Pub Date : 2023-11-06DOI: 10.24425/ijet.2022.141290
— In October 2018, local digital radio was launched to cover the agglomeration of Wroclaw. The implementation of this undertaking required many tests, including qualitative ones, that refer to both music and speech. This paper presents the results of subjective tests based on the evaluation of speech quality of signals recorded at various points in Wroclaw. Measurements were carried out in accordance with the recommendations of the International Telecommunication Union as well as in ordinary acoustic conditio ns in listeners’ flats. The rating was made for male and female voices. The most important conclusion is that for speech signal assessment in meaning of the quality the test conditions do not influence the obtained results. The other fact confirmed in the experiment was that the receiving place of DAB+ signal in the Single-Frequency Network also does not affect the perceived voice quality
{"title":"Subjective Assessment of the Speech Signal Quality Broadcasted by Local Digital Radio in Selected Locations in Wroclaw under Studio and Home Conditions","authors":"","doi":"10.24425/ijet.2022.141290","DOIUrl":"https://doi.org/10.24425/ijet.2022.141290","url":null,"abstract":"— In October 2018, local digital radio was launched to cover the agglomeration of Wroclaw. The implementation of this undertaking required many tests, including qualitative ones, that refer to both music and speech. This paper presents the results of subjective tests based on the evaluation of speech quality of signals recorded at various points in Wroclaw. Measurements were carried out in accordance with the recommendations of the International Telecommunication Union as well as in ordinary acoustic conditio ns in listeners’ flats. The rating was made for male and female voices. The most important conclusion is that for speech signal assessment in meaning of the quality the test conditions do not influence the obtained results. The other fact confirmed in the experiment was that the receiving place of DAB+ signal in the Single-Frequency Network also does not affect the perceived voice quality","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":"33 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135679643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.24425/ijet.2022.143890
— Underwater Wireless Optical Communication (UWOC) offers significant research prospective with major challenges in the design and implementation. UWOC is capable of providing high rate of data transmission across large distances. This paper attempts to focus on the intricacies of practical implementations and open research issues of UWOC systems. Critical advances and progresses made in the field, modelling techniques and link design challenges are summarised. The purpose of this review is to give suggestions towards feasible and reliable UWOC design with improved performance. Finally the major points are summarized so that it will assist the future research in UWOC.
{"title":"A Review on Feasible and Reliable Underwater Wireless Optical Communication System for achieving High Data Rate and Longer Transmission Distance","authors":"","doi":"10.24425/ijet.2022.143890","DOIUrl":"https://doi.org/10.24425/ijet.2022.143890","url":null,"abstract":"— Underwater Wireless Optical Communication (UWOC) offers significant research prospective with major challenges in the design and implementation. UWOC is capable of providing high rate of data transmission across large distances. This paper attempts to focus on the intricacies of practical implementations and open research issues of UWOC systems. Critical advances and progresses made in the field, modelling techniques and link design challenges are summarised. The purpose of this review is to give suggestions towards feasible and reliable UWOC design with improved performance. Finally the major points are summarized so that it will assist the future research in UWOC.","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":"33 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135679645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.24425/ijet.2022.143891
— The Internet of Underwater Things (IoUT) is an emerging technology that promised to connect the underwater world to the land internet. It is enabled via the usage of the Underwater Acoustic Sensor Network (UASN). Therefore, it is affected by the challenges faced by UASNs such as the high dynamics of the underwater environment, the high transmission delays, low bandwidth, high-power consumption, and high bit error ratio. Due to these challenges, designing an efficient routing protocol for the IoUT is still a trade-off issue. In this paper, we discuss the specific challenges imposed by using UASN for enabling IoUT, we list and explain the general requirements for routing in the IoUT and we discuss how these challenges and requirements are addressed in literature routing protocols. Thus, the presented information lays a foundation for further investigations and futuristic proposals for efficient routing approaches in the IoUT.
