DQNA technique. The proposed technique which gives 81.6% more the data rates when increased the cell structure to 8. Thus 25% more in comparison to other algorithms like FP, WLSME Random Power and Maximal Power allocation","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":"13 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136346515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-13DOI: 10.24425/ijet.2023.147698
— The phenomenon that occurs today is an increase in the use of electrical energy consumption every year and especially in Public Street Lighting (PSL) lamps. It can be noticed that almost every road is public, and the expressway has PSL lights. PSL lamps are installed on each median, left or right of the road with a distance between ± lights of 30meters. The object of research on this foreign cooperation is located in the PIK2 project located in the Dadap area, Indonesia. The PSL lamp installation location has a road length of ±1.8Km. PSL lamps used have a power of 250watts. While the specific purpose of this study is to design and analyze measurements of power, voltage and current in PSL lamps and also to control and monitor the condition of PSL lamps through the Wireless Sensor Network (WSN) by applying a star topology for the efficiency of electrical energy consumption in PSL lamps, using microcontrollers, sensors, and LoRa. This research is expected to produce a best practice model for the application of WSN in the PSL system in Indonesia and become a recommendation for companies in improving WSN technology and global competitiveness. The proposed research methods are quantitative and objective, so this study is applied to acquire and distribute data at PSL light points. The data on the sensor will be sent through the end node which is then sent to the coordinator node or gateway. The sensor data on this tool can be displayed by accessing the ubidots.
{"title":"Simulation and Performance Analysis of Network Backup Systems Using Hot Standby Router Protocol (HSRP) Method on Real-Time Networks","authors":"","doi":"10.24425/ijet.2023.147698","DOIUrl":"https://doi.org/10.24425/ijet.2023.147698","url":null,"abstract":"— The phenomenon that occurs today is an increase in the use of electrical energy consumption every year and especially in Public Street Lighting (PSL) lamps. It can be noticed that almost every road is public, and the expressway has PSL lights. PSL lamps are installed on each median, left or right of the road with a distance between ± lights of 30meters. The object of research on this foreign cooperation is located in the PIK2 project located in the Dadap area, Indonesia. The PSL lamp installation location has a road length of ±1.8Km. PSL lamps used have a power of 250watts. While the specific purpose of this study is to design and analyze measurements of power, voltage and current in PSL lamps and also to control and monitor the condition of PSL lamps through the Wireless Sensor Network (WSN) by applying a star topology for the efficiency of electrical energy consumption in PSL lamps, using microcontrollers, sensors, and LoRa. This research is expected to produce a best practice model for the application of WSN in the PSL system in Indonesia and become a recommendation for companies in improving WSN technology and global competitiveness. The proposed research methods are quantitative and objective, so this study is applied to acquire and distribute data at PSL light points. The data on the sensor will be sent through the end node which is then sent to the coordinator node or gateway. The sensor data on this tool can be displayed by accessing the ubidots.","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":"15 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136346706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-10DOI: 10.24425/ijet.2023.147708
{"title":"147708","authors":"","doi":"10.24425/ijet.2023.147708","DOIUrl":"https://doi.org/10.24425/ijet.2023.147708","url":null,"abstract":"","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":"107 28","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135136803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.24425/ijet.2022.141281
Widianto, H.M. Chasrun, Robert Lis
— A testbench is built to verify a functionality of a shift register IC (Integrated Circuit) from stuck-at-faults, stuck-at-1 as well as stuck-at-0. The testbench is supported by components, i.e., generator, interface, driver, monitor, scoreboard, environment, test, and testbench top. The IC consists of sequential logic circuits of D-type flip-flops. The faults may occur at interconnects between the circuits inside the IC. In order to examine the functionality from the faults, both the testbench and the IC are designed using SystemVerilog and simulated using Questasim simulator. Simulation results show the faults may be detected by the testbench. Moreover, the detected faults may be indicated by error statements in transcript results of the simulator .
{"title":"Build Testbenches for Verification in Shift Register ICs using SystemVerilog","authors":"Widianto, H.M. Chasrun, Robert Lis","doi":"10.24425/ijet.2022.141281","DOIUrl":"https://doi.org/10.24425/ijet.2022.141281","url":null,"abstract":"— A testbench is built to verify a functionality of a shift register IC (Integrated Circuit) from stuck-at-faults, stuck-at-1 as well as stuck-at-0. The testbench is supported by components, i.e., generator, interface, driver, monitor, scoreboard, environment, test, and testbench top. The IC consists of sequential logic circuits of D-type flip-flops. The faults may occur at interconnects between the circuits inside the IC. In order to examine the functionality from the faults, both the testbench and the IC are designed using SystemVerilog and simulated using Questasim simulator. Simulation results show the faults may be detected by the testbench. Moreover, the detected faults may be indicated by error statements in transcript results of the simulator .","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":"14 25","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135545588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.24425/ijet.2022.143895
— The presented distributed photovoltaic system is made of divided into individual modules photovoltaic panel, consisting of several photovoltaic cells properly connected and coupling them with low-power DC / DC converters. The essence of the research is to increase the reliability of the system and the resultant efficiency of the entire system, so that it is possible to convert solar radiation energy into electricity with the greatest efficiency. The article focuses on the presentation of the implementation and tests of the overriding control algorithm, the task of which is to provide full functionality for a distributed photovoltaic system. The control is designed to minimize the negative effects of shadows on the operation of the photovoltaic system and conduct self-diagnostics. The conclusion for the carried out work is the formulation of hardware and interface requirements for the further development of the project.
{"title":"Application of a Control Algorithm for the Master Unit of a Distributed Photovoltaic System","authors":"","doi":"10.24425/ijet.2022.143895","DOIUrl":"https://doi.org/10.24425/ijet.2022.143895","url":null,"abstract":"— The presented distributed photovoltaic system is made of divided into individual modules photovoltaic panel, consisting of several photovoltaic cells properly connected and coupling them with low-power DC / DC converters. The essence of the research is to increase the reliability of the system and the resultant efficiency of the entire system, so that it is possible to convert solar radiation energy into electricity with the greatest efficiency. The article focuses on the presentation of the implementation and tests of the overriding control algorithm, the task of which is to provide full functionality for a distributed photovoltaic system. The control is designed to minimize the negative effects of shadows on the operation of the photovoltaic system and conduct self-diagnostics. The conclusion for the carried out work is the formulation of hardware and interface requirements for the further development of the project.","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":"345 1‐2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135635897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.24425/ijet.2022.141291
— The paper presents a novel heuristic procedure (further called the AH Method) to investigate function shape in the direct vicinity of the found optimum solution. The survey is conducted using only the space sampling collected during the optimization process with an evolutionary algorithm. For this purpose the finite model of point-set is considered. The statistical analysis of the sampling quality based upon the coverage of the points in question over the entire attraction region is exploited. The tolerance boundaries of the parameters are determined for the user-specified increase of the objective function value above the found minimum. The presented test-case data prove that the proposed approach is comparable to other optimum neighborhood examination algorithms. Also, the AH Method requires noticeably shorter computational time than its counterparts. This is achieved by a repeated, second use of points from optimization without additional objective function calls, as well as significant repository size reduction during preprocessing.
{"title":"AH Method: a Novel Routine for Vicinity Examination of the Optimum Found with a Genetic Algorithm","authors":"","doi":"10.24425/ijet.2022.141291","DOIUrl":"https://doi.org/10.24425/ijet.2022.141291","url":null,"abstract":"— The paper presents a novel heuristic procedure (further called the AH Method) to investigate function shape in the direct vicinity of the found optimum solution. The survey is conducted using only the space sampling collected during the optimization process with an evolutionary algorithm. For this purpose the finite model of point-set is considered. The statistical analysis of the sampling quality based upon the coverage of the points in question over the entire attraction region is exploited. The tolerance boundaries of the parameters are determined for the user-specified increase of the objective function value above the found minimum. The presented test-case data prove that the proposed approach is comparable to other optimum neighborhood examination algorithms. Also, the AH Method requires noticeably shorter computational time than its counterparts. This is achieved by a repeated, second use of points from optimization without additional objective function calls, as well as significant repository size reduction during preprocessing.","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":"31 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135679663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.24425/ijet.2022.139890
—Computing isogenies between elliptic curves is a significant part of post-quantum cryptography with many practical applications (for example, in SIDH, SIKE, B-SIDH, or CSIDH algorithms). Comparing to other post-quantum algorithms, the main advantages of these protocols are smaller keys, the similar idea as in the ECDH, and a large basis of expertise about elliptic curves. The main disadvantage of the isogeny-based cryptosystems is their computational efficiency - they are slower than other post-quantum algorithms (e.g., lattice-based). That is why so much effort has been put into improving the hitherto known methods of computing isogenies between elliptic curves. In this paper, we present new formulas for computing isogenies between elliptic curves in the extended Jacobi quartic form with two methods: by transforming such curves into the short Weierstrass model, computing an isogeny in this form and then transforming back into an initial model or by computing an isogeny directly between two extended Jacobi quartics.
{"title":"How to Compute an Isogeny on the Extended Jacobi Quartic Curves?","authors":"","doi":"10.24425/ijet.2022.139890","DOIUrl":"https://doi.org/10.24425/ijet.2022.139890","url":null,"abstract":"—Computing isogenies between elliptic curves is a significant part of post-quantum cryptography with many practical applications (for example, in SIDH, SIKE, B-SIDH, or CSIDH algorithms). Comparing to other post-quantum algorithms, the main advantages of these protocols are smaller keys, the similar idea as in the ECDH, and a large basis of expertise about elliptic curves. The main disadvantage of the isogeny-based cryptosystems is their computational efficiency - they are slower than other post-quantum algorithms (e.g., lattice-based). That is why so much effort has been put into improving the hitherto known methods of computing isogenies between elliptic curves. In this paper, we present new formulas for computing isogenies between elliptic curves in the extended Jacobi quartic form with two methods: by transforming such curves into the short Weierstrass model, computing an isogeny in this form and then transforming back into an initial model or by computing an isogeny directly between two extended Jacobi quartics.","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135635071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}