{"title":"A Survey on Efficient Routing Strategies for The Internet of Underwater Things (IoUT)","authors":"","doi":"10.24425/ijet.2022.143891","DOIUrl":"https://doi.org/10.24425/ijet.2022.143891","url":null,"abstract":"— The Internet of Underwater Things (IoUT) is an emerging technology that promised to connect the underwater world to the land internet. It is enabled via the usage of the Underwater Acoustic Sensor Network (UASN). Therefore, it is affected by the challenges faced by UASNs such as the high dynamics of the underwater environment, the high transmission delays, low bandwidth, high-power consumption, and high bit error ratio. Due to these challenges, designing an efficient routing protocol for the IoUT is still a trade-off issue. In this paper, we discuss the specific challenges imposed by using UASN for enabling IoUT, we list and explain the general requirements for routing in the IoUT and we discuss how these challenges and requirements are addressed in literature routing protocols. Thus, the presented information lays a foundation for further investigations and futuristic proposals for efficient routing approaches in the IoUT.","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":"31 11","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135679662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.24425/ijet.2022.143893
— A key role in the development of smart Internet of Things (IoT) solutions is played by wireless communication technologies, especially LPWAN (Low-Power Wide-Area Network), which are becoming increasingly popular due to their advantages: long range, low power consumption and the ability to connect multiple edge devices. However, in addition to the advantages of communication and low power consumption, the security of transmitted data is also important. End devices very often have a small amount of memory, which makes it impossible to implement advanced cryptographic algorithms on them. The article analyzes the advantages and disadvantages of solutions based on LPWAN communication and reviews platforms for IoT device communication in the LoRaWAN (LoRa Wide Area Network) standard in terms of configuration complexity. It describes how to configure an experimental LPWAN system being built at the Department of Computer Science and Telecommunications at Poznan University of Technology for research related to smart buildings.
{"title":"LoRaWAN Communication Implementation Platforms","authors":"","doi":"10.24425/ijet.2022.143893","DOIUrl":"https://doi.org/10.24425/ijet.2022.143893","url":null,"abstract":"— A key role in the development of smart Internet of Things (IoT) solutions is played by wireless communication technologies, especially LPWAN (Low-Power Wide-Area Network), which are becoming increasingly popular due to their advantages: long range, low power consumption and the ability to connect multiple edge devices. However, in addition to the advantages of communication and low power consumption, the security of transmitted data is also important. End devices very often have a small amount of memory, which makes it impossible to implement advanced cryptographic algorithms on them. The article analyzes the advantages and disadvantages of solutions based on LPWAN communication and reviews platforms for IoT device communication in the LoRaWAN (LoRa Wide Area Network) standard in terms of configuration complexity. It describes how to configure an experimental LPWAN system being built at the Department of Computer Science and Telecommunications at Poznan University of Technology for research related to smart buildings.","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":"3 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135679840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.24425/ijet.2022.141269
—Hybrid precoding techniques are lately involved a lot of interest for millimeter-wave (mmWave) massive MIMO systems is due to the cost and power consumption advantages they provide. However, existing hybrid precoding based on the singular value decomposition (SVD) necessitates a difficult bit allocation to fit the varying signal-to-noise ratios (SNRs) of altered sub-channels. In this paper, we propose a generalized triangular decomposition (GTD)-based hybrid precoding to avoid the complicated bit allocation. The development of analog and digital precoders is the reason for the high level of design complexity in analog precoder architecture, which is based on the OMP algorithm, is very non-convex, and so has a high level of complexity. As a result, we suggest using the GTD method to construct hybrid precoding for mmWave mMIMO systems. Simulated studies as various system configurations are used to examine the proposed design. In addition, the archived findings are compared to a hybrid precoding approach in the classic OMP algorithm. The proposed Matrix Decomposition’s simulation results of signal-to-noise ratio vs spectral efficiencies
{"title":"Design of Hybrid Precoder for mm-Wave MIMO System Based on Generalized Triangular Decomposition Method","authors":"","doi":"10.24425/ijet.2022.141269","DOIUrl":"https://doi.org/10.24425/ijet.2022.141269","url":null,"abstract":"—Hybrid precoding techniques are lately involved a lot of interest for millimeter-wave (mmWave) massive MIMO systems is due to the cost and power consumption advantages they provide. However, existing hybrid precoding based on the singular value decomposition (SVD) necessitates a difficult bit allocation to fit the varying signal-to-noise ratios (SNRs) of altered sub-channels. In this paper, we propose a generalized triangular decomposition (GTD)-based hybrid precoding to avoid the complicated bit allocation. The development of analog and digital precoders is the reason for the high level of design complexity in analog precoder architecture, which is based on the OMP algorithm, is very non-convex, and so has a high level of complexity. As a result, we suggest using the GTD method to construct hybrid precoding for mmWave mMIMO systems. Simulated studies as various system configurations are used to examine the proposed design. In addition, the archived findings are compared to a hybrid precoding approach in the classic OMP algorithm. The proposed Matrix Decomposition’s simulation results of signal-to-noise ratio vs spectral efficiencies","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":"6 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135680032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.24425/ijet.2022.141262
— With the increasing uses of internet technologies in daily life, vulnerability of personal data/information is also increasing. Performing secure communication over the channel which is insecure has always been a problem because of speedy development of various technologies. Encryption scheme provides secrecy to data by enabling only authorized user to access it. In the proposed paper, we present an encryption algorithm designed for data security based on bilinear mapping and prove it secure by providing its security theoretical proof against adaptive chosen cipher-text attack. With the help of a lemma, we have shown that no polynomially bounded adversary has non-negligible advantage in the challenging game. We also give the comparative analysis of the proposed scheme in terms of security and performance with Deng et al., 2020 and Jiang et al., 2021 schemes and prove that proposed algorithm is more efficient and secure than others existing in literature against adaptive chosen cipher-text attack.
{"title":"Secure and Efficient Encryption Scheme Based on Bilinear Mapping","authors":"","doi":"10.24425/ijet.2022.141262","DOIUrl":"https://doi.org/10.24425/ijet.2022.141262","url":null,"abstract":"— With the increasing uses of internet technologies in daily life, vulnerability of personal data/information is also increasing. Performing secure communication over the channel which is insecure has always been a problem because of speedy development of various technologies. Encryption scheme provides secrecy to data by enabling only authorized user to access it. In the proposed paper, we present an encryption algorithm designed for data security based on bilinear mapping and prove it secure by providing its security theoretical proof against adaptive chosen cipher-text attack. With the help of a lemma, we have shown that no polynomially bounded adversary has non-negligible advantage in the challenging game. We also give the comparative analysis of the proposed scheme in terms of security and performance with Deng et al., 2020 and Jiang et al., 2021 schemes and prove that proposed algorithm is more efficient and secure than others existing in literature against adaptive chosen cipher-text attack.","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":"20 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135684238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.24425/ijet.2022.143892
—The design of a low complexity multiplier-less narrow transition band filter bank for the channelizer of multi-standard software-defined radio (SDR) is investigated in this paper. To accomplish this, the modal filter and complementary filter in the upper and lower branches of the conventional Frequency Response Masking (FRM) architecture are replaced with two power-complementary and linear phase filter banks. Secondly, a new masking strategy is proposed to fully exploit the potential of the numerous spectra replicas produced by the interpolation of the modal filter, which was previously ignored in the existing FRM design. In this scheme, the two masking filters are appropriately modulated and alternately masked over the spectra replicas from 0 to 2 π , to generate even and odd channels. This Alternate Masking Scheme (AMS) increases the potency of the Modified FRM (ModFRM) architecture for the design of computationally efficient narrow transition band uniform filter bank (termed as ModFRM-FB). Finally, by combining the adjoining ModFRM-FB channels, Non-Uniform ModFRM-FB (NUModFRM-FB) for extracting different communication standards in the SDR channelizer is created. To reduce the total power consumption of the architecture, the coefficients of the proposed system are made multiplier-less using Matching Pursuits Generalized Bit-Planes (MPGBP) algorithm. In this method, filter coefficients are successively approximated using a dictionary of vectors to give a sum-of-power-of-two (SOPOT) representation. In comparison to all other general optimization techniques, such as genetic algorithms, the suggested design method stands out for its ease of implementation, requiring no sophisticated optimization or exhaustive search schemes. Another notable feature of the suggested approach is that, in comparison to existing methods, the design time for approximation has been greatly reduced. To further bring down the complexity, adders are reused in recurrent SOPOT terms using the Common Sub-expression Elimination (CSE) technique
{"title":"Low Complexity Multiplier-less Modified FRM Filter Bank using MPGBP Algorithm","authors":"","doi":"10.24425/ijet.2022.143892","DOIUrl":"https://doi.org/10.24425/ijet.2022.143892","url":null,"abstract":"—The design of a low complexity multiplier-less narrow transition band filter bank for the channelizer of multi-standard software-defined radio (SDR) is investigated in this paper. To accomplish this, the modal filter and complementary filter in the upper and lower branches of the conventional Frequency Response Masking (FRM) architecture are replaced with two power-complementary and linear phase filter banks. Secondly, a new masking strategy is proposed to fully exploit the potential of the numerous spectra replicas produced by the interpolation of the modal filter, which was previously ignored in the existing FRM design. In this scheme, the two masking filters are appropriately modulated and alternately masked over the spectra replicas from 0 to 2 π , to generate even and odd channels. This Alternate Masking Scheme (AMS) increases the potency of the Modified FRM (ModFRM) architecture for the design of computationally efficient narrow transition band uniform filter bank (termed as ModFRM-FB). Finally, by combining the adjoining ModFRM-FB channels, Non-Uniform ModFRM-FB (NUModFRM-FB) for extracting different communication standards in the SDR channelizer is created. To reduce the total power consumption of the architecture, the coefficients of the proposed system are made multiplier-less using Matching Pursuits Generalized Bit-Planes (MPGBP) algorithm. In this method, filter coefficients are successively approximated using a dictionary of vectors to give a sum-of-power-of-two (SOPOT) representation. In comparison to all other general optimization techniques, such as genetic algorithms, the suggested design method stands out for its ease of implementation, requiring no sophisticated optimization or exhaustive search schemes. Another notable feature of the suggested approach is that, in comparison to existing methods, the design time for approximation has been greatly reduced. To further bring down the complexity, adders are reused in recurrent SOPOT terms using the Common Sub-expression Elimination (CSE) technique","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":"2 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135679850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.24425/ijet.2022.143877
— A comparative analysis of a compact planar Square patch Microstrip Multiband antenna on three different substrates is proposed. The proposed design has a C-shaped slot etched on the square radiating part and the antenna is energized using microstrip feed line. RT Duroid ( 𝜺 𝒓 = 𝟐.𝟐) , Taconic ( 𝜺 𝒓 = 𝟑. 𝟐 ) and FR4 ( 𝜺 𝒓 = 𝟒. 𝟒 ) substrates are used for simulation analysis. The flow of current is modified by the C-shaped slot making the antenna to resonate at 3/4 and 6 bands for RT Duroid/Taconic and FR4 substrates respectively suitable for 5G sub GHz applications. The antenna has a compact dimension of 𝟑𝟐 × 𝟑𝟐 × 𝟏. 𝟔𝒎𝒎 𝟑 and exhibits a return loss, S 11 of less than -10dB for all the resonating frequencies for all three substrates. The analysis has been done by considering the S 11 (Return loss <-10 dB), Directivity, Antenna Gain, VSWR and surface current distribution. Table II provides the comparison of parameters for different substrate material.
{"title":"Analysis of C-shape Slotted MSPA for 5G Sub Band Applications on Three Different Substrates","authors":"","doi":"10.24425/ijet.2022.143877","DOIUrl":"https://doi.org/10.24425/ijet.2022.143877","url":null,"abstract":"— A comparative analysis of a compact planar Square patch Microstrip Multiband antenna on three different substrates is proposed. The proposed design has a C-shaped slot etched on the square radiating part and the antenna is energized using microstrip feed line. RT Duroid ( 𝜺 𝒓 = 𝟐.𝟐) , Taconic ( 𝜺 𝒓 = 𝟑. 𝟐 ) and FR4 ( 𝜺 𝒓 = 𝟒. 𝟒 ) substrates are used for simulation analysis. The flow of current is modified by the C-shaped slot making the antenna to resonate at 3/4 and 6 bands for RT Duroid/Taconic and FR4 substrates respectively suitable for 5G sub GHz applications. The antenna has a compact dimension of 𝟑𝟐 × 𝟑𝟐 × 𝟏. 𝟔𝒎𝒎 𝟑 and exhibits a return loss, S 11 of less than -10dB for all the resonating frequencies for all three substrates. The analysis has been done by considering the S 11 (Return loss <-10 dB), Directivity, Antenna Gain, VSWR and surface current distribution. Table II provides the comparison of parameters for different substrate material.","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":"5 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135680041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.24425/ijet.2022.141277
Ahmed Alnaser, Hessa Al-Junaid, Reham Almesaeed
— This paper aims at designing, building, and simulating a secured routing protocol to defend against packet dropping attacks in mobile WSNs (MWSNs). This research addresses the gap in the literature by proposing Configurable Secured Adaptive Routing Protocol (CSARP). CSARP has four levels of protection to allow suitability for different types of network applications. The protocol allows the network admin to configure the required protection level and the ratio of cluster heads to all nodes. The protocol has an adaptive feature, which allows for better protection and preventing the spread of the threats in the network. The conducted CSARP simulations with different conditions showed the ability of CSARP to identify all malicious nodes and remove them from the network. CSARP provided more than 99.97% packets delivery rate with 0% data packet loss in the existence of 3 malicious nodes in comparison with 3.17% data packet loss without using CSARP. When compared with LEACH, CSARP showed an improvement in extending the lifetime of the network by up to 39.5%. The proposed protocol has proven to be better than the available security solutions in terms of configurability, adaptability, optimization for MWSNs, energy consumption optimization, and the suitability for different MWSNs applications and conditions.
{"title":"Configurable Secured Adaptive Routing Protocol for Mobile Wireless Sensor Networks","authors":"Ahmed Alnaser, Hessa Al-Junaid, Reham Almesaeed","doi":"10.24425/ijet.2022.141277","DOIUrl":"https://doi.org/10.24425/ijet.2022.141277","url":null,"abstract":"— This paper aims at designing, building, and simulating a secured routing protocol to defend against packet dropping attacks in mobile WSNs (MWSNs). This research addresses the gap in the literature by proposing Configurable Secured Adaptive Routing Protocol (CSARP). CSARP has four levels of protection to allow suitability for different types of network applications. The protocol allows the network admin to configure the required protection level and the ratio of cluster heads to all nodes. The protocol has an adaptive feature, which allows for better protection and preventing the spread of the threats in the network. The conducted CSARP simulations with different conditions showed the ability of CSARP to identify all malicious nodes and remove them from the network. CSARP provided more than 99.97% packets delivery rate with 0% data packet loss in the existence of 3 malicious nodes in comparison with 3.17% data packet loss without using CSARP. When compared with LEACH, CSARP showed an improvement in extending the lifetime of the network by up to 39.5%. The proposed protocol has proven to be better than the available security solutions in terms of configurability, adaptability, optimization for MWSNs, energy consumption optimization, and the suitability for different MWSNs applications and conditions.","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":"5 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135584366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